首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The numerical method of lines(MOLs) in coordination with the classical fourth-order Runge-Kutta(RK(4, 4))method is used to solve shallow water equations(SWEs) for foreseeing water levels owing to the nonlinear interaction of tide and surge accompanying with a storm along the coast of Bangladesh. The SWEs are developed by extending the body forces with tide generating forces(TGFs). Spatial variables of the SWEs along with the boundary conditions are approximated by means of finite difference technique on an Arakawa C-grid to attain a system of ordinary differential equations(ODEs) of initial valued in time, which are being solved with the aid of the RK(4, 4)method. Nested grid technique is adopted to solve coastal complexities closely with least computational cost. A stable tidal solution in the region of our choice is produced by applying the tidal forcing with the major tidal constituent M2(lunar semi-diurnal) along the southern open-sea boundary of the outer scheme. Numerical experimentations are carried out to simulate water levels generated by the cyclonic storm AILA along the coast of Bangladesh. The model simulated results are found to be in a reasonable agreement with the limited available reported data and observations.  相似文献   

2.
The ultimate goal and highlight of this paper are to explore water levels along the coast of Bangladesh efficiently due to the nonlinear interaction of tide and surge by employing the method of lines(MOLs) with the aid of newly proposed RKAHeM(4, 4) technique. In this regard, the spatial derivatives of shallow water equations(SWEs) were discretized by means of a finite difference method to obtain a system of ordinary differential equations(ODEs) of initial valued with time as an independent variable. The obtained system of ODEs was solved by the RKAHeM(4, 4)technique. One-way nested grid technique was exercised to incorporate coastal complexities closely with minimum computational cost. A stable tidal oscillation was produced over the region of interest by applying the most influential tidal constituent M2 along the southern open boundary of the outer scheme. The newly developed model was applied to estimate water levels due to the non-linear interaction of tide and surge associated with the catastrophic cyclone April 1991 along the coast of Bangladesh. The approach employed in the study was found to perform well and ensure conformity with real-time observations.  相似文献   

3.
In this study, the method of lines (MOL) has been applied to solve two-dimensional vertically integrated shallow water equations in Cartesian coordinates for the prediction of water levels due to a storm surge along the coast of Bangladesh. In doing so, the partial derivatives with respect to the space variables were discretized by the finite difference (central) method to obtain a system of ordinary differential equations (ODEs) with time as independent variable. The classical fourth-order Runge–Kutta method was used to solve the obtained system of the ODEs. We used a nested finite difference scheme, where a high resolution fine grid model (FGM) capable of incorporating all major islands along the coastal region of Bangladesh was nested into a coarse grid model (CGM) covering up to 15°N latitude of the Bay of Bengal. The boundaries of the coast and islands were approximated through proper stair step. Appropriate tidal condition over the model domain was generated by forcing the sea level to be oscillatory with the constituent M 2 along the southern open boundary of the CGM omitting wind stress. Along the northeast corner of the FGM, the Meghna River discharge was taken into account. The developed model was applied to estimate water levels along the coast of Bangladesh due to the interaction of tide and surge associated with the April 1991 storm. We also computed our results employing the standard finite difference method (FDM). Simulated results show the MOL performs well in comparison with the FDM with regard to CPU time and stability, and ensures conformity with observations.  相似文献   

4.
In this study, numerical prediction of surges associated with a storm was made through the method of lines (MOL) in coordination with the newly proposed RKARMS (4, 4) method for the meghna estuarine region, along the coast of Bangladesh. For this purpose, the vertically integrated shallow water equations (SWEs) in Cartesian coordinates were firstly transformed into ordinary differential equations (ODEs) of initial valued, which were then soloved using the new RKARMS (4, 4) method. Nested grid technique was employed for resolving the complexities of the region of interest with minimum cost. Fresh water discharge through the lower Meghna River was taken into account along the north east corner of the innermost child scheme. Numerical experiments were performed with the severe cyclone on April 1991 that crossed the coast over the study area. Simulated results by the study were found to be in good agreement with some reported data and were found to compare well with the results obtained by the MOL in addition with the classical 4th order Runge-Kutta (RK (4, 4)) method and the standard finite difference method (FDM).  相似文献   

5.
The long-term variation and seasonal variation of sea level have a notable effect on the calculation of engineering water level. Such an effect is first analyzed in this paper. The maximal amplitude of inter-annual anomaly of monthly mean sea level along the China coast is larger than 60 cm. Both the storm surge disaster and cold wave disaster are seasonal disasters in various regions, so the water level corresponding to the 1% of the cumulative frequency in the cumulative frequency curve of hourly water level data for different seasons in various sea areas is different from design water level, for example, the difference between them reaches maximum in June, July and August for northern sea area, and maximum in September, October and November for Southern China Sea. The hourly water level data of 19 gauge stations along the China coast are analyzed. Firstly, the annual mean sea level for every station is obtained; secondly, linear chan ging rates of annual mean sea level are obtained with the stochasti  相似文献   

