首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
Evaluation of pile foundation response to lateral spreading   总被引:7,自引:0,他引:7  
The effects of liquefaction on deep foundations are very damaging and costly, and they keep recurring in many earthquakes. The first part of the paper reviews the field experience of deep foundations affected by liquefaction during earthquakes in the last few decades, as well as the main lessons learned. The second part of the paper presents results of physical modeling of deep foundations in the presence of liquefaction conducted by the authors and others at the 100g-ton RPI centrifuge. In the last decade centrifuge modeling has been identified as a key tool to identify and quantify mechanisms, calibrate analyses and evaluate retrofitting strategies for pile foundations. Results are presented of centrifuge models of instrumented pile foundations subjected to lateral spreading, including single pile and pile groups, 2- and 3-layer soil profiles, mass and stiffening elements above ground to incorporate the effect of the superstructure, and evaluation of proposed retrofitting strategies. Interpretations of these centrifuge experiments and their relation to field observations and soil properties.  相似文献   

2.
The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction) for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil. The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile. The p-y curves were obtained for two ground conditions:(a) lateral spreading of liquefied soil, and(b) liquefied soil in level ground. These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries, which are modelled as quay walls. The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier). The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed. Based on the results of these model tests, guidance for the construction of p-y curves for use in engineering practice is also provided.  相似文献   

3.
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.  相似文献   

4.
可液化倾斜场地中桩基动力响应振动台试验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究倾斜场地中桩基的动力响应,以2011年新西兰地震中受损的Dallington桥为原型,设计并完成可液化倾斜场地桥梁桩-土相互作用的振动台模型试验。试验再现了喷砂、冒水、地裂缝、场地流滑等宏观现象。试验结果表明,土层足够的液化势及惯性是造成倾斜场地侧向流滑的必要条件;浅层土相比深层土更易液化,液化层中的加速度由下至上呈现逐渐衰减的趋势,而未液化砂土层却表现为逐渐增大的特征;深部测点的桩侧土压力明显大于浅部测点,且土体的液化会弱化土对结构的压力;结构应变最大值位于上部桥台,而结构弯矩在桩身中部及土层分界面附近出现两个较大值,桩端嵌固及倾斜场地流滑是造成出现两个弯矩较大值的主要原因。  相似文献   

5.
凌贤长  唐亮  苏雷  徐鹏举 《地震学刊》2011,(5):490-495,500
评述了我国液化场地和侧向扩流场地桥梁桩基抗震设计规范。总结了中日两国液化场地和侧向扩流场地桥梁桩基的抗震设计方法与技术细节,阐述了日本规范中液化场地和侧向扩流场地桥梁桩基抗震设计中的液化地基土反力折减系数的确定方法,以及土体液化侧向扩流对桩作用力的计算模式。指出我国规范中在液化和侧向扩流场地桩的抗震分析方法、不同土层分界处桩的抗震措施、桩的竖向承载力及桩的屈曲稳定性分析等方面存在的主要问题,据此给出了亟待改进的初步建议。这对我国桥梁工程的抗震安全性具有重要意义,可供我国工程技术人员参考借鉴。  相似文献   

6.
This paper presents experimental results of a series of 1g shake table tests on mitigation measures for a model consisting of a 3×3 pile group and a sheet-pile quay wall in which the pile group was subjected to liquefaction-induced lateral spreading. First, general observations associated with the mechanism of lateral spreading and pile response are presented based on tests without remedial measures, followed by in depth discussions. Second, three remedial techniques were deployed to provide an adequate seismic performance of the pile group and the quay wall: (i) mitigating sheet pile of floating type, (ii) mitigating sheet pile of fixed end type, and (iii) anchoring the quay wall to a new pile row. The main objective of these mitigation methods was to restrict ground distortion behind the quay wall, enhancing seismic response of pile group and quay wall. This mitigation philosophy was decided based on the outcome of the first part, which consisted of a series of tests without mitigation measures. In addition, it should be noted that the proposed countermeasures were selected to be applicable for existing vulnerable pile groups, which are at risk of liquefaction and lateral spreading. Results of different mitigation tests are comparatively examined using a parameter called reduction factor, and the effectiveness of each countermeasure is discussed in detail. The results demonstrate that by applying the proposed mitigation measures the seismic performance of both pile group and quay wall can be improved, as a result of reduction in soil displacement and velocity of soil flow.  相似文献   

7.
Results from a benchmark test on full-scale piles are used to investigate the response of piles to lateral spreading. In the experiment, two single piles, a relatively flexible pile that moves together with the surrounding soil and a relatively stiff pile that does not follow the ground movement have been subjected to large post-liquefaction ground displacement simulating piles in laterally spreading soils. The observed response of the piles is first presented and then the results are used to examine the lateral loads on the pile from a non-liquefied soil at the ground surface and to evaluate the stiffness characteristics of the spreading soils. The measured ultimate lateral pressure from the crust soil on the stiff pile was about 4.5 times the Rankine passive pressure. The back-calculated stiffness of the liquefied soil was found to be in the range between 1/30 and 1/80 of the initial stiffness of the soil showing gradual decrease in the course of lateral spreading.  相似文献   

