首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
青藏高原岩石圈三维结构及高原隆升的液压机模型   总被引:5,自引:3,他引:5       下载免费PDF全文
青藏地区可以昆仑断裂和雅鲁藏布缝合线为界分为3个岩石圈地球物理特征各不相同的区域:青海高原、藏北高原和藏南高原。青海高原位于昆仑山脉以北,是重力高和重力低毗连出现的盆山结构。藏南高原位于雅鲁藏布江以南,是印度板块分布的地区,其上是印度板块的陆缘沉积。它的地壳结构是一个向南运动的逆冲推覆系统。INDEPTH反射剖面在藏南发现的主喜马拉雅逆冲断层(MHT)与宽角反射地震扇形剖面得到的T4震相反射面完全吻合。两种地震测深方法得到的结果之间不存在矛盾。T4震相在高喜马拉雅地区没有显示,MHT向南延伸到高喜马拉雅只是一个推论,因而MHT是否为印度板块的俯冲带仍有待于获取新的证据。在昆仑山脉以南到雅鲁藏布缝合带为藏北高原,是广泛发生局部熔融的强流变岩石圈。局部熔融地区呈漏斗状。在藏北广泛存在的深度为15~20km的上部地壳内的低速层是一个最富于流变性能的局部熔融层,它的埋藏深度平坦稳定,可能含大量水质流体。紧挨着上述上部壳内局部熔融层,在藏北岩石圈大范围出现分布不均匀的网状局部熔融。局部熔融体的底部从雅鲁藏布江地区的80km向北逐步加深到200km。漏斗的漏管处位于羌塘—可可西里。藏北局部熔融体的形成是由于印度板块向北运移,受到亚洲板块的阻挡,沿雅鲁藏布缝合带向青藏高原高角度俯冲,在弧后羌塘—可可西里地区产生高热流上升地幔所致。根据卫星重力异常、航空磁测、地震接收函数研究、地球化学资料以及地表地质均揭示,印度板块沿雅鲁藏布缝合带的俯冲仅发生在亚东—唐古拉一线以西的西藏西部。在亚东—唐古拉一线以东,印度板块与西藏块体间仅仅发生碰撞,但没有发生俯冲。高原的整体隆升是由液压效应所造成。青藏高原的隆升像一台液压机。印度板块对青藏俯冲过程中产生的各种应力,通过局部熔融体,传递到地壳深15~20km处的熔融层,在其下形成一个等压面。在这个等压面的驱使下,在低速层以上未被局部熔融的地壳的底部均匀受力,将它们同步向上抬升。高原隆升期后的跨塌,使上部地壳向四周流动。在青海高原,造成毗连阿尔金断裂的一系列由西南向北东方向推动的叠瓦构造。在雅鲁藏布江以南地区,形成一系列向南凸出的弧形逆冲断层。在昆仑山脉与雅鲁藏布缝合带之间,向东的流动便形成上部地壳的滑脱构造。虽然青藏高原的形成是由于印度板块的俯冲,但它的隆升机制不单纯是一个刚体力学问题,更重要的要考虑到流体的作用,简单的用以刚体假设为前提的板块学说去解释高原的隆升机制是青藏高原研究中的误区。西藏高原的深部是一个大热库,西藏热储的开发利用是一个重大的研究课题。  相似文献   

