首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
铁炭微电解-混凝预处理糠醛废水   总被引:1,自引:0,他引:1  
采用铁炭微电解-混凝法预处理糠醛废水,研究了材料粒径、停留时间、进水pH值等相关因素对处理效果的影响。结果表明,在铁屑粒径1~2mm,活性炭粒径<1mm,进水pH值2.10~2.40,反应40min的条件下,经混凝处理后CODCr去除率可达80%以上,废水BOD5/CODC r值从0.38上升到0.70,有利于后续生化处理。  相似文献   

2.
即时合成层状双氢氧化物处理酸性大红GR染料实验研究   总被引:3,自引:0,他引:3  
印染废水是重要的工业污染源之一,研究新的印染废水脱色技术是水污染控制技术领域重要课题之一。以酸性大红GR为典型代表,初步研究了镁-铝盐水解共沉淀法即时合成层状双氢氧化物(LDH)处理阴离子型染料溶液的效果、影响因素和染料去除机理。结果表明,镁-铝盐水解共沉淀法即时合成LDH对酸性大红GR染料溶液有非常好的脱色效果,影响处理效果的主要因素是Mg/Al比和pH值。在pH值8.5~10.0,Mg/Al比2∶1~4∶1,都可以获得较好的净化效果,酸性大红GR染料浓度0.65 mmol/L时,染料去除率达99%。其净化机理是,当在染料溶液中投加Mg2 、Al2 溶解盐和NaOH时,Mg2 、Al3 水解共沉淀形成LDH的同时,染料阴离子以平衡LDH结构电荷的形式进入LDH结构层间,含有染料的LDH通过沉淀分离从溶液中去除。  相似文献   

3.
含氟废水的粉煤灰处理实验研究   总被引:5,自引:0,他引:5  
进行了影响粉煤灰处理含氟废水的各种条件实验,(pH、水灰比、氟浓度、振荡平衡时间),结果表明最佳处理条件是pH值为2.5、水灰比为小于20、氟浓度小于500mg/l、振荡平衡时间大于2.5h,并研究了粉煤灰处理含氟废水的机理,给出了其吸附等温式。  相似文献   

4.
新型混凝剂处理印染废水的实验研究   总被引:5,自引:0,他引:5  
采用自行制各的具有不同SiO2:Al:Fe(摩尔比值)和碱化度的两类新型无机高分子混凝剂聚硅酸氯化铝铁(PSAFC)和聚硅酸硫酸铝铁(PSAFS)各7种,直接对印染废水进行处理。从中选出2种温凝剂,考察了pH值、混凝剂投量等对混凝效果的影响,并对混凝处理后,印染废水出水中残留温凝剂主要成分Al、Fe、SiO2的含量进行分析。实验结果表明,氯化物型(PSAFC)和硫酸盐型(PSAFS)混凝剂对印染废水的色度、浊度、COD Cr均有良好的去除效果;总体而言,PSAFS的混凝效果略优于PSAFC;混凝处理后印染废水出水中残留铝、铁、硅的含量均比较低;pH值和碱化度对温凝剂在水体中残留铝含量有影响。  相似文献   

5.
天然锰钾矿处理印染废水实验研究   总被引:8,自引:2,他引:8       下载免费PDF全文
利用天然锰钾矿处理印染废水,讨论了介质pH值、样品用量、样品粒径、反应时间、光照和同存电解质等实验条件对活性艳红X—3B印染废水脱色速率的影响。处理了工业中常用的10种活性染料印染废水和华丰印染厂实际废水,大部分染料的脱色率达到了95%,处理后的华丰印染厂的CODcr和色度都达到了纺织染整工业废水排放一级标准,且天然锰钾矿可以被重复使用。锰的溶解情况研究结果表明,加入染料后,溶液中Mn(Ⅱ)的浓度大大提高,表明染料能将Mn(Ⅳ)还原为可溶的Mn(Ⅱ),即染料与锰钾矿颗粒物界面发生了氧化还原反应,使染料的发色基团破坏而导致脱色。  相似文献   

6.
简单介绍了粉煤灰的基本性质、吸附特性和处理废水的机理。根据粉煤灰的物理和化学吸附特性,研究了其对低质量浓度铀溶液吸附效果,分析了吸附容量及影响因素。实验表明,t=0~76h时,铀的质量浓度急速下降,吸附效果明显,最大时吸附量可达到82%。随着吸附的进行,溶液pH值增大,而溶液中Fe^3+、∑Fe则在减少。  相似文献   