6.
A numerical model of the coupling between astronomical tide and storm surge based on Mike 21 is applied to the coastal regions of Zhejiang Province.The model is used to simulate high tide levels combined with storm surge during 5 typhoons,including two super typhoons,that landed in the Province.In the model,the atmospheric forcing fields are calculated with parametric wind and pressure models.The computational results,with average computed errors of 13 cm for the high astronomical tide levels and 20 cm for the high storm-tide levels,show that the model yields good simulations.Typhoon No.5612,the most intense to land in China since 1949,is taken as the typical super typhoon for the design of 5 typhoon routes,each landing at a different location along the coast.The possible extreme storm-tide levels along the coast are calculated by the model under the conditions of the 5 designed typhoon routes when they coincide with the spring tide.Results are compared with the high storm-tide levels due to the increase of the central atmospheric pressure at the base of a typical super typhoon,the change of tidal type,and the behavior of a Saomai-type typhoon.The results have practical significance for forecasting and minimization of damage during super typhoons.  相似文献   

7.
首先给出了基于GNSS-MR技术提取潮波系数的原理与方法,然后利用布设在浙江省石浦港验潮室屋顶的GPS站DSPU实测数据对潮波系数进行了提取,并与验潮站实测潮位调和分析结果进行了对比分析。实验结果表明GPS-MR反演潮位与验潮站实测潮位值吻合较好,相关系数优于0.97;GPS-MR反演潮位与验潮站实测潮位获取的潮波系数基本一致,除M2、S2外其它差异较小。两者获取的潮波系数差异主要因为DSPU测站观测环境极大地影响了GPS-MR提取潮位精度。沿海GNSS站用于潮位监测和潮波系数提取,将进一步拓展沿海GNSS监测站的应用领域,在一定程度上可弥补验潮站的不足。  相似文献   

8.
广东沿海台风风暴潮可视化预报系统   总被引:5,自引:0,他引:5  
广东省地处南海北部,风暴潮灾害严重。为快速准确做好风暴潮预报并将预报结果应用于防灾减灾中,根据南海预报中心多年来在风暴潮数值预报、经验统计方法预报和潮汐预报的实践,研制了可视化软件。此软件可显示广东省28个沿海主要港口的逐时风暴增水与天文潮位的综合潮位曲线与数值,以动态或静态显示广东沿海海面的增水等值线图,成为业务化预报软件。多年的风暴潮数值预报的实践证明,国家海洋环境预报中心王喜年等在八·五攻关项目中推广应用的台风风暴潮模式,在广东沿岸的风暴潮数值预报中效果较好,可视化预报软件采用这一模式是合适的。  相似文献   

9.
基于MIKE21-FM水动力模型,结合Holland台风模型和TPXO7.2全球潮汐模型,建立了风暴潮-天文潮耦合数学模型。根据0814号台风"黑格比"的最佳路径数据,模拟了该强台风在深圳引起的风暴潮过程,并对深圳沿岸最高潮位与对应岸段的警戒潮位进行对比分析。结果显示:深圳沿岸最高潮位普遍超出警戒潮位,其中前海湾以北珠江口岸段最高潮位超出红色警戒潮位,深圳湾岸段最高潮位高于橙色警戒潮位,大鹏湾湾顶西侧岸段最高潮位超黄色警戒潮位,仅大鹏半岛东南侧岸段最高潮位低于蓝色警戒潮位;深圳西部沿岸最高潮位明显高于东部沿岸;深圳珠江口岸段最高潮位沿珠江口伶仃洋纵深方向由南往北递增。  相似文献   

10.
一次典型寒潮风暴潮过程的数值模拟研究   总被引:4,自引:0,他引:4  
建立了渤海及邻近海域天文潮与风暴潮的耦合模型。在验证的基础上,以2003年10月寒潮为例,分析了寒潮作用下渤海沿岸的增、减水及潮流场的时空分布变化特征。结果表明,寒潮作用下渤海湾沿岸增水幅度较大,水位振荡明显;潮流运动发生较大改变,局部海域的往复流转化为单向流,可能会影响渤海湾沿岸泥沙的运动。  相似文献   