8.
Observations of pile foundation performance during previous earthquakes have shown that pile failure has been caused by lateral ground movements resulting from soil liquefaction. The recognition that lateral ground movements may play a critical role in pile performance during an earthquake has important implications for design and risk assessment, and requires that analytical models be devised to evaluate these potential problems.In this paper, parametric studies were conducted to estimate the maximum bending moments induced in piles subjected to lateral ground displacement. The results are summarized in charts using dimensionless parameters.The analyses reveal that the existence of a nonliquefiable layer at the ground surface can affect significantly the maximum bending moment of the pile. When a relatively thick nonliquefiable layer exists above a liquefiable layer, neither the material nonlinearity of the soil nor loss of soil stiffness within the liquefiable layer significantly affect the maximum bending moment. When the thickness of the liquefiable soils is greater than about three times that of an overlying intact layer, soil stiffness in the liquefiable layer must be chosen carefully when evaluating the maximum bending moment.  相似文献   

9.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   

10.
The 1995 Hyogoken–Nambu earthquake caused severe liquefaction over wide areas of reclaimed land. Furthermore, the liquefaction induced large ground displacement in horizontal directions, which caused serious damage to foundations of structures. However, few analyses of steel pipe piles based on field investigation have so far been conducted to identify the causes and process of such damage. The authors conducted a soil–pile-structure interaction analysis by applying a multi-lumped-mass-spring model to a steel pipe pile foundation structure to evaluate the causes and process of its damage. The damage process analyzed in the time domain corresponded well with the results of detailed field investigation. It was found that a large bending moment beyond the ultimate plastic moment of the pile foundation structure was induced mainly by the large ground displacement caused by liquefaction before lateral spreading of the ground and that the displacement appeared during the accumulating process of the excess pore water pressure.  相似文献   

11.
Raked piles are believed to behave better than vertical piles in a laterally flowing liquefied ground. This paper aims at numerically simulating the response of raked pile foundations in liquefying ground through nonlinear finite element analysis. For this purpose, the OpenSees computer package was used. A range of sources have been adopted in the definition of model components whose validity is assessed against case studies presented in literature. Experimental and analytical data confirmed that the backbone force density–displacement (p–y) curve simulating lateral pile response is of acceptable credibility for both vertical and raked piles. A parametric investigation on fixed-head piles subject to lateral spreading concluded that piles exhibiting positive inclination impart lower moment demands at the head while those inclined negatively perform better at liquefaction boundaries (relative to vertical piles). Further studies reveal substantial axial demand imposed upon negatively inclined members due to the transfer of gravity and ground-induced lateral forces axially down the pile. Extra care must be taken in the design of such members in soils susceptible to lateral spreading such that compressive failure (i.e. pile buckling) is avoided.  相似文献   

12.
This paper presents an experimental study on the lateral resistance of a pile subjected to liquefaction-induced lateral flow. To observe the soil surrounding the pile during liquefaction, it was modeled as a buried cylinder that corresponded to a sectional model of the prototype pile at a certain depth in the subsoil. In order to create a realistic stress condition in the model ground, the model was prepared in a sealed container and the overburden pressure was applied to the ground surface by a rubber pressure bag. The model pile was actuated back and forth through rods attached on each side by an electro-hydraulic actuator.This paper focuses on observing the deformation of the liquefied soil surrounding the pile when a large relative displacement between the pile and the soil is induced. The loading rate effect on the lateral resistance of the pile in the liquefied sand and the influence of the relative density are also investigated.Test results show that a larger resistance is mobilized as the loading rate becomes higher. When the loading rate is higher, the cylinder displacement required for the lateral resistance becomes smaller. It has been also observed that as the relative density of the soil increases, dilatancy of the soil in front of the pile also increases.  相似文献   

13.
In the 2010–2011 Canterbury earthquakes widespread liquefaction occurred over nearly half of the urban area of Christchurch. The most severe damage to buildings and infrastructure was often associated with lateral spreading and consequent large ground distortion and permanent ground displacements. This paper presents analysis, results and interpretation of lateral spreads using measurements from detailed ground surveying at a large number of locations along the Avon River. Classification of lateral spreads based on the magnitude and spatial distribution of permanent ground displacements is first presented, and then key characteristics of soil layers and ground conditions associated with different classes of lateral spreads are identified and discussed. Evidence of both global effects from topographic features and local effects related to density, thickness and continuity of critical layers is presented highlighting the need for a systematic approach in the engineering evaluation of lateral spreading in which particular attention is given to key factors governing lateral spreading.  相似文献   