7.
为了全面提升内蒙古大型硫铁矿的综合利用价值,尝试将其主要成分磁黄铁矿和黄铁矿分别用于处理含铬废水,找到了天然硫铁矿和改性硫铁矿处理Cr(Ⅵ)的最佳实验条件。与已有的研究相比,本研究所使用的矿样粒径减少到80~100目,用量减少了70%,所处理的含铬废水浓度增大到50 mg/m L。将处理含铬废水后的硫铁矿经XPS扫描分析后发现,天然黄铁矿在pH值分别为1.84、4.15和10.87的反应体系中处理Cr(Ⅵ)后,大部分的Cr(Ⅲ)以Cr2S3的物相出现,分别占总铬物相的77.99%、86.53和100%。天然磁黄铁矿在pH值为6.5,加热500℃改性后的黄铁矿在pH值为4.15时,也有相当量的三价铬以Cr2S3的物相出现。用已经获得的处理含铬Cr(Ⅵ)的最佳条件,直接用于处理某皮革厂高浓度的含Cr(Ⅲ)实际废水,去除率达73%。本研究为综合处理含铬废水提供了思路,成为矿山资源化的途径之一。  相似文献   

8.
黄钾铁矾类矿物沉淀去除Cr(Ⅵ)的初步研究   总被引:1,自引:0,他引:1  
为探讨黄钾铁矾类矿物沉淀对Cr(Ⅵ)的去除效果,利用黄钾铁矾类矿物沉淀对模拟含Cr(Ⅵ)废水进行了初步实验处理,结果表明,黄钾铁矾类矿物沉淀对含Cr(Ⅵ)废水有较好的去除效果,去除率都在70%以上,最高可达85%。黄钾铁矾与黄铵铁矾沉淀对Cr(Ⅵ)的去除率差别不大;溶液酸碱度对去除率有明显影响,在pH值为2.5~3.2时,时间相同,较高的pH值比低pH值的去除率高。黄钾铁矾类矿物的沉淀过程可用来处理矿山及其他工业废水,去除S、Fe和Cr(Ⅵ)等有毒有害元素。  相似文献   

9.
循环流化床燃烧产生的粉煤灰按不同比例与污水充分混合,其对污水中P的去除率可达90%以上;对COD的去除率为45%左右;对NH3-N的去除效果较差,最高不超过11%。由于粉煤灰含有大量钙,可以与粉煤灰中的磷酸盐形成沉淀,故采用循环流化床产生的粉煤灰可以有效处理含P较高的污水。文章研究了粉煤灰中重金属在污染水中释放规律,如Pb、Cd、Cu、Cr及Ni等,由于粉煤灰与污水浸泡后pH值呈碱性,且污水中含有大量有机物质,使反应体系呈还原状态。因此,粉煤灰中的重金属可以稳定存在,粉煤灰在污水中几乎不释放重金属,所以未加任何处理的粉煤灰在浸泡过程中不会对环境产生重金属污染。为此,粉煤灰可用于井下采空区回填,也可用于路基填充等。由于粉煤灰中少量碱性物质溶于水中,可使地下水pH值升高。  相似文献   

10.
在模拟含Cu2+废水中加入Mg2+和Al3+,以NaOH为沉淀剂,研究金属盐水解即时合成层状双氢氧化物去除Cu2+的可行性,同时考察了体系终点pH值、配料中Mg/Cu摩尔比值及反应温度和时间对Cu2+去除率的影响,探讨了Cu2+去除机理及层状双氢氧化物形成过程。结果表明,实验条件下体系终点pH值显著影响Cu2+去除率,在pH值8.0~11.0范围内去除效果较好,达99%以上。通过X射线衍射分析结合即时合成法特点,废水中Cu2+主要是在晶核生成阶段以Cu/Mg/Al三元层状双氢氧化物形式被去除;三元层状双氢氧化物的形成由反应体系中Al3+、Cu2+、Mg2+分步水解导致,最适pH值约为9.0。  相似文献   

11.
利用提钾废渣和粉煤灰制备矿物聚合材料的实验研究   总被引:19,自引:4,他引:19       下载免费PDF全文
利用富钾岩石提钾后的废渣代替硅酸钠 (钾 )、大部分高岭石和氢氧化钠 (钾 ) ,以粉煤灰为主要原料 ,制备出矿物聚合材料 ,并采用正交实验确定其优化工艺条件为 :煅烧高岭石用量为 10 %~ 15 % ,废渣用量约 35 % ,氢氧化钠用量为 5 %~ 6 %。代表性样品的 7d抗压强度可达到 4 0~ 5 0MPa ,耐酸性、耐碱性分别为 99.99%和 10 0 % ,密度1.77~ 1.88g/cm3 ,收缩率 0 .13%~ 0 .2 8% ,导热系数 0 .4 8~ 0 .5 1W/m·K ,平均硬度 3.4 3。X射线粉末衍射分析表明 ,由铝硅酸盐聚合反应形成的基体相呈非晶态。扫描电镜分析絮凝状的基体相与粉煤灰玻璃体结合紧密 ,从而为制品具备良好的力学性能提供了结构基础。该矿物聚合材料成本低廉 ,同时又能利用粉煤灰等工业固体废物而达到改善环境的目的  相似文献   

