首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Sixteen sediment samples collected from eight transects in a mangrove swamp of the Jiulong River Estuary, Fujian, China were investigated for their content of polycyclic aromatic hydrocarbons (PAHs) and the biodegradation potential of the indigenous microorganisms. The bacterial community structures in the mangrove sediments and in enrichment cultures were also investigated. The results showed that the total PAHs concentration of mangrove sediments ranged from 280 to 1074 ng g(-1) dry weight, that the PAHs composition pattern in the mangrove sediments was dominated by high molecular weight PAH components (4-6 rings), and that Benzo[ghi]perylene and Indeno[1,2,3-cd]pyrene were the most dominant at different stations. Abundant PAH-degrading bacteria were found in all the stations, the values of phenanthrene-degrading bacteria ranged from 5.85 x 10(4) to 7.80 x 10(5) CFU g(-1) dry weight, fluoranthene-degrading bacteria ranged from 5.25 x 10(4) to 5.79 x 10(5) CFU g(-1) dry weight, pyrene-degrading bacteria ranged from 3.10 x 10(4) to 6.97 x 10(5) CFU g(-1) dry weight and the benzo(a)pyrene-degrading bacteria ranged from 5.25 x 10(4) to 7.26 x 10(5) CFU g(-1) dry weight. DGGE analysis of PCR-amplified 16S rDNA gene fragments confirmed that there was a remarkable shift in the composition of the bacterial community due to the addition of the different model PAH compound phenanthrene (three ring PAH), fluoranthene(four ring PAH), pyrene(four ring PAH) and benzo(a)pyrene(five ring PAH) during enrichment batch culture. Eleven strains were obtained with different morphology and different degradation ability. The presence of common bands for microbial species in the cultures and in the native mangrove sediment DNA indicated that these strains could be potential in situ PAH-degraders.  相似文献   

2.
《Marine pollution bulletin》2009,58(6-12):707-715
Sixteen sediment samples collected from eight transects in a mangrove swamp of the Jiulong River Estuary, Fujian, China were investigated for their content of polycyclic aromatic hydrocarbons (PAHs) and the biodegradation potential of the indigenous microorganisms. The bacterial community structures in the mangrove sediments and in enrichment cultures were also investigated. The results showed that the total PAHs concentration of mangrove sediments ranged from 280 to 1074 ng g−1 dry weight, that the PAHs composition pattern in the mangrove sediments was dominated by high molecular weight PAH components (4–6 rings), and that Benzo[ghi]perylene and Indeno[1,2,3-cd]pyrene were the most dominant at different stations. Abundant PAH-degrading bacteria were found in all the stations, the values of phenanthrene-degrading bacteria ranged from 5.85 × 104 to 7.80 × 105 CFU g−1 dry weight, fluoranthene-degrading bacteria ranged from 5.25 × 104 to 5.79 × 105 CFU g−1 dry weight, pyrene-degrading bacteria ranged from 3.10 × 104 to 6.97 × 105 CFU g−1 dry weight and the benzo(a)pyrene-degrading bacteria ranged from 5.25 × 104 to 7.26 × 105 CFU g−1 dry weight. DGGE analysis of PCR-amplified 16S rDNA gene fragments confirmed that there was a remarkable shift in the composition of the bacterial community due to the addition of the different model PAH compound phenanthrene (three ring PAH), fluoranthene(four ring PAH), pyrene(four ring PAH) and benzo(a)pyrene(five ring PAH) during enrichment batch culture. Eleven strains were obtained with different morphology and different degradation ability. The presence of common bands for microbial species in the cultures and in the native mangrove sediment DNA indicated that these strains could be potential in situ PAH-degraders.  相似文献   

3.
Eight marine-derived fungi that were previously selected for their abilities to decolorize RBBR dye were subjected to pyrene and benzo[a]pyrene degradation. The fungus Aspergillus sclerotiorum CBMAI 849 showed the best performance with regard to pyrene (99.7%) and benzo[a]pyrene (76.6%) depletion after 8 and 16 days, respectively. Substantial amounts of benzo[a]pyrene (>50.0%) depletion were also achieved by Mucor racemosus CBMAI 847. Therefore, these two fungal strains were subjected to metabolism evaluation using the HPLC-DAD-MS technique. The results showed that A. sclerotiorum CBMAI 849 and M. racemosus CBMAI 847 were able to metabolize pyrene to the corresponding pyrenylsulfate and were able to metabolize benzo[a]pyrene to benzo[a]pyrenylsulfate, suggesting that the mechanism of hydroxylation is mediated by a cytochrome P-450 monooxygenase, followed by conjugation with sulfate ions. Because these fungi were adapted to the marine environment, the strains that were used in the present study are considered to be attractive targets for the bioremediation of saline environments, such as ocean and marine sediments that are contaminated by PAHs.  相似文献   

