首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对新疆东天山雅满苏岛弧带双龙铜矿成岩地质特征、岩石地球化学特征及Hf同位素分析,认为赋矿岩体为一套形成于后碰撞环境下的准铝质高钾钙碱性岩石系列的石英闪长岩,LA-ICP-MS锆石U-Pb同位素年龄为(300.9±1.2)Ma。岩石地球化学显示,赋矿岩石具富集大离子亲石元素(LILE)K,Rb等及高场强元素(HFSE)Th,U,Zr和Hf,贫Nb,Ta,Ti,Sr,P特征,可能形成于后碰撞构造环境。石英闪长岩锆石176Hf/177Hf变化范围0.282949~0.283002,平均值0.282979,εHf(t)值为12.32~14.40,平均13.40,tDM2(Hf)为375~482Ma,平均429Ma,表明岩浆物源可能来自志留纪新生地壳的部分熔融。  相似文献   

2.
青藏高原冈底斯带发育有大量的岩浆岩,本文对中拉萨地块西段南缘革吉县西南麻木地区的花岗斑岩和流纹质晶屑凝灰岩进行了详细的岩石学、岩石地球化学、锆石微量元素和锆石Hf同位素研究,综合讨论了其岩浆成因及源区深部过程。麻木研究区内的花岗斑岩和流纹质晶屑凝灰岩属于早白垩世同期岩浆作用的产物,均属于钾玄质岩石,富集大离子亲石元素和轻稀土元素,亏损高场强元素和Eu,具有较高负值的εHf(t)值,分别为-9.57~-3.43和-8.79~-4.80,以及较古老的Hf同位素地壳模式年龄tDM2,分别为1 774~1 388 Ma和1 727~1 477 Ma。研究区早白垩世岩浆岩源于古老下地壳物质的重熔,并有少量地幔物质的加入,经历了岩浆混合后角闪石、长石和黑云母等矿物的分离结晶,最终形成了花岗斑岩和流纹质晶屑凝灰岩。结合前人和本文的研究认为研究区早白垩世岩浆作用的主要诱发机制可能为南向俯冲的班公湖-怒江洋板片回转。  相似文献   

3.
Major and trace element data for a sequence of peralkaline silicic lavas and pyroclastic flows, exposed in the caldera wall of the Paisano volcano, west Texas, document systematic fractional crystallization during magmatic evolution and an open system, magma mixing event in the upper parts of the sequence. Stratigraphically lowest flows are comendite and comenditic quartz trachyte lavas and ash flow tufts. Overlying these units is a trachyte with compositional, textural and mineralogical features indicating that it is the product of magma-mixing; similar flows occur in other parts of the volcano at the same stratigraphic level. This composite trachyte is considered to be a mixture of mugearitic or mafic trachytic magma, derived from a similar source region which yielded the earlier caldera wall flows. Trace element concentrations of the post-trachyte comenditic quartz trachyte lavas suggest they were erupted from a chamber whose magma was diluted by an influx of mugearitic or mafic trachytic magma during a magma mixing event.Rayleigh fractionation calculations show that the comendites and comenditic quartz trachytes can be derived from a parental mugearite magma by 88% to 93% fractionation of dominantly plagioclase and alkali feldspar, with lesser amounts of clinopyroxene, magnetite and apatite. Zircon was not a significant fractionating phase. The composition, mineralogy and depth of the source region(s) which generated these magmas cannot be constrained from the present data set.  相似文献   