11.
淤泥质海岸后方大面积的低地平原主要通过海岸上建设的涵闸排水,潮滩匡围对沿海涵闸排水的影响是围垦工程必须解决的问题。文章以条子泥西侧岸滩仓东片匡围为例,探讨了不同堤线方案下邻近闸下流槽各种落潮水量组成及其维护闸下排水能力的有效性。结果表明,合理的滩涂匡围堤线方案,在平均潮汛及一般大潮汛时对邻近闸下排水能力影响较小,而在风暴潮或秋季大潮汛时有一定影响,但可以通过若干次冲淤保港来解决。  相似文献   

12.
Interannual variations of sea level along the Bangladesh coast are quite pronounced and often dominate the long-term sea level trends that are taking place. The El Niño/Southern Oscillation (ENSO) induced variation is an important component of interannual mode of variations. The present article deals with the relationship between the sea level variations along the Bangladesh coast and the Southern Oscillation phenomenon. The mean tide level data of monsoon season (June to September) pertaining to Hiron Point (in Sundarbans) and Char Changa (on the mouth of Meghna River) have been analyzed and correlated to the Southern Oscillation Index (SOI). The annual variation of mean tide level in the coastal areas of Bangladesh reveals that the tide level reaches its peak during the monsoon season. The maximum tide level during the calendar year is recorded in August. Thus, it is not surprising that the inundation of the coastal belt of Bangladesh due to the floods is most common during the summer monsoon season, especially from July to September. Therefore, the sea level variations during the monsoon are of paramount importance to Bangladesh. The results of the present study show that both at Hiron Point and Char Changa there is a substantial difference between the mean tide level during the El Niño and La Niña monsoons. The mean tide level at Hiron Point is higher by about 5 cm during August of La Niña years as compared to that during the El Niño years. The difference at Char Changa, which is located at the mouth of Meghna River, is much higher. This is probably due to the increased fresh water discharge into the Meghna River during La Niña years. Thus at the time of crossing of a monsoon depression, the chances of widespread inundation are higher during a La Nin~a year as compared to that during an El Niño year. The Correlation Coefficients (CCs) between Mean Tide Levels (MTLs) at Hiron Point and Char Changa and the SOI during September (at the end of monsoon) are +0.33 and +0.39 respectively. These CCs are statistically significant at 90% and 95% levels, respectively. These results may find applications in the preparedness programs for combating sea level associated disasters in Bangladesh.  相似文献   

13.
Because of the special topography and large tidal range in the South Yellow Sea,the dynamic process of tide and storm surge is very complicated.The shallow water circulation model Advanced Circulation(ADCIRC)was used to simulate the storm surge process during typhoon Winnie,Prapiroon,and Damrey,which represents three types of tracks attacking the South Yellow Sea,which are,moving northward after landing,no landing but active in offshore areas,and landing straightly to the coastline.Numerical experiments were carried out to investigate the effects of tidal phase on the tide-surge interaction as well as storm surge.The results show that the peak surge caused by Winnie and Prapiroon occurs 2-5 h before the high tide and its occurring time relative to high tide has little change with tidal phase variations.On the contrary,under the action of Damrey,the occurring time of the peak surge relative to high tide varies with tidal phase.The variation of tide-surge interaction is about 0.06-0.37 m,and the amplitude variations of interaction are smooth when tidal phase changes for Typhoon Winnie and Prapiroon.While the interaction is about 0.07-0.69 m,and great differences exists among the stations for Typhoon Damrey.It can be concluded that the tide-surge interaction of the former is dominated by the tidal phase modulation,and the time of surge peak is insensitive to the tidal phase variation.While the interaction of the latter is dominated by storm surge modulation due to the water depth varying with tide,the time of surge peak is significantly affected by tidal phase.Therefore,influence of tidal phase on storm surge is related to typhoon tracks which may provide very useful information at the design stage of coastal protection systems.  相似文献   

14.
基于 SWAN 波浪传播模型建立包含风暴潮与天文潮耦合传播的台风浪数值模型,通过多次台风引起的波浪模拟,证实该模型可适用于浙江沿海.将1949年以来登陆我国大陆沿海最强的“5612”号台风作为典型的超强台风,计算了超强台风在浙北至浙南3个不同地点登陆遭遇天文潮高潮位时产生的沿海波高过程.结果显示,在开敞海区,登陆点南侧附近及其以北沿海,台风登陆时过程最大有效波高与风暴高潮位基本同时出现,而在登陆点以南远区的沿海海域,最大有效波高出现在登陆前的一个高潮位附近;超强台风作用下浙江陆域沿海离岸近1 km 范围内有效波高可达4耀6 m.这些结论对海堤工程设计和防灾减灾具有重要意义.  相似文献   