4.
Five stations were established in the Fenglin mangrove area of Xiamen, China to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms and isolating the high molecule weight (HMW)-PAH degrading bacteria was also one of the aims of this work. The results showed that the total PAH concentration of sediments was 222.59 ng g(-1) dry weight, whereas the HMW-PAH benzo(a)pyrene (BaP) had the highest concentration among 16 individual PAH compounds. The variation in the numbers of PAH-degrading bacteria was 2.62 x 10(2)-5.67 x 10(4)CFU g(-1) dry weight. The addition of PAHs showed a great influence in increasing the microbial activity in mangrove sediments. A bacterial consortium, which could utilize BaP as the sole source of carbon and energy, and which was isolated from mangrove sediments and enriched in liquid medium for nearly one year degraded 32.8% of BaP after 63 days incubation.  相似文献   

5.
The remediation of mangrove sediment contaminated with mixed polycyclic aromatic hydrocarbons (PAHs) having 3-, 4- and 5-rings by natural attenuation, bioaugmentation, phytoremediation and its combination was compared by greenhouse microcosm studies. At Days 90 and 154, the decreases of PAHs in contaminated mangrove sediment by phytoremediation, planted with one-year old Aegiceras corniculatum, and bioaugmentation, the inoculation of PAH-degrading bacterial strains isolated from mangrove sediment, either SCSH (Mycobacterium parafortuitum) or SAFY (Sphingobium yanoikuyae), were not better than that by natural attenuation (the non-vegetated and un-inoculated microcosms). The populations of SCSH and SAFY in sediment could not be maintained even with repeated inoculation, suggesting that the two isolates were not able to compete with the indigenous microbes and had little enhancement effect. Although some PAHs were accumulated in roots, root uptake only accounted for <15% of the spiked PAHs and the effect of plants on remediation were also insignificant. At the end of the 154-day experiment, the mass balance calculation revealed that the overall losses of PAHs by phytoremediation were comparable to that by bioaugmentation but were lower than that by natural attenuation, especially for the high molecular weight PAHs. Under natural attenuation, around 90% fluorene, 80% phenanthrene, 70% fluoranthene, 68% pyrene and 32% benzo[a]pyrene in contaminated sediment were removed. These results demonstrated that the mangrove sediment itself had sufficient indigenous microorganisms capable of naturally remedying PAH contamination.  相似文献   

6.
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50–76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.  相似文献   

7.
Lin Y  Cai LX 《Marine pollution bulletin》2008,57(6-12):703-706
PAH-degrading microbial consortium and its pyrene-degrading plasmids were enriched from the sediment samples of Huian mangroves. The consortium YL showed degrading abilities of 92.1%, 87.6%, 92.3%, and 95.8% for pyrene, fluoranthene, phenanthrene, and fluoene at 50 mg l(-1) after 21 days incubation, respectively. The dynamics of pH changes in the cultures was consistent with that of PAH concentration change. Bacillus cereus Py5 and Bacillus megaterium Py6 were isolated from the consortium and observed consuming 65.8% and 33.7% of pyrene (50 mg l(-1)) within three weeks, respectively. The enriched Escherichia coli DH5alpha cells containing the plasmids of YL were demonstrated to degrade 85.7% of the original pyrene concentration at the 21st day.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in the environment and are derived from both man-made and natural resources. The present study is focused on the degradation of PAHs by a halotolerant bacterial strain under saline conditions. The bacterial strain VA1 was isolated from a PAH-degrading consortium that was enriched from marine water samples that were collected from different sites at Chennai, India. In the present study, a clearing zone formed on PAH-amended mineral salt agar media confirmed the utilization of PAH by the bacterial strain VA1. The results show that the strain VA1 was able to degrade anthracene (88%), phenanthrene (98%), naphthalene (90%), fluorene (97%), pyrene (84%), benzo(k)fluoranthene (57%) and benzo(e)pyrene (50%) at a 30 g/L NaCl concentration. The present study reveals that the VA1 strain was able to degrade PAHs in petroleum wastewater under saline conditions. The promising PAH-degrading halotolerant bacterial strain, VA1, was identified as Ochrobactrum sp. using biochemical and molecular techniques.  相似文献   