4.
The Davis Lake pluton (DLP, ~800 km2) of southwestern Nova Scotia, Canada, part of the large peraluminous South Mountain batholith of ca. 380 Ma (U/Pb zircon, Ar/Ar mica), consists of granite and subordinate topaz–muscovite leucogranite that hosts greisen tin-base metal mineralization. A new Pb–Pb isochron age for leucogranite from the most evolved part of the DLP indicates a crystallization age of 378±3.6 Ma, coincident with other radiometric ages of the DLP (Rb–Sr, Re–Os, Pb–Pb). The intrusion displays a compositional zonation defined by lead and strontium isotopic ratios, as well as some major elements (e.g., Si, F), incompatible trace elements (e.g., Li, Rb, Ta, U, Sn), and elemental ratios (e.g., K/Rb and Nb/Ta). The greisens and the leucogranites that host them are characterized by extreme radiogenic compositions for Pb and Sr, and their chemical-isotopic trends are extensions of the trends displayed by the less evolved granites. The covariations of the isotopic ratios with several major and trace elements and elemental ratios as well as the Pb–Pb and Rb–Sr isochrones indicate that all phases of the intrusion originated from a homogeneous parental magma. The granitoid magma underwent extensive fractional crystallization of feldspars, minor biotite and accessory minerals (monazite, apatite and zircon) in a compositionally zoned magma chamber that was subsequently accompanied by fluid fractionation, during which time the internally derived fluorine-rich fluids modified the Rb/Sr, U/Pb and Th/Pb ratios, leading to distinct variations of 87Sr/86Sr, 206Pb/204Pb, 238U/204Pb and 232Th/204Pb isotopic ratios. These data therefore document the evolution of a granitic magma through magmatic (i.e., crystal fractionation), orthomagmatic (i.e., crystal-fluid fractionation) and hydrothermal (i.e., fluid fractionation) stages that culminated in the formation of a tin-base metal deposit. The Pb isotope data also constrain the source region for the DLP as being Avalonian basement that, by inference, must underlie much of the Meguma Terrane.Editorial responsibility: T.L. Grove  相似文献   

5.
The Ardnamurchan net-veined complex consists of three rock types: a porphyritic mafic rock, an aphyric intermediate rock and a silicic rock. Pillows of mafic and intermediate rock are included in the silicic rock and contain crenulated and some chilled margins. Liquid-liquid relationships are inferred for these three magmas. The trace element data, using ratio-ratio plots, are consistent with magma mixing being the dominant process and are inconsistent with any process that is dominated by crystal fractionation or melting. The major element data, using multiple linear regression techniques, are consistent with magma mixing of high-silica silicic magma and primitive mafic magma, along with about 35 percent crystal fractionation to form the intermediate rock type. All of the data taken together are consistent with a magma mixing model with some fractionation to produce the variation observed. The simplest model is that a fractionating basaltic magma comes into contact with a silicic magma and limited mixing produces the intermediate magma.This net-veined complex may be the only evidence available for interaction of mafic and silicic melts that occurred in the Ardnamurchan high-level magma chamber before the silicic magma was lost to eruptive and surface processes. In general the chemical and field relationships are consistent with Smith's model for the evolution of high-level, magma chambers.  相似文献   

6.
黄陵花岗岩基的成因   总被引:18,自引:0,他引:18  
黄陵花岗岩基位于扬子地台北缘,它连同汉南和鲤鱼寨岩基一起构成扬子地台北缘的低钾花岗岩等,形成于晋宁晚期扬子地台北侧的“秦岭洋”壳向南俯冲导致的大陆边缘造山运动过程中。黄陵花岗岩基可解体为三斗坪、黄陵庙、大老岭、晓峰4个岩套和14个单元,侵位于832-750Ma之间。三斗坪和黄陵庙两个岩套主要由英云闪长岩、奥长花岗岩花岗闪地组成,是在近南北向区域挤压下于约16km深部塑性域定位的同构造花岗岩,前者主要依靠岩浆在构造弱面逐次强力楔入创造定位空间,后者主要在处于活动状态的韧性拉张剪切带内定位。钙碱性系列的大老岭和晓峰岩套则是在本区地壳迅速隆起过程中分别在5km和<1.5km深度的脆性域定位的构造晚期花岗岩。根据岩石化学和同位素组成推断,三斗坪岩套的源岩主要是晚太古代大陆拉斑玄武岩,母岩浆相当于英安质,岩套内的成分变化主要受角闪石分离结晶作用控制;黄陵庙岩套除受分离结晶作用影响外,成分变化主要与英安质母岩浆和某种长英质岩浆的混合有关;大老岭岩套的源岩亦为早前寒武纪火山岩。  相似文献   