2.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。  相似文献   

3.
印度—亚洲俯冲带结构——岩浆作用证据   总被引:31,自引:4,他引:31  
在印度与亚洲大陆碰撞之后 ,两个大陆之间是否存在大陆俯冲是关系到高原地壳加厚、隆升等构造演化模式的重要问题。近 2 0年来以各种地球物理方法为主的深部探测结果揭示了青藏高原的岩石圈结构 ,表明印度向亚洲下部的俯冲是存在的 ,但是其俯冲的规模仍存在争议。不同观点认为印度岩石圈前缘已经到达班公—怒江缝合带的下部约 2 0 0km深度、俯冲在整个西藏岩石圈深部、或者仅仅越过雅鲁藏布江断裂。地热泉He同位素、碰撞后岩浆作用的年代学、岩石学与地球化学研究结果表明冈底斯带与高原北部地区具有相同的岩石圈地幔源区 ,并且存在印度板块在 13~ 2 5Ma之前就俯冲在冈底斯带西部的岩石学和地球化学证据 ,考虑到印度板块的持续向北运动 ,则岩浆作用支持印度岩石圈现今已经达到或者越过班公—怒江缝合带的俯冲模式。  相似文献   

4.
青藏高原北部沱沱河—格尔木一带地壳深部结构   总被引:3,自引:0,他引:3  
卢德源  陈纪平 《地质论评》1987,33(2):122-128
本文介绍的是在青藏高原北部进行爆破地震研究的某些结果。爆破地震剖面位于青海省南部沱沱河至格尔木,测线长340km。研究结果表明:沱沱河和楚玛尔地区莫氏界面深度为55km。格尔木地区为47km。下地壳包含一层厚为8km,其层速度为7.2km/s,可能富含玄武岩物质的层。约基台湖—金沙江深大断裂和昆仑南缘板块结合带是延伸到上地幔顶部的岩石圈断裂。其中昆仑南缘板块结合带倾向北,北盘抬升达8km。它表明两个微板块碰撞过程中,柴达木微板块仰冲,而巴颜喀拉微板块俯冲。  相似文献   

5.
关于印度板块俯冲的探讨———据 INDEPTH-MT 研究结果   总被引:3,自引:0,他引:3  
摘 要  西藏高原的隆升与印度板块俯冲有着密切联系‚因而关于板块俯冲的研究一直成为 国际地学界十分关注的焦点问题。本文回顾了这一地学前缘课题的研究现状;阐述了 IN- DEPTH-MT 所提供的西藏中、南部全新的地壳电性结构特点;结合地质及深地震探测结果提 出了对印度地壳俯冲过程的推测。认为‚由于熔融及底熔现象可能使俯冲的地壳逐渐消减‚ 并向北迅速减薄‚所以估计印度板块俯冲的前沿不会超过当雄。  相似文献   

6.
大陆深俯冲的动力学机制:观测和模拟结果   总被引:2,自引:0,他引:2  
兴都库什-帕米尔-中国西部1975~2003年期间的地震活动记录、地表地质构造和地壳速度结构数据证明,沿特提斯陆-陆碰撞带正在进行大陆深俯冲作用。帕米尔地区大陆地壳的下部物质与上地幔一起俯冲到200km 以下,而中、上地壳在不同深度上被反冲断层所剥离。帕米尔地区向南的大陆深俯冲作用限于西部恰曼左行走滑断裂和东部喀喇昆仑右行走滑断裂之间。沿深俯冲带存在上、中、下3个地震群。上地震群出现在30~50km 附近,对应于中、上地壳的反冲剥离构造作用,地震成因与长英质地壳的脆-韧转换和“二相变形”机制有关。中地震群大体出现在90~120km 深度上,与帕米尔深俯冲岩板向下由缓倾变陡的深度大体相当。下地震群的主体出现在180~220km,代表深俯冲岩板的最前端。帕米尔大陆深俯冲岩板为上宽下窄、上缓(20~30°)下陡(60~70°),转变深度在80~120km 的楔形体,深度超过200km 的走向宽度只有500~600km。在探讨大陆深俯冲的动力学过程中采用了2种模拟方法。利用考虑温度场和负浮力的二维数值模拟表明:(1)地幔对流拖曳力对俯冲深度和俯冲速度有重要控制作用,从100MPa 到20MPa 的变化将导致俯冲深度由231km 减到151km,速率由10.79mm/a 减到5.46mm/a。(2)俯冲角30°与45°相比,前者的俯冲深度要深约25~50km。(3)俯冲板块厚度越大,则俯冲深度越浅。(4)在俯冲板块的负浮力、洋脊推力为10~30MPa 及地幔对流拖曳力为100MPa 的综合作用下,陆壳俯冲实际垂向位移可达120km,最终俯冲深度达到150km,而洋壳实际垂向位移约170km,最终俯冲深度达到230km。在考虑岩石圈和软流圈相互耦合的俯冲模拟中,块体间的接触判断采用了 LDDA 方法的接触判断准则和区域分解方法求解。其特点是边界条件比较简单,并能自动实现俯冲过程中岩石圈和软流圈之间的相互作用,但需要确定研究区域不同深度和不同板块的力学参数,且计算量很大。  相似文献   