9.
Guo CL  Zhou HW  Wong YS  Tam NF 《Marine pollution bulletin》2005,51(8-12):1054-1061
Surface sediment samples were collected from seven mangrove swamps in Hong Kong SAR with different degrees of contamination. The total concentrations of 16 PAHs in these sediments ranged from 169.41 to 1058.37 ng g−1 with the highest concentration found in Ma Wan and the lowest in Kei Ling Ha Lo Wai mangrove swamp. In each swamp, three bacterial consortia were enriched from sediments using phenanthrene (Phe) as the sole carbon and energy source, and individual bacterial colony showing Phe degradation was isolated and identified by 16S rDNA gene sequence. The consortia enriched from Sai Keng and Ho Chung sediments had highest ability to degrade mixed PAHs in liquid medium, with 90% Phe and Fla (fluoranthene) degraded in 7 days. On the other hand, Kei Ling Ha Lo Wai-enriched consortia degraded less than 40% Phe and Fla. Pyrene (Pyr) was hardly degraded by the consortia enriched from sediments. Bacterial isolates, namely Rhodococcus (HCCS), Sphingomonas (MWFG) and Paracoccus (SPNT) were capable to degrade mixed PAHs (Phe + Fla + Pyr). Their degradation percentages could be lower, comparable or even higher than their respective enriched consortia, depending on the consortium and the type of PAH compounds. These results suggest that PAH-degrading bacteria enriched from mangrove sediments, either as a mixed culture or as a single isolate could be used for PAHs bioremediation.  相似文献   

10.
《Marine pollution bulletin》2009,58(6-12):703-706
PAH-degrading microbial consortium and its pyrene-degrading plasmids were enriched from the sediment samples of Huian mangroves. The consortium YL showed degrading abilities of 92.1%, 87.6%, 92.3%, and 95.8% for pyrene, fluoranthene, phenanthrene, and fluoene at 50 mg l−1 after 21 days incubation, respectively. The dynamics of pH changes in the cultures was consistent with that of PAH concentration change. Bacillus cereus Py5 and Bacillus megaterium Py6 were isolated from the consortium and observed consuming 65.8% and 33.7% of pyrene (50 mg l−1) within three weeks, respectively. The enriched Escherichia coli DH5α cells containing the plasmids of YL were demonstrated to degrade 85.7% of the original pyrene concentration at the 21st day.  相似文献   

11.
Marine mussels accumulate the carcinogen benzo(a)pyrene from contaminated environments. Baseline studies in California indicate that levels of the carcinogen in mussels are at or near zero, except in areas of human activity. This finding runs counter to previous suggestions that benzo(a)pyrene is widely distributed in marine organisms.  相似文献   

12.
The change in community diversity and structure of the indigenous, dominant, polycyclic aromatic hydrocarbon (PAH)-degrading bacterial genera, Sphingomonas and Mycobacterium, due to contamination in the environment is not very well known. A combination of PCR-DGGE with specific primers and a cultivation-dependent microbiological method was used to detect different populations of Sphingomonas and Mycobacterium in mangrove sediments. The structure of the entire bacterial community (including Sphingomonas) did not show a shift due to environmental contamination, whereas the diversity of Mycobacterium populations in mangrove sediments with higher PAH contamination increased from exposure between Day 0 and Day 30. The isolated Mycobacterium strains migrated to the same position as the major bands of the bacterial communities in Mycobacterium-specific DGGE. A dioxygenase gene system, nidA, which is commonly found in PAH-degrading Mycobacterium strains, was also detected in the more highly contaminated sediment slurries. The present study revealed that Mycobacterium species were the dominant PAH-degraders and played an important role in degrading PAHs in contaminated mangrove sediments.  相似文献   

13.
The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m×10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2135 ng g−1, and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2135 (30 days) to 1196 ng g−1 (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3–0.4).  相似文献   