7.
The end of an orogenic Wilson cycle corresponds to amalgamation of terranes into a Pangaea and is marked by widespread magmatism dominated by granitoids. The post-collision event starts with magmatic processes still influenced by subducted crustal materials. The dominantly calc-alkaline suites show a shift from normal to high-K to very high-K associations. Source regions are composed of depleted and later enriched orogenic subcontinental lithospheric mantle, affected by dehydration melting and generating more and more K- and LILE-rich magmas. In the vicinity of intra-crustal magma chambers, anatexis by incongruent melting of hydrous minerals may generate peraluminous granitoids bearing mafic enclaves. The post-collision event ends with emplacement of bimodal post-orogenic (PO) suites along transcurrent fault zones. Two suites are defined, (i) the alkali-calcic monzonite–monzogranite–syenogranite–alkali feldspar granite association characterised by [biotite+plagioclase] fractionation and moderate [LILE+HFSE] enrichments and (ii) the alkaline monzonite–syenite–alkali feldspar granite association characterised by [amphibole+alkali feldspar] fractionation and displaying two evolutionary trends, one peralkaline with sodic mafic mineralogy and higher enrichments in HFSE than in LILE, and the other aluminous biotite-bearing marked by HFSE depletion relative to LILE due to accessory mineral precipitation. Alkali-calcic and alkaline suites differ essentially in the amounts of water present within intra-crustal magma chambers, promoting crystallisation of various mineral assemblages. The ultimate enriched and not depleted mantle source is identical for the two PO suites. The more primitive LILE and HFSE-rich source rapidly replaces the older orogenic mantle source during lithosphere delamination and becomes progressively the thermal boundary layer of the new lithosphere. Present rock compositions are a mixture of major mantle contribution and various crustal components carried by F-rich aqueous fluids circulating within convective cells created around magma chambers. In favourable areas, PO suites pre-date a new orogenic Wilson cycle.  相似文献   

8.
The Paleoproterozoic basalts of the Eastern Creek Volcanics are a series of continental flood basalts that form a significant part of the Western Fold Belt of the Mt Isa Inlier, Queensland. New trace-element geochemical data, including the platinum-group elements (PGE), have allowed the delineation of the magmatic history of these volcanic rocks. The two members of the Eastern Creek Volcanics, the Cromwell and Pickwick Metabasalt Members, are formed from the same parental magma. The initial magma was contaminated by continental crust and erupted to form the lower Cromwell Metabasalt Member. The staging chamber was continuously replenished by parental material resulting in the gradual return of the magma composition to more primitive trends in the upper Cromwell Metabasalt Member, and finally the Pickwick Metabasalt Member formed from magma dominated by the parental melt. The Pickwick Metabasalt Member of the Eastern Creek Volcanics has elevated PGE concentrations (including up to 18 ppb Pd and 12 ppb Pt) with palladium behaving incompatibly during magmatic fractionation. This trend is the result of fractionation under sulfide-undersaturated conditions. Conversely, in the basal Cromwell Metabasalt Member the PGE display compatible behaviour during magmatic fractionation, which is interpreted to be the result of fractionation of a sulfide-saturated magma. However, Cu remains incompatible during fractionation, building up to high concentrations in the magma, which is found to be the result of the very small volume of magmatic sulfide formation (0.025%). Geochemical trends in the upper Cromwell Metabasalt Member represent mixing between the contaminated Cromwell Metabasalt magmas and the PGE-undepleted parental melt. Trace-element geochemical trends in both members of the Eastern Creek Volcanics can be explained by the partial melting of a subduction-modified mantle source. The generation of PGE- and copper-rich magmas is attributed to melting of a source in the subcontinental lithospheric mantle below the Mt Isa Inlier which had undergone previous melt extraction during an older subduction event. The previous melt extraction resulted in a sulfur-poor, metal-rich metasomatised mantle source which was subsequently remelted in the Eastern Creek Volcanic continental rift event. The proposed model accounts for the extreme copper enrichment in the Eastern Creek Volcanics, from which the copper has been mobilised by hydrothermal fluids to form the Mt Isa copper deposit. There is also the potential for a small volume of PGE-enriched magmatic sulfide in the plumbing system to the volcanic sequence.  相似文献   