12.
The low-temperature thermal treatment to degrade PCDD/Fs contained in fly ash was promoted by alcohol amines in a closed system. Three types of fly ash collected separately from municipal solid waste incinerator, medical waste incinerator and hazardous waste incinerator, were compared. Experimental design was used to investigate the homologue patterns of PCDD/Fs and distribution of the toxic congeners in fly ash from incinerator after thermal treatment promoted by alcohol amines. The effect of ethanolamine (MEA) on the hydrodechlorination reaction of polychlorinated aromatics pollutants on fly ash from solid waste incinerator was carried out, and the three ashes clearly showed different degradation potentials for PCDD/F during thermal treatment. Results from the present study indicate that (1) the concentration of alkaline species and metals strongly influenced the degradation of PCDD/F; (2) after addition of 8% MEA, the toxicity equivalent (TEQ) values of PCDD/Fs in fly ash were significantly lower than those obtained without MEA. 49%–71% of PCDD/Fs in TEQ was removed from different types of ash at 250℃ with 8% MEA; (3) the destruction and dechlorination are major mechanism for PCDD/Fs degradation.  相似文献   

13.
以氟石膏为主要胶凝材料通过掺加各种外加剂、骨料等对其进行改性处理,制得氟石膏基自流平地坪砂浆,优化配方为:氟石膏75~90 w%,激发剂10~25 w%,减水剂0.25~1 w%,可再分散乳胶粉0~4 w%,稳定剂0.05~0.1 w%和粉煤灰0~5 w%;流动度达240mm,绝干抗折强度为8.3 MPa,绝干抗压强度为26.7 MPa,拉伸粘结强度为0.64MPa,收缩率为0.049%,性能均达到日本住宅公团标准要求。在800mm×800mm水泥基地上进行实验,经过3 d砂浆表面光滑,未发现裂纹。  相似文献   

14.
Compacted clay can minimize infiltration of liquid into waste or control the release of contaminated liquids to the surrounding soils and groundwater. Compacted lateritic soil treated with up to 12 % bagasse ash and municipal solid waste (MSW) leachate sourced from a domestic waste land fill were used in diffusion test studies to access the diffusion characteristics of some inorganic species present in the municipal solid waste leachate. Diffusion set-up were prepared containing 0, 4, 8 and 12 % bagasse ash—soil mixes compacted at 2 % wet of optimum using the modified proctor effort. The set up was saturated with water for 30 days before the introduction of MSW leachate and initiation of diffusion test for another 90 days. After diffusion testing, water content within the soil column showed a decrease with depth. Diffusion test results generally showed that diffusion is an active means of transport of chemical species even at very low flow rates in the compacted soil-bagasse ash mixes, and the effective diffusion coefficient is affected by bagasse ash. The pore fluid concentration profile for the various chemical species tested showed that the compacted soil-bagasse ash mix has the capacity to attenuate Ca2+, Pb2+ and Cr3+ ions.  相似文献   

15.
Abstract. Municipal solid waste combustion leads to concentration of various metals in the solid residue (fly ash) remaining after combustion. These metals pose serious environmental hazard and require proper handling and monitoring in order to control their harmful effects. Leachability of some metals from fly ash was examined in fly ash and Milli-Q water mixture (liquid-to-solid ratio, 100) under various temperature and pH conditions in the laboratory. The leaching experiments conducted for 24 hours showed that pH was generally more important than temperature in controlling the amount of metals leached out of the fly ash. However, at a given pH, rise in temperature led to different degree of (usually one to two fold) enhanced or reduced leaching of metals. Owing to amphoteric nature of oxides of Al, Cr, Pb and Zn, these metals often yielded typical pattern of increase and decrease in their concentrations with change in pH. The extent of leaching of Cr and Pb in our experiments suggests that decrease of pH to acidic range in the case of Pb and to neutral to acidic range for Cr over a long period of storage of fly ash at solid waste dumping site may facilitate leaching of these metals from fly ash, leading to contamination of groundwater to the level that exceeds beyond the level permitted by the environmental laws.  相似文献   