14.
Polycyclic aromatic hydrocarbons are ubiquitous pollutants in the environment, and most high molecular weight PAHs cause mutagenic, teratogenic and potentially carcinogenic effects. While several strains have been identified that degrade PAHs, the present study is focused on the degradation of PAHs in a marine environment by a moderately halophilic bacterial consortium. The bacterial consortium was isolated from a mixture of marine water samples collected from seven different sites in Chennai, India. The low molecular weight (LMW) PAHs phenanthrene and fluorine, and the high molecular weight (HMW) PAHs pyrene and benzo(e)pyrene were selected for the degradation study. The consortium metabolized both LMW and HMW PAHs. The consortium was also able to degrade PAHs present in crude oil-contaminated saline wastewater. The bacterial consortium was able to degrade 80% of HMW PAHs and 100% of LMW PAHs in the saline wastewater. The strains present in the consortium were identified as Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia. This study reveals that these bacteria have the potential to degrade different PAHs in saline wastewater.  相似文献   

15.
Song X  Xu Y  Li G  Zhang Y  Huang T  Hu Z 《Marine pollution bulletin》2011,62(10):2122-2128
Rhodococcus sp. P14 was isolated from crude oil-contaminated sediments. This strain was capable of utilizing three to five rings polycyclic aromatic hydrocarbons (PAHs) including phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP) as a sole carbon and energy source. After cultivated with 50mg/L of each PAH, strain P14 removed 43% Phe, 34% Pyr and 30% BaP in 30 d. Four different hydroxyphenanthrene products derived from Phe by strain P14 (1,2,3,4-hydroxyphenanthrene) were detected using SPME-GC-MS. Strain P14 also was capable of degrading mineral oil with n-alkanes of C17 to C21 carbon chain length. Compared with glucose-grown cells, PAHs-grown cells had decreased contents of shorter-chain length fatty acids (≤ C16:0), increased contents of C18:0, Me-C19:0 and disappeared odd-number carbon chain fatty acids. The contents of unsaturated C19:1, Me-C19:0 increased and C18:0 decreased in mineral oil-grown cells. At the same time, the strain P14 tended to float when cultivated in mineral oil-supplemented liquid medium. The degradation capability of P14 to alkane and PAHs and its floating characteristics will be very helpful for future's application in oil-spill bioremediation.  相似文献   

16.
The catalytic activity of horseradish (Armoracia lapathifolia) peroxidase in the oxidation reactions of benzo(a)pyrene (BP) and phenols, separately and in admixture, has been studied. Experiments were carried out with model phenols from industrial sewage (phenol, m-, p-cresols, catechol, hydroquinone, resorcinol, orcinol), keeping to the real concentration ratio of reagents, 0.5 mM for phenols, 0.1 nM for benzo(a)pyrene. The total oxidation process for all reagents tested is described by the second-order formal kinetic equation up to 60 … 90% of their conversion. Addition of peroxidase increases the rate of oxidation of benzo(a)pyrene and phenols 2 … 6 times as compared with the control test (with hydrogen peroxide), whereas a linear dependence of the rate of benzo(a)pyrene oxidation on the enzyme concentration is observed. By cooxidation a mutual inhibition of benzo(a)pyrene and phenols is established whose degree depends on the phenol-chemical structure and varies in the range of 23 … 58% for BP under the influence of phenols and 35 … 80% for phenols under the influence of benzo(a)pyrene. The results obtained permit a supposition that peroxidase containing plants are capable of simultaneously transforming carcinogenic benzo(a)pyrene and toxic phenols in water reservoirs and in the soil, thus promoting the detoxication of environment.  相似文献   

17.
Biomarkers are generally applied to detect pollution in environmental monitoring. Such biological responses should accurately reflect the stress over time in a quantitative manner. As such, the initial and maximum responses induced by stress, as well as adaptation and recovery of these biomarkers, need to be fully understood or else erroneous false-negative or false-positive may be arrived. However, most of the biomarker studies only provided information on initially induced responses under different concentrations of toxicants, while biological adaptation and recovery were poorly known. In this study, the time required for induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis upon exposure to benzo[a]pyrene was investigated over a period of 62 days. Maximum induction occurred on day 6 when lysosomal integrity was significantly reduced by 51%, and no further change or adaptation was detected thereafter. When mussels were depurated in clean seawater after 18 days of exposure to benzo[a]pyrene, a gradual recovery was observed, with lysosomal integrity returning to its background level and showing a complete recovery after 20 days of depuration. Lysosomal integrity was significantly correlated with the body burden concentrations of benzo[a]pyrene and condition index of the mussels. The relatively fast induction (6 days) and recovery (20 days) without apparent adaptation suggested that lysosomal integrity in P. viridis can serve as a good biomarker in biomonitoring, as its response is not likely to generate both false-negative and false-positive results.  相似文献   