9.
定量化火成岩结构分析与岩浆固结的动力学过程   总被引:7,自引:0,他引:7       下载免费PDF全文
定量化火成岩结构分析将传统的定性或半定量化的岩相学研究提高到了与岩石地球化学分析相比拟的定量化程度,实现了诸如晶体粒度分布、晶体空间分布、晶体定向程度分析和二面角测量等方面的定量化研究。集中介绍了以上4种国际上应用广泛的定量化火成岩结构分析方法,包括各种研究方法的基本理论公式、岩浆动力学意义和实现方式。详细介绍了定量化火成岩结构分析中处于核心地位的晶体粒度分布理论,概括了二维岩石薄片法、三维连续剖面法和X射线层析技术,在定量化火成岩结构分析中的应用原理和现状。对晶体粒度分布分析中数据的封闭性和有效性检验进行了简要论述。综合阐述了晶体成核生长,晶体的聚集、分离和分解,岩浆混合,压滤、压熔和岩浆流动,结构的调整和平衡等一些基本的岩浆动力学过程中晶体粒度分布特征的表现。结合一些已发表的晶体粒度分布和晶体空间分布数据,简要概括了重要的基本定量化火成岩结构参数所表达的封闭和开放岩浆体系的特征,以及参数间协变关系所反映的岩浆固结动力学过程。最后给出了二维岩石光薄片分析法的基本流程和注意事项,认为今后定量化火成岩结构分析和地球化学分析结合在一起的综合方法,将成为研究成岩成矿动力学过程的重要手段,也将会逐步扩展到岩浆相关矿床中成岩成矿机制分析和成矿预测的方向。  相似文献   

10.
Three small sequential Saddle Mountains flows, occupying similar areas on the Columbia Plateau, were erupted over a short interval of time. In the Lewiston Basin area the middle flow of the trio (Lapwai) has intermediate mineralogy and lies on a straight mixing line between the other two flows for virtually all twenty-five elements analyzed. Systematic changes in the ratios of incompatible elements demonstrate that these relationships are a result of magma mixing rather than either crystal fractionation or variable degrees of partial melting. The Lapwai flow has a composition approximately midway between the two homogeneous end members and is itself relatively homogeneous. This implies efficient mixing between equal amounts of Asotin and Wilbur Creek magmas and suggests that mixing was completed in a magma reservoir prior to eruption. The Wilbur Creek and Asotin end members have isotopic features which are believed to result from different degrees of assimilation of crustal material by magma derived from an enriched mantle source (Carlson 1984). The mixing processes described here cannot be related to that earlier mantle/crust mixing process.  相似文献   

11.
腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化   总被引:10,自引:6,他引:4  
赵勇伟  樊祺诚 《岩石学报》2010,26(4):1133-1140
本文对马鞍山、打鹰山、黑空山火山岩主微量和Sr、Nd、Pd同位素地球化学研究认为,腾冲火山岩浆源区具有MORB与富集地幔混合之特征,推测为新特提斯俯冲洋壳重新熔融,导致腾冲地区的高钾钙碱性岩浆的火山活动,解释了腾冲在新生代大陆板内构造环境背景下出现岛弧或活动大陆边缘火山岩地球化学特征的现象。马鞍山、打鹰山和黑空山火山高钾钙碱性岩浆经历了岩浆房阶段辉石、钛铁矿的结晶分离作用和岩浆上升过程中斜长石的结晶分离作用,导致岩浆成分从中基性向中酸性演化,火山岩从玄武质粗安岩→粗安岩→粗面质英安岩演化。  相似文献   