7.
喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据   总被引:4,自引:0,他引:4  
2009~2010年在南迦巴瓦地区进行了宽频带地震和大地电磁探测,分别处理获得东构造结及其邻区的地下300km以上的P波速度图像和两条大地电磁电阻率剖面。通过资料的对比和综合解释,发现电阻率分布与地震波速有较好的对应关系。研究结果表明:南迦巴瓦变质体的上地壳部分呈现明显高速高阻特征,为两侧的雅鲁藏布江缝合带所夹持;中下地壳具有不均匀性,且普遍呈低速低阻特征;印度板块在藏东南向欧亚板块的俯冲前缘越过嘉黎断裂,抵达班公湖-怒江缝合带;在拉萨地体的高速俯冲板片以下100km至200km深度范围内存在大规模的低速异常带,其上盘中下地壳也广泛发育低速高导体,指示青藏高原东南缘可能存在韧性易流动的物质向东、东南逃逸的通道,为印度板块在南迦巴瓦的深俯冲动力学模式提供了地球物理证据。  相似文献   

8.
在印度洋板块与欧亚板块碰撞、挤压作用下,促使深部物质重新分异、调整和运移,并导致了地壳的短缩增厚,而且造成了高原的整体隆升和深部壳、幔物质的侧向流展。基于青藏高原腹地和周边地域地壳与上地幔的成层速度结构,特别是其特异层序的展布研究表明,青藏高原地壳巨厚,但岩石圈却相对较薄;地壳中于深20±5km处存在一低速层,层速度为5.7±0.1km/s,厚度为8±2km;上地幔软流圈顶部深度为110±10km;下地壳与上地幔盖层物质以地壳低速层为上滑移面,以岩石圈漂曳的上地幔软流圈顶面为下滑移面,在印度洋板块N-NNE向力源作用下在同步运移,即形成了青藏高原腹地和周边地域特异的大陆地球动力学环境。  相似文献   

9.
陆陆碰撞过程是板块构造缺失的链条。印度板块与亚洲板块的碰撞造就了喜马拉雅造山带和青藏高原的主体。然而,人们对印度板块在大陆碰撞过程中的行为尚不了解。如大陆碰撞及其碰撞后的大陆俯冲是如何进行的、印度板块是俯冲在青藏高原之下还是回转至板块上部(喜马拉雅造山带内)以及两者比例如何,这些仍是亟待解决的问题。印度板块低角度沿喜马拉雅主逆冲断裂(MHT)俯冲在低喜马拉雅和高喜马拉雅之下已经被反射地震图像很好地揭示。然而,关于MHT如何向北延伸,前人的研究仅获得了分辨率较低的接收函数图像。因而,MHT和雅鲁藏布江缝合带之间印度板块的俯冲行为仍是一个谜。喜马拉雅造山楔增生机制,也就是印度地壳前缘的变形机制,反映出物质被临界锥形逆冲断层作用转移到板块上部,或是以韧性管道流的样式向南溢出。在本次研究中,我们给出在喜马拉雅造山带西部地区横过雅鲁藏布江缝合带的沿东经81.5°展布的高分辨率深地震反射剖面,精细揭示了地壳尺度结构构造。剖面显示,MHT以大约20°的倾斜角度延伸至大约60 km深度,接近埋深为70~75 km的Moho面。越过雅鲁藏布江缝合带运移到北面的印度地壳厚度已经不足15 km。深地震反射剖面还显示中地壳逆冲构造反射发育。我们认为,伴随着印度板块俯冲,地壳尺度的多重构造叠置作用使物质自MHT下部的板块向其上部板块转移,这一过程使印度地壳厚度减薄了,同时加厚了喜马拉雅地壳。  相似文献   