18.
Biomarkers are generally applied to detect pollution in environmental monitoring. Such biological responses should accurately reflect the stress over time in a quantitative manner. As such, the initial and maximum responses induced by stress, as well as adaptation and recovery of these biomarkers, need to be fully understood or else erroneous false-negative or false-positive may be arrived. However, most of the biomarker studies only provided information on initially induced responses under different concentrations of toxicants, while biological adaptation and recovery were poorly known. In this study, the time required for induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis upon exposure to benzo[a]pyrene was investigated over a period of 62 days. Maximum induction occurred on day 6 when lysosomal integrity was significantly reduced by 51%, and no further change or adaptation was detected thereafter. When mussels were depurated in clean seawater after 18 days of exposure to benzo[a]pyrene, a gradual recovery was observed, with lysosomal integrity returning to its background level and showing a complete recovery after 20 days of depuration. Lysosomal integrity was significantly correlated with the body burden concentrations of benzo[a]pyrene and condition index of the mussels. The relatively fast induction (6 days) and recovery (20 days) without apparent adaptation suggested that lysosomal integrity in P. viridis can serve as a good biomarker in biomonitoring, as its response is not likely to generate both false-negative and false-positive results.  相似文献   

19.
This field study was a combined chemical and biological investigation of the relative rates of weathering and biodegradation of oil spilled in sediments and testing the influence of a bioremediation protocol. The aim of the chemistry work presented here was to determine whether the bioremediation protocol affected the rate of penetration, dissipation or long-term retention of a medium range crude oil (Gippsland) and a Bunker C oil stranded in tropical Rhizophora sp. mangrove and Halosarcia sp. salt marsh environments. Permission for the planned oil spills was granted in the Port Authority area of Gladstone, Queensland (Australia). Sediment cores from three replicate plots of each treatment for mangroves and four replicate plots for the salt marsh (oil only and oil plus bioremediation) were analysed for total hydrocarbons (THC) and for individual alkane markers using gas chromatography with flame ionization detection (GC–FID). Sediments were collected at day 2, then 1, 2, 5 or 6 and 12 or 13 months post-spill for mangroves and day 2, 1, 3 and 9 months post-spill for salt marshes. Over this time, hydrocarbons in all of the oil treated plots decreased exponentially. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between untreated oil and bioremediated oil in the mangrove plots. The salt marsh plots treated with the waxy Gippsland oil showed a faster rate of biodegradation of the oil in the bioremediated plots. In this case only, the degradation rate significantly impacted the mass balance of remaining oil. The Bunker C oil contained only minor amounts of highly degradable n-alkanes and bioremediation did not significantly impact its rate of loss in the salt marsh sediments. At the end of each experiment, there were still n-alkanes visible in the gas chromatograms of residual oils. Thus it was concluded that there was unlikely to be any change in the stable internal biomarkers of the oils over this time period. The predominant removal processes in both habitats were evaporation and dissolution, with a lag-phase of 1–2 months before the start of microbial degradation.  相似文献   

20.
Woo S  Kim S  Yum S  Yim UH  Lee TK 《Marine pollution bulletin》2006,52(12):1768-1775
To investigate the genotoxic effect of marine sediments on aquatic organism, sediment samples were collected from 13 sites along the coast of Gwangyang Bay (Korea). Concentrations of polycyclic aromatic hydrocarbons (PAHs) in sediments were determined and the relationship between exposure of flounder blood cells to sediment extracts and DNA single-strand breakage in the blood cells was examined using the comet assay. Levels of DNA damage were proportionally increased by exposure concentration and the highest sediment-associated DNA damage was observed at the station showing the highest PAHs contamination. DNA damage in blood cells exposed to five types of PAHs (benzo[a]pyrene, fluoranthene, anthracene, pyrene and phenanthrene) and in flounder (Paralichthys olivaceus) exposed to benzo[a]pyrene (BaP) for 0, 2 and 4 days were assessed by measuring comet tail length. The tail lengths of five PAHs-exposed groups at 50 and 100 ppb were significantly different from the non-exposed group, and the genotoxic effect of BaP correlated with both concentration and duration of exposure. Throughout the study, significant differences in DNA breakage were recorded between cells exposed to sediment extracts or PAHs and non-exposed control. This study demonstrated the comet assay as a successful tool in monitoring contamination of marine sediments and assessing genotoxicity of PAHs in marine organisms, either in vitro or in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号