14.
The purpose of this paper is to investigate the effects of liquefaction on modal parameters (frequency and damping) of pile‐supported structures. Four physical models, consisting of two single piles and two 2 × 2 pile groups, were tested in a shaking table where the soil surrounding the pile liquefied because of seismic shaking. The experimental results showed that the natural frequency of pile‐supported structures may decrease considerably owing to the loss of lateral support offered by the soil to the pile. On the other hand, the damping ratio of structure may increase to values in excess of 20%. These findings have important design consequences: (a) for low‐period structures, substantial reduction of spectral acceleration is expected; (b) during and after liquefaction, the response of the system may be dictated by the interactions of multiple loadings, that is, horizontal, axial and overturning moment, which were negligible prior to liquefaction; and (c) with the onset of liquefaction due to increased flexibility of pile‐supported structure, larger spectral displacement may be expected, which in turn may enhance P‐delta effects and consequently amplification of overturning moment. Practical implications for pile design are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A case study is presented of the interaction between the bending due to laterally spreading forces and axial-load induced settlement on the piled foundations of the Kandla Port and Customs Tower located in Kandla Port, India, during the 2001 Bhuj earthquake. The 22 m tall tower had an eccentric mass at the roof and was supported on a piled-raft foundation that considerably tilted away as was observed in the aftermath of the earthquake. The soil at the site consists of 10 m of clay overlaid by a 12 m deep sandy soil layer. Post-earthquake investigation revealed the following: (a) liquefaction of the deep sandy soil strata below the clay layer; (b) settlement of the ground in the vicinity of the building; (c) lateral spreading of the nearby ground towards the sea front. The foundation of the tower consists of 0.5 m thick concrete mat and 32 piles. The piles are 18 m long and therefore passes through 10 m of clayey soil and rested on liquefiable soils. Conventional analysis of a single pile or a pile group, without considering the raft foundation would predict a severe tilting and/or settlement of the tower eventually leading to a complete collapse. It has been concluded that the foundation mat over the non-liquefied crust shared a considerable amount of load of the superstructure and resisted the complete collapse of the building.  相似文献   

16.
This paper presents the results of a large-scale shake table test at E-Defense facility on a pile group located adjacent to a gravity-type quay wall and were subjected to liquefaction-induced large ground displacements. Extensive liquefaction-induced large ground lateral spreading displaced the quay wall about 2.2 m and damaged the pile foundation. The pile foundation consisted of a six-pile group which supported a footing and a superstructure model. Large lateral soil displacements were measured by several sensors such as inclinometers and the results favorably agreed with the directly observed deformations. Soil lateral displacement decreased as the distance from the quay wall increased landward. The piles were densely instrumented and the measured bending strain records were able to explain the damage to the piles. Lateral pressures of the liquefied soil exerted on the piles were measured using earth pressure (EP) sensors. The application of two design guidelines (JRA [1] and JSWA [2]) for estimation of liquefaction-induced lateral pressure on piles is discussed and their advantages and shortcomings are addressed. Furthermore, two simplified methods (Shamoto et al. [3] and Valsamis et al. [4]) are employed to predict the extent of liquefaction-induced large ground displacements and they are compared to the measured deformations. Finally, their accuracy for predicting the liquefaction-induced lateral displacements is evaluated and practical recommendations are made.  相似文献   

17.
近岸水平场地液化侧向大变形机理及软化模量分析方法   总被引:3,自引:1,他引:3  
本文依据震害现象和实验探讨近岸水平场地地面液化侧向大变形机理,改进现有软化模量分析技术,给出一套地面液化侧向大变形的分析方法。近岸水平场地侧向大变形机理因地基中孔隙水压力升高、土体模量衰减、土骨架变软使偏应变得到充分发展所致,其水平永久侧移可用从底部到顶部呈增加形式的整体变形描述。利用本文方法,对1995年阪神地震中近岸沉箱岸壁和土体液化侧向大变形进行了数值模拟,结果与震后实测结果和试验结果在主要特征上一致,说明改进的软化模量法可以用于地面液化侧向大变形的分析。  相似文献   

18.
Lateral movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. Several researchers have found and verified that the behavior of liquefied soils can be simulated appropriately by modeling the liquefied soils as viscous fluid. In this study, the influence of the lateral movement of liquefied sloping ground on the behavior of piles was analyzed on the assumption that the flow of liquefied soils can be treated as viscous fluid flow. Sinking ball tests and pulling bar tests were performed to measure the viscosity of liquefied Jumoonjin sand. Then, the behavior of a single pile installed in liquefiable infinite slopes consisting of sand was investigated by numerical analyses. The liquefied sand behaved as non-Newtonian fluid, whose viscosity decreased with increasing shear strain rate. Furthermore, the flow of liquefied soils had a crucial effect on the stability of piles installed in the sloping ground.  相似文献   

19.
Extensive damage to pile-supported structures has been witnessed in several recent earthquakes (Chi-Chi, 1999; Kobe, 1995, etc.), as a result of liquefaction-induced lateral spreading of slightly sloping ground or free-face topographic irregularities. This paper presents a parametric analysis of the basic pile and soil parameters, as well as the pile-soil interaction mechanisms affecting the response of single piles subjected to such lateral spreading, based on numerical simulation with the nonlinear P-y method. In parallel, a set of design charts and analytical relations is established, for approximate computation of maximum pile deflections and bending moments, using a “theory guided” multi-variable statistical analysis of the numerical predictions. Three different combinations (design cases) of pile head constraints and soil conditions were considered, which are commonly encountered in practice. The overall accuracy of the proposed analytical relations is evaluated against experimental results from seven centrifuge and five large shaking table experiments.  相似文献   

20.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号