12.
As technical advances have dramatically increased our ability to analyze trace elements, the need for more reliable data on the compositional dependence of trace element partitioning between minerals and melt has become increasingly important. The late-Cretaceous Carmacks Group of south central Yukon comprises a succession of primitive high-Mg ankaramitic lavas characterized by shoshonitic chemical affinities and containing large complexly zoned clinopyroxene phenocrysts. The compositional zonation of the clinopyroxene phenocrysts is characterized by relatively Fe-rich (Mg# = Mg/(Mg + Fe) = 0.85), but mottled, cores surrounded by mantles of cyclically-zoned clinopyroxene whose Mg# varies repeatedly between 0.9 and 0.80. These cyclically zoned clinopyroxene mantles appear to record the repeated influx and mixing of batches of primitive with more evolved magma in a deep sub-crustal (∼1.2 GPa) magma chamber(s). Laser ablation ICP-MS was used to analyze the trace element variation in these zoned clinopyroxenes. The results indicate more than a threefold variation in the absolute concentrations of Th, Zr, rare earth elements (REE), and Y within individual clinopyroxene phenocrysts, with no apparent change in the degree of REE or high field strength element (HFSE) fractionation. The variation in absolute abundances of trace elements correlates closely with the major element composition of the clinopyroxene, with the most enriched clinopyroxene having the lowest Mg# and highest Al contents. The problem is that the amount of crystal fractionation required to explain the major element variation (∼20%) in these clinopyroxene phenocrysts cannot explain the increase in the abundance of the incompatible trace elements, which would require more than 70% crystal fractionation, if constant partition coefficients are assumed. The anomalous increase in incompatible trace elements appears to reflect an increase in their partition coefficients with increasing AlIV in the clinopyroxene; with an increase in Al2O3 from 1.5 to 4.0 wt.% during ∼20% crystal fractionation over a temperature decrease of ∼100°C being associated with more that a threefold increase in the partition coefficients of Th, Zr, REE, and Y. The magnitude of these increases may indicate that the substitution of these trace elements into clinopyroxene is better modeled in some natural systems by a local charge balance model, rather than the distributed charge model that better replicates the results of annealed experiments. These findings indicate that the effect of Al on the partition coefficients of incompatible trace elements in clinopyroxene may be under appreciated in natural magmatic systems and that the application of experimentally determined clinopyroxene partition coefficients to natural systems must be done with caution.  相似文献   

13.
A flow-foliated felsic ignimbrite constitutes the uppermost lithological unit of the 1.58 Gyr anorogenic magmatic rocks in SW Finland. The ignimbrite is derived from an explosive eruption of hot (≅ 950 °C) phenocryst-bearing A-type (rapakivi-type granite magma.
The ignimbrite is close in composition to subvolcanic rapakivi granites that occur in the margins of the kand rapakivi batholith. The subvolcanic granites crystallized under a pressure of ≅ 1 kbar and at temperatures of about 650–700 °C. However, both major and rare earth elements show that the ignimbrite- forming magma was more fractionated than the magma forming the subvolcanic varieties.
Supported by evidence of mafic-felsic magma mingling, it is suggested that injection of hot mafic magma into a shallow magma chamber produced the high temperature of the ignimbrite-forming magma. This injection increased the magmatic and the volatile pressure that caused the eruption of the dry felsic magma.  相似文献   

14.
The different granitoids of the zoned Querigut complex (Hercynian Pyrenees) are associated with a series of basic to intermediate rocks ranging from hornblende-bearing peridotites to quartz-diorites. The whole complex appears as a calc-alkaline plutonic suite typical of orogenic zones. The distribution of lanthanides and other trace elements amongst coexisting minerals indicate they are essentially held by accessory phases, particularly in granitoids. This restricts the use of those elements in the calculation of petrogenetic models for acidic plutonic rocks. Magmatic differentiation, mainly by hornblende + plagioclase fractionation, can produce the basic series. This differentiation cannot directly produce the different granitoids, which require a preponderant contribution of crustal melts. The sequence of different granitoids can be explained either by an heterogeneity in the source region, or by magmatic differentiation. The most plausible interpretation of the whole complex calls for the emplacement of a mantle-derived magma into a wet, anatectic continental crust, with interactions between basic rocks and the soproduced acidic melts.  相似文献   

15.
岩浆混合过程中不同熔体之间的相互作用会影响晶体的成核与生长,形成矿物内部复杂的成分变化,以及矿物之间的不平衡结构。尼木二长花岗岩位于冈底斯岩浆岩带中部,是代表性的形成于后碰撞构造演化时期的花岗岩体。本文对其中的斜长石与角闪石颗粒进行了详细的结构和成分分析,揭示了斜长石中的港湾状、浑圆状、筛孔状熔蚀结构以及斜长石成分的突然变化和角闪石包裹黑云母的不平衡结构,并探讨了它们的成因以及相关的岩浆混合作用。分析结果显示,斜长石中突变环带的An含量为37.6~40.6,熔蚀环带的An含量为48.2~59.5,均高于两侧斜长石的An含量(18.4~26.4),表明在形成这些结构时有外来基性岩浆的混合使得岩浆成分发生了突变。样品中的部分黑云母被自形的角闪石包裹,黑云母呈浑圆状并且具有港湾状的熔蚀边,这可能是基性岩浆的混合作用使得岩浆的温度升高导致黑云母发生部分熔融,混合后的岩浆在黑云母周围继续结晶形成角闪石。这些显微结构为揭示冈底斯岩浆岩带的岩浆混合作用提供了新证据。  相似文献   