15.
目前世界各国出版的潮汐表和潮流表几乎全是采用调和方法推算的,对于用这种方法进行的潮汐预报的误差已有许多人做过研究;我国也曾有人从调和常数准确度和分潮选取方面进行了研究,并研究了浅水港口的潮汐预报方法。我所与国家海洋局情报研究所潮流组的同志在这方面做了一些工作:在一定程度上提高了潮汐预报的准确度;满足了实践的需要。然而,潮汐预报余差(即实测水位与预报潮高之差)减小的量值与余差本身相比仍是微小。例如在浅水港口吴淞,用1963年实测水位资料的分析结果预报1970年的潮位,采用 Doodson的方法预报,低潮时间的误差在半小时以上者占49%,而采用浅水准调和分潮方法预报,则仅占9%。前者余差的标准差是20.6厘米,后者约为19.7厘米,两者只相差0.9厘米,对余差总体来说,所减少的量值还是很小的。 验潮站测得的每小时一次的水位值,实际上可以认为是周期性和非周期性水位之和。其中,周期部分是潮汐诸分潮振动的迭加结果;在实测水位中扣除预报的潮高后得到的余差基本上可看作是非周期性的。从谱结构来看,实测水位不仅是一系列以线谱为特征的分潮的迭加,而且还有本底噪声以及介于两者之间的非线性相互作用所导致的一些随机起伏。所以,用调和方法预报潮汐,其准确度必有某些限制。为了进一步研究潮汐预报误差,国外曾有人对特定地点的潮汐预报余差进行谱分析,从而得到了一些有意义的结果。本文即拟通过潮汐预报余差功率谱研究潮汐预报的准确度和误差的性质。  相似文献   

16.
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.  相似文献   

17.
浙江沿海超强台风作用下风暴潮增水数值分析   总被引:6,自引:1,他引:5  
基于河口海岸水动力二维数值模型,建立风暴潮与天文潮耦合作用的数值模式,通过三次强台风和二次超强台风引起的风暴潮增水模拟和分析,证实该模式可用于浙江沿海增水预测.以1949年以来登陆我国大陆沿海最强的"5612"号台风作为典型的超强台风,利用本模式计算分析了超强台风在浙北至浙南5个不同地点登陆遭遇大潮时可能出现的风暴潮增水过程和最大增水,该结果对于海岸工程的防护具有实际的意义.  相似文献   

18.
利用粤西海域高频地波雷达观测得到的表层海流资料进行潮流调和分析。结果表明: 粤西近海主要属于不正规半日分潮, 浅水分潮较强。以M2分潮为例, 潮流运动形式主要为逆时针的往复流为主, 方向沿西北—东南方向。粤西近海的潮能主要由东部陆架输送进来, 潮能自东向西传播, 在大潮期间, 粤西的潮能出现向岸方向分量, 表现为从东南向西北方向传播, 在近岸区域潮能通量传播的方向会发生一个向岸的偏转。通过潮能收支方程计算潮能耗散, 发现粤西近海潮能耗散的高值区在西部岛屿密集区域, 与琼州海峡的存在和琼州海峡东北处地形变化存在明显的相关关系。  相似文献   

19.
以秦皇岛、京唐港、曹妃甸、黄骅4个验潮站的实测潮位和逐时风的数据为基础,以2013年河北省政府发布的风暴潮四色警戒潮位值为标准,统计了2008-2017年10 a河北省沿海的风暴潮过程,从警报级别、区域分布、时间分布、天气系统、经济损失5个方面分析河北省沿海风暴潮特征,并从地形、天文潮与天气系统配合、海平面上升、全球变暖引发的气候异常4个方面分析了影响河北省沿海风暴潮的成因,分析得出:受天气系统的影响,7-10月是河北省风暴潮高发时段,且由于河北省岸线分布特点,沧州市沿海受到风暴潮影响的次数最多,唐山和秦皇岛次之,沧州和唐山地区的风暴潮过程多由东北向大风引起,而秦皇岛地区的风暴潮过程多由东南向风引起。  相似文献   

20.
基于SWAN波浪传播模型建立包含风暴潮与天文潮耦合传播的台风浪数值模型,将1949年以来登陆我国大陆沿海最强的5612#台风作为典型的超强台风,计算了超强台风沿中线和北线路径登陆遭遇天文潮高潮位时产生的沿海波高过程。结果显示:河口波高总体分布下游大于上游,北岸大于南岸,两岸代表断面堤前最大有效波高可达5.5 m;中线路径生成的近岸台风浪波高为单峰过程,北线路径时北岸的波高出现双峰过程,波高峰值与风暴高潮位并非总是同步出现,两者时间差最大为4 h;根据频率曲线分析,中线、北线路径超强台风作用下乍浦站台风浪的重现期分别为135 a和350 a;中潮时的近岸台风浪波高比大潮降低0.1~0.2 m,小潮时再比中潮降低同样幅度。这些结论对海堤工程设计和防灾减灾具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号