10.
用分布于欧亚大陆及西太平洋地区106个宽频带数字地震台站约2万多个长周期波形记录,挑选出沿10600条大圆路径传播的瑞利面波,采用频散分析及波形拟合反演方法,对中国及相邻地区地壳上地幔进行高分辨率三维层析成像。瑞利面波高分辨率速度成像表明,从上地壳到70km深,在东亚东部及西太平洋边缘海地区均为高速分布,西部以青藏高原为中心呈极低速分布。从100~250km深,在东亚东部及西太平洋边缘海,自北向南显示出一条宽2500~4000km,长约8000km的巨型低速异常带。在深度300~400km的平面图上,速度差异幅度不大,塔里木—扬子地块仍然显示为高速分布。东西两部分岩石圈与软流圈的结构有着巨大的差异。西部主要是印度板块与欧亚板块碰撞引起的岩石圈汇聚增厚区,东部则主要是由于软流圈上涌(地幔热物质上升)引起的岩石圈拉张减薄区。古新世印度与欧亚大陆的碰撞汇聚,岩石圈板片以低角度下插到青藏高原之下,引起高原隆起和地壳增厚,西部地区成为岩石圈汇聚区。中生代中晚期东亚大陆东缘岩石圈解体,软流圈物质上涌,岩石圈减薄张裂,形成巨型低速带,并演化为东亚裂谷系。现今的西太平洋边缘海、沟弧盆体系是新生代中晚期太平洋板块、澳大利亚板块与欧亚板块相互作用形成的。  相似文献   

11.
中国大陆构造及动力学若干问题的认识   总被引:17,自引:2,他引:15  
中国(东亚)大陆受特提斯、古亚洲和太平洋构造体系的制约,具有复杂的地体构架和特殊的岩石圈结构。本文从地学前沿——大陆动力学的视野出发,围绕中国大陆构造及动力学四个方面的研究,总结已有的进展并提出新的思考:①中国大陆板块下的构造和整个地幔运动的构架:地震层析资料揭示西太平洋板片向西俯冲到东亚大陆之下,其倾角逐渐减小,最后近水平地插进400~600km深度的地幔过渡带中,成为箕状几何形态的超深俯冲板片。印度岩石圈板片超深俯冲至青藏高原之下~800km的深度,在喜马拉雅西构造结部位发生双向不对称深俯冲,印度岩石圈板片向东俯冲至东构造结东侧之下300~500km的深度。②中国大陆变质基底的再活化:中国大陆的大部分陆块未受显生宙以来构造、变质和岩浆事件的改造与激活,在冈瓦纳大陆北缘的印度陆块和阿拉伯陆块北缘还发育有形成于泛非期(530~470Ma)的造山带,其影响范围至高喜马拉雅、拉萨地体和三江地区。新生代的变质活化普遍出现在喜马拉雅、南迦巴瓦、拉萨地体和三江-缅甸地区,最新的变质年龄仅2~1Ma(南迦巴瓦)。③中国主要高压-超高压变质带的大地构造背景及深俯冲-折返机制:中国及邻区含榴辉岩的高压-超高压(HP/UHP)变质带有洋壳(深)俯冲和陆壳(深)俯冲之分。青藏高原中,大部分洋壳俯冲形成的高压/超高压变质带与原-古特提斯洋盆中诸多微陆块之间的小洋盆的汇聚碰撞有关,陆壳深俯冲作用有两种机制,它们分别是大陆块之间剪式碰撞和撕裂式岩石圈舌形板片的深俯冲。④中国大陆造山带的深部物质可经3类机制挤出,即深部地壳物质"牙膏式"挤出、侧向挤出和"挤压转换式"挤出。  相似文献   