16.
Volcán Colima is Mexico's most historically active andesitic composite volcano. It lies 150 km north of the Middle America Trench at the western end of the Mexican Volcanic Belt, closer to the trench than any other composite volcano in Mexico. Since its earliest reported eruption in 1576, V. Colima has evolved through three cycles of activity. Each cycle culminated in a major ashflow eruption, halting activity for 50 or more years. The last major ashflow eruption occurred in 1913. Andesitic block lava eruptions in 1961–1962 and 1975–1976 marked the inception of activity in a fourth historical cycle which may also terminate with a major ashflow eruption in the early part of the next century.Major and trace element analyses of whole rock samples and all constituent phases are presented for a suite of nine post-caldera hornblende and olivine-andesites. The suite includes samples from Colima's four major eruptions since 1869, spanning the last two eruptive cycles. Colima's post-caldera andesites are poor in K and other incompatible elements (Ti, P, Zn, Rb, Y, Zr, Ba, La, Yb, Hf, Th, and U) as may be characteristic of near trench andesites. From the 1913 ashflow eruption through the fourth cycle andesites, there have been increases in whole rock abundances of Si, Ba, and Cs, and decreases in Ti, Fe, Mg, Ni, Cr, and Sc. Crystal fractionation models can closely reproduce major element variations in the post-caldera suite, but systematically fail to predict sufficient concentrations of the compatible trace elements Cr, Ni, and Zn. Anomalous enrichments of compatible trace elements in Colima's andesites probably reflect simultaneous crystal fractionation and magma mixing in the subvolcanic system.Estimated pre-eruptive temperatures range from 940 °–1,000 ° C in the hornblende-andesites and 1,030 °–1,060 ° C in the olivine-andesites. Pre-eruptive magmatic water contents of 1.0–3.6 wt.% are calculated for the hornblende-andesites; the phenocryst assemblage of the olivine-andesite is calculated to equilibrate at 1,000 bars with 0.8% H2O.Orthopyroxenes and certain clinopyroxenes in all pre-1961 samples are reversely zoned, with relatively Mg-rich rims. The most pronounced Mg-rich rims occur in the olivine-andesites and are thought to reflect pre-eruptive magma mixing, involving a basic, olivine+/-clinopyroxene-bearing magma. In addition to their normally zoned pyroxenes, the post-1961, fourth cycle andesites display a number of other features which distinguish them from earlier post-caldera hornblende-andesites of similar bulk composition. These include: (1) higher total crystal contents, (2) lower modal hornblende contents, (3) higher calculated pre-eruptive silica activities, and (4) lower calculated pre-eruptive water contents. These features are all consistent with the interpretation that the fourth cycle andesites were less hydrous prior to eruption. The slight Mg-rich pyroxene rims in pre-1961 hornblende-andesites may record late-stage, pre-eruptive increases in magmatic water content, which act to raise magmatic f O 2 and Mg/Fe+2 ratios in the melt and in all crystalline phases. The fourth cycle andesites apparently did not experience a strong, pre-eruptive influx of water, resulting in lower magmatic water contents and normally zoned pyroxenes.  相似文献   