16.
《Applied Geochemistry》2002,17(12):1503-1513
The interaction of CO2 with municipal solid waste incinerator (MSWI) bottom ash was studied in order to investigate the resulting changes in pH and bottom ash mineralogy and the impact that these changes have on the mobility of Cu and Mo. Carefully controlled carbonation experiments were performed on bottom ash suspensions and on filtered bottom ash leachates. Changes in leachate composition were interpreted with the geochemical model MINTEQA2, and neoformed minerals were investigated by means of chemical and spectroscopic analysis. The leaching of Cu and Mo during artificial carbonation is compared to the leachability of Cu and Mo from a sample of naturally carbonated bottom ash from the same incinerator. During carbonation in the laboratory, a precipitate was formed that consisted mainly of Al-rich amorphous material, calcite, and possibly gibbsite. Carbonation to pH ≈8.3 resulted in a reduction of more than 50% in Cu leaching, and a reduction of less than 3% in Mo leaching. The reduction in Cu leaching is attributed to sorption to the neoformed amorphous Al-minerals. During natural weathering/carbonation of bottom ash, additional sorption sites are formed which further reduce the leaching of Cu and Mo on a time scale of months to years.  相似文献   

17.
Acid mine drainage was reacted with coal fly ash over a 24 h reaction time and species removal trends evaluated. The evolving process water chemistry was modeled by the geochemical code PHREEQC using WATEQ4 database. Mineralogical analysis of the resulting solid residues was done by X-ray diffraction analysis. Selective sequential extraction was used to evaluate the transfer of species from both acid mine drainage and fly ash to less labile mineral phases that precipitated out. The quantity of fly ash, volume of acid mine drainage in the reaction mixture and reaction time dictated whether the final solution at a given contact time will have a dominant acidic or basic character. Inorganic species removal was dependent on the pH regime generated at a specific reaction time. Sulphate concentration was controlled by precipitation of gypsum, barite, celestite and adsorption on iron-oxy-hydroxides at pH > 5.5. Increase of pH in solution with contact time caused the removal of the metal ions mainly by precipitation, co-precipitation and adsorption. PHREEQC predicted precipitation of iron, aluminium, manganese-bearing phases at pH 5.53–9.12. An amorphous fraction was observed to be the most important in retention of the major and minor species at pH > 6.32. The carbonate fraction was observed to be an important retention pathway at pH 4–5 mainly due to initial local pockets of high alkalinity on surfaces of fly ash particles. Boron was observed to have a strong retention in the carbonate fraction.  相似文献   

18.
罗方承 《矿产与地质》2001,15(Z1):540-547
介绍了晶安高科污染源的来源、采取的措施及综合治理、利用方法.使废水指标由PH11~12;SS<1000mg/l;CODcr≤200mg/l;氨氮≤200mg/l降到PH6~9;SS<70mg/l;CODcr≤100mg/l;氨氮≤15mg/l;酸雾指标由HCl500~800mg/m3达到小于25~40mg/m3;炉窑烟气由林格曼黑度5,烟尘浓度2700~5191mg/Nm3降到林格曼黑度1,烟尘浓度小于200mg/Nm3;硅渣可生产复合絮凝剂和白炭黑,不仅可改善环境影响,而且可回收盐酸和利用废资源,可给企业带来经济效益.  相似文献   

19.
《Applied Geochemistry》2002,17(2):93-103
Mimicking geochemical processes to solve environmental problems was implemented in dealing with waste acidic jarosite and alkaline coal fly ash. By placing these two chemically different materials adjacent to one another, a self-sealing layer was formed at the interface between both wastes, isolating and immobilizing chemical constituents in the process. A series of leaching experiments were performed on each material separately to study the release behavior of the principal constituents. Radiotracer experiments were conducted to explore diffusion and reaction of constituents such as Fe3+ in a combined jarosite/fly ash system. A model has been developed to simulate the coupled processes of diffusion and precipitation taking into account porosity change due to pore filling by precipitates. The formation of a self-sealing isolation layer in a hypothetical jarosite/fly ash disposal site was modelled. Leaching results indicate that the release of elements from jarosite is much larger than that from fly ash, and that the highly pH dependent release of Fe, Al, and Zn was controlled by the solubility of their hydroxides. Leaching results also suggest that precipitation reactions can be expected to occur at the interface between jarosite and alkaline coal fly ash where a large pH gradient exists. Radiotracer experiments showed that accumulation of constituents occurred at the interface. Modeled Fe3+ profiles in layered jarosite/fly ash were well validated by experiments. Modeling results also showed that with the accumulation of constituents at the interface, a new layer with low porosity was formed. Application of this model suggests that there is a potential use to form a self-sealing layer in jarosite/fly ash co-disposal sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号