12.
作为一种“非传统稳定同位素”,锂同位素地球化学研究已经成为近年来国际上研究的热点之一.文章成功应用锂同位素对青藏高原西南部赛利普超钾质火山岩进行了示范研究.研究表明,赛利普超钾质火出岩的w(Li)为11.2×10-6~22.9× 10-6,同位素组成δ7Li为1.2‰~+3.5‰,平均值为0 2‰,与平均上地壳的相当.超钾质火山岩的锂同位素组成与岩浆结晶分异程度参数之间不存在任何相关性,这表明在超钾质火山岩结晶分异过程中没有发生明显的锂同位素分馏,锂同位素组成特征反映了其形成时的源区特征.超钾质火山岩的锂同位素组成变化范围达4.7‰,并且与pb-Sr-Nd同位素和岩浆结晶分异参数之间亦无任何相关性,表明锂同位素异常可能反映了不均匀源区岩石特征.通过计算模拟以及与前人的类似研究成果进行对比,笔者认为俯冲印度地壳而不是特提斯洋壳(包括沉积物)的流体/熔体参与了超钾质火山岩的源区富集,并在此基础上提出了超钾质火山岩成因模式.  相似文献   

13.
《Gondwana Research》2014,26(4):1690-1699
The continental collision between the Indian and Asian plates plays a key role in the geologic and tectonic evolution of the Tibetan plateau. In this article we present high-resolution tomographic images of the crust and upper mantle derived from a large number of high-quality seismic data from the ANTILOPE project in western Tibet. Both local and distant earthquakes were used in this study and 35,115 P-wave arrival times were manually picked from the original seismograms. Geological and geochemical results suggested that the subducting Indian plate has reached northward to the Lhasa terrane, whereas our new tomography shows that the Indian plate is currently sub-horizontal and underthrusting to the Jinsha river suture at depths of ~ 100 to ~ 250 km, suggesting that the subduction process has evolved over time. The Asian plate is also imaged clearly from the surface to a depth of ~ 100 km by our tomography, and it is located under the Tarim Basin north of the Altyn Tagh Fault. There is no obvious evidence to show that the Asian plate has subducted beneath western Tibet. The Indian and Asian plates are separated by a prominent low-velocity zone under northern Tibet. We attribute the low-velocity zone to mantle upwelling, which may account for the warm crust and upper mantle beneath that region, and thus explain the different features of magmatism between southern and northern Tibet. But the upwelling may not penetrate through the whole crust. We propose a revised geodynamic model and suggest that the high-velocity zones under Lhasa terrane may reflect a cold crust which has interrupted the crustal flow under the westernmost Tibetan plateau.  相似文献   