17.
We present new data on mineralogical, major and trace element compositions of lavas from the northernmost segment of the Kolbeinsey Ridge (North Kolbeinsey Ridge, NKR). The incompatible element enriched North Kolbeinsey basalts lie on a crystal fractionation trend which differs from that of the other Kolbeinsey segments, most likely due to higher water contents (~0.2%) in the NKR basalts. The most evolved NKR magmas erupt close to the Jan Mayen Fracture Zone, implying increased cooling and fractionation of the ascending magmas. Mainly incompatible element-enriched basalts, as well as some slightly depleted lavas, erupt on the NKR. They show evidence for mixing between different mantle sources and magma mixing. North Kolbeinsey Ridge magmas probably formed by similar degrees of melting to other Kolbeinsey basalts, implying that no lateral variation in mantle potential temperature occurs on the spreading axis north of the Iceland plume and that the Jan Mayen Fracture Zone does not have a cooling effect on the mantle. Residual garnet from deep melting in garnet peridotite or from enriched garnet pyroxenite veins does not play a role. The incompatible element-enriched source has high Ba/La and Nb/Zr, but must be depleted in iron. The iron-depleted mantle is less dense than surrounding mantle and leads to the formation of the North Kolbeinsey segment and its shallow bathymetry. The enriched NKR source formed from a relatively refractory mantle, enriched by a small degree melt rather than by recycling of enriched basaltic crust. The depleted mantle source resembles the mantle of the Middle Kolbeinsey segment with a depletion in incompatible elements, but a fertile major element composition.  相似文献   

18.
镁铁质-超镁铁质岩体是世界上岩浆硫化物(Ni-Cu-PGE)和氧化物(Fe-Ti-V-P)矿床的主要载体.全球主要岩浆硫化物和氧化物矿床均可以产于大火成岩省、克拉通区的裂谷带或伸展环境、褶皱带内的后碰撞伸展环境.寄主岩浆硫化物矿床的岩体规模相差甚大(从6×104km2到<0.1km2),既有超镁铁质岩石组合也有镁铁质岩石组合,但其原生岩浆主要为拉斑玄武质岩浆.含镍铜的铂族元素矿床主要赋存于规模很大的层状岩体中,而镍铜硫化物矿床主要赋存于小岩体中.寄主钒钛磁铁矿或磁铁矿矿床的岩体主要是以辉长岩为主的层状杂岩体.寄主钛铁矿-磷灰石矿床的岩体均为层状的斜长岩-纹长二长岩-紫苏花岗岩岩体.尽管其岩石组合相差很大,但其原生岩浆均属拉斑玄武质.寄主硫化物矿床的岩体相对富Si、Mg、Cr、Ni,而寄主氧化物矿床的岩体相对富Fe-Ti-P-V,造岩矿物晶体化学也反映了这种差异.对全球主要含矿岩体的对比分析表明,导致这种反差的主要控制因素应该是岩浆生成时的压力状态,源区性质和熔融程度的差异可能只在局部范围内起作用.对岩浆硫化物矿床成矿过程的认识集中体现在金川模式和岩浆通道模式上,对岩浆氧化物矿床成矿过程的认识体现在氧化物和磷灰石是堆晶相还是从不混溶的矿浆中结晶的.对比分析表明,成矿过程具有多样性,试图用一种模式概括所有同类矿床成矿过程的想法未必可取.毫无疑问,适宜的氧化还原环境是形成岩浆矿床的必要务件,伴随岩浆演化及成矿过程的氧速度变化及其诱因问题尚待进一步探索.  相似文献   

19.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

20.
The paper presents major and trace element data and mineral compositions for a series of foiditic-tephritic to phonolitic rocks coming from Monte Vulture, Southern Italy, and investigates their origin, evolution and relationship with the other centres of the Roman province.Major and trace element variation in the foiditic to tephritic suite agrees with a hypothesis of evolution by simple crystal/liquid fractionation, whereas the early erupted phonolitic trachytes and phonolites have geochemical characteristics which do not support their derivation from tephritic magma by crystal fractionation. Foiditic and phonolitic rocks have mineral compositions which are interpreted as indicating magma mixing. However geochemical evidence shows that this process did not play an important role during the magma evolution.The Vulture rocks have compositional peculiarities such as high abundance of Na2O, CaO, Cl and S, when compared with other Roman volcanics. Instead, the distribution of incompatible elements is similar to those of Roman rocks, except for a lower content of Rb and K, higher P and lower Th/Ta and Th/Nb ratios which are still close to the values of arc volcanics.The high contents of Na, Ca and of volatile components are tentatively attributed to the interaction of magma with aqueous solutions, rich in calcium sulphate and sodium chloride, related to the Miocene or Triassic evaporites occurring within the sedimentary sequence underlying the volcano. The distribution pattern of the incompatible elements is interpreted as indicative of magma-forming in a subduction modified upper mantle and of the peculiar location of M. Vulture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号