14.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

15.
以全球大地构造为背景讨论了玄武岩浆起源和演化的一些基本概念.这些概念的正确理解有助于合理解释各种环境中火成岩的形成机制,也有助于依据野外岩石组合来判别古构造环境.在此基础上结合已有资料和观察,对中国东部中生代岩石圈减薄及中-新生代基性火山岩成因提出了一些新解释.这些解释与地质观察相吻合,且符合基本的物理学原理.虽然中国东部基性火山活动可称为"板内"火山活动,但它实际上是板块构造的特殊产物.中国东部中生代岩石圈减薄是其下部被改造为软流层的缘故.这种改造是加水"软化"所致.水则源于中国东部地幔过渡带(410~660 km)内古太平洋(或其前身)俯冲板块脱水作用.其将岩石圈底部改造为软流层的过程,实际上就是岩石圈减薄的过程.因为软流层是地幔对流的重要部分,而大陆岩石圈则不直接参与地幔对流.中生代玄武岩具有εNd<0的特征,说明其源于新近改造而成的软流层,亦即原古老岩石圈之底部.中国大陆北北东-南南西向的海拔梯度突变界线与东-西部重力异常,陆壳厚度变化,以及地幔地震波速变化梯度吻合.因此可将北北东-南南西向梯度线称为"东-西梯度界".该界东-西海拔高差(西部高原与东部丘陵平原),陆壳厚度差异(西部厚而东部薄)和100~150 km的深度范围地幔地震波速差异(西部快而东部慢),均受控于上地幔重力均衡原理.这表明西部高原岩石圈厚度>150~200 km,而东部丘陵平原岩石圈厚度<80km."遥远"的西太平洋俯冲带具有自然的地幔楔吸引作用.此吸引作用可引起中国东部"新生"软流层东流.软流层东流必将引起西部高原底部软流层的东向补给(流动).这一过程必然导致东移软流层的减压,即从西部的深源(岩石圈深度>150~200 km处)到东部的浅源(岩石圈深度~80km处).东移软流层的减压分熔可合理解释具有软流圈地球化学特征(εNd>0)的新生代中国东部基性火山活动及玄武岩的成因.这些对中国东部中-新生代地质过程的解释,将为更加细致的,以岩石学和地球化学为主的讨论所验证.  相似文献   

16.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

17.
Thermal State and Strength of the Lithosphere Beneath the Chinese Mainland   总被引:1,自引:0,他引:1  
The temperature distributions of the lithosphere underneath the mainland of China were estimated by applying local isostatic equilibrium-constrained geothermal calculations. Maps of the lateral temperature variation at depths of 40, 70, and 100 km are presented for the whole Chinese continent, with the thermal thickness of the lithosphere is calculated. Lithospheric roots of 160–200 km thickness underlie Tarim and the Upper Yangtze platform, but are absent beneath the entire Sino-Korean platform. In general, the Tibetan plateau and fold belts to the north have warm but thick lithospheres, whereas thinner thermal lithospheres have been identified in northern Tibet and central Tian Shan around Issyk-Kul Lake. The warm and soft lithosphere in the Tibetan plateau and Tian Shan are caused by uniform north–south shortening, which may represent a snapshot of the early stage of convective thinning of the convergent lithosphere. However, the lithospheric thinning beneath northeastern China might be related to volatile infiltration by dehydration of the deeply subducting Pacific slab during the Cenozoic. Dry and wet upper mantle rheology display “jelly sandwich” and “crème br?lée” pictures, respectively, demonstrating the mechanical behaviour of the Chinese lithosphere outside the Tibetan plateau. Considering a more geologically evident wet-mantle rheology, the “crème br?lée” model can approximate the lithospheric rheology for the most earthquake-prone regions on the Chinese mainland.  相似文献   

18.
The study addresses the space distribution of lithospheric density contrasts in 3D and 2D surface (spherical) sources of gravity anomalies to depths of 120 km below the geoid surface and their relationship with shallow deformation and Archean, Early Paleozoic, and Late Mesozoic geodynamic environments. The lithospheric section in northeastern Transbaikalia and the Upper Amur region includes two layers of low-density gradients attendant with low seismic velocities and low electrical resistivity. The lower layer at depths of 80–120 km is attributed to an asthenospheric upwarp that extends beneath the North Asian craton from the Emuershan volcanic belt and the Songliao basin. The concentric pattern of density contrasts in the middle and lower crust beneath the Upper Amur region may be produced by the activity of the Aldan-Zeya plume, which spatially correlates with the geometry of the asthenospheric upwarp as well as with the regional seismicity field, magnetic and heat flow anomalies, and stresses caused by large earthquakes and recent vertical crustal movements. The relationship between shallow and deep structures in the crust and upper mantle bears signature of horizontal displacement (subduction) of the lower crust of the Baikal-Vitim and Amur superterranes beneath the North Asian craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号