首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report on a decadal trend of accretionary dynamics in the wetlands of several northwestern Mediterranean deltas and a lagoon system, all of them with high rates of wetland loss. Wetland vertical accretion and surface elevation change were measured at 55 riverine, marine, and impounded sites in four coastal systems: the Ebro delta, Spain; the Rhône delta, France; and the Po delta and Venice Lagoon, Italy. Vertical accretion and elevation change ranged between 0 and 25 mm year?1 and were strongly correlated. The highest rates of elevation gain occurred at riverine sites where vertical accretion was highest. We conclude that areas with high sediment input, mainly riverine, are the only ones likely to survive accelerated sea-level rise, especially if recent higher estimates of 1 m or more in the twenty-first century prove to be accurate. This is the first study where the importance of river input on wetland survival has been demonstrated at a decadal time scale over a broad geographical area.  相似文献   

2.
The use of a sedimentation-erosion table (SET) for the measurement of small changes in sediment surface elevation in intertidal and shallow subtidal areas is described. The SET provides a constant reference plane in space from which the distance to the sediment surface can be measured by lowering pins to the surface. The precision of the method was determined by repeated measurements in coastal marshes, mudflats, and subtidal areas in Louisiana and Georgia. The confidence interval of the SET is about ±1.5 mm. The SET is more accurate if pins are lowered manually and the sediment surface is determined visually than if pins are lowered by gravity and the sediment surface is determined by soil resistance.  相似文献   

3.
We examine the potential for diurnal variation in elevation of saltmarsh surfaces as a source of error in long-term experiments; errors particularly critical in high precision studies that employ the surface elevation table (SET) as a means to monitor elevations. The field study was carried out along the New Brunswick coast of the Bay of Fundy in high and low zones at three marshes with different tidal ranges. We used a total of 16 benchmark pipes and controlled for daily variability in evapotranspiration (ET), as well as timing of tidal flooding, two factors that affect soil water storage, and consequently soil volumes. In six of nine trials we detected significant elevation change over periods as short as 5 d. Marsh-wide averages ranged from 1.2 to 3.0 mm, greater than the yearly increase in relative sea level in many regions. Wood Point marsh had the highest tidal range, but lowest soil organic matter content, giving its soils the lowest compressibility and little sensitivity to ET during two of three trials; the average change in elevation in Wood Point high marsh stations was 4.0 mm during the last trial. Greater differences later in the growing season (while temperature changes were minor) at Wood Point and another site suggest that plant transpiration drove changes in water storage at those sites. Significantly greater differences in elevation with lower plant cover in the third marsh suggests that evaporation drove changes in water storage there. Surface elevation change due to ET should be of greatest concern to SET users in temperate regions where there are large changes in plant biomass and variable temperatures. Variation due to plant transpiration could be reduced if yearly monitoring is scheduled before the start of the growing season.  相似文献   

4.
矿区GPS高程拟合精度和可靠性研究   总被引:1,自引:2,他引:1  
根据矿区控制测量的特点,在矿区水准网基础上,用水准测量的方法联测数量足够、分布均匀的GPS点,然后用GPS高程拟合的方法确定其余大量GPS点的高程,建立矿区GPS高程控制网。结合实例论述了该拟合方法建立矿区GPS高程控制网的精度和可靠性,并分析了它的应用价值。  相似文献   

5.
刘家祥 《安徽地质》2014,(2):152-154
目前地表移动观测站仍然是矿山在采动影响下研究地表移动变形规律的有效技术手段。测绘新技术的发展与应用给地表移动观测站提供了各种先进的技术方法。本文介绍了地表移动观测站采集监测信息过程中,采用电磁波测高方法代替几何水准测量获取监测点高程信息的方法。通过实际观测试验与精度分析,此方法在技术上是可行的,在精度是允许的,大大简化了测量工序,提高了工作效率。  相似文献   

6.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

7.
为验证RTK作业的精度和可靠性,选择具有GPS静态控制网成果的平地、丘陵和山地三个测区作为试验区,根据不同参数转换和高程拟合方法测定的成果,与已知的GPS静态成果和水准高程进行比较,结果发现:在平地、丘陵、山地三种地貌条件下,使用相同的参数转换方式和高程平面拟合方式,其成果差别不大;存储方式对观测精度有一定的影响,一般情况下平滑存储成果的可靠性高于一般存储成果;使用四参数转换的成果较七参数转换的成果平面精度要高;使用平面拟合的高程精度略高于使用曲面拟合的高程。根据对测量精度及可靠性的分析结论,提出在勘探工程中RTK的作业方法及注意事项。  相似文献   

8.
Improved knowledge of processes determining groundwater quality is an important precondition for the solution of various ecological and water management problems. In areas with highly fluctuating groundwater levels, time-limited access, local pollution sources or temporary interactions between surface water and groundwater, a temporary groundwater sampling technique could be of advantage. Furthermore, depth-specific sampling is of high value for investigating groundwater pollution related to seepage or surface water infiltration. A stainless steel core probe has been developed to obtain groundwater samples and to measure the hydraulic head distribution at various defined depths. The sampling technique is applicable only for non-volatile water constituents. An advantage of the core probe is that it can be driven into soil or sediments using ordinary low cost percussion equipment. The probe enables hydraulic head measurements and water sampling over vertical intervals of 0.3 m. Results from field experiments using the stainless steel core probe were in good correspondence with results from groundwater sampling at nearby observation wells. In the upper layer of the aquifer, the intrinsic spatial change in concentrations of sulphate, chloride and other water constituents is a function of distance between observation points and groundwater surface. Results indicate strong effects of a fluctuating groundwater level on groundwater quality at certain depths.  相似文献   

9.
Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.  相似文献   

10.
The circulation patterns in St. Andrew Bay, Florida are revealed through the application of a well-tested, extensively used three-dimensional hydrodynamic model. A high resolution grid resolving both the horizontal and vertical directions is used with a systematically developed set of forcing functions to simulate conditions over a full year. Water levels at the three open boundaries are deduced from a year-long deployment of pressure gauges, and freshwater loadings are based upon drainage basin characteristics and precipitation measurements. Model validation involves comparisons with hydrographic casts taken at twelve stations distributed throughout the bay at monthly intervals. The relative average error between the observed and model-predicted salinity is 15% for the surface of the water column and 4% for the bottom. The annual net flow balance consists of an influx of water at the two Intracoastal Waterway open boundaries, with that water exiting to the Gulf of Mexico. An average of about 100 m3 s−1 enters from East Bay and about 40 m3 s−1 enters through West Bay. On shorter time scales, the flow balance is quite variable both in terms of magnitude and direction. This study also presents methods to overcome the paucity of data that is usually available for the development of such a model. These include techniques to take bottom pressure data sets with short gaps and create reliable sea surface elevation boundary conditions and to take precipitation data and drainage basin characteristics and produce estimates of freshwater inflows.  相似文献   

11.
别拉洪河流域湿地变化的多尺度空间自相关分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用空间自相关模型,结合GIS技术,对别拉洪河流域不同尺度上湿地空间自相关的动态变化进行了研究。结果表明,自20世纪50年代至2000年,别拉洪河流域湿地面积逐渐减少,湿地全局空间自相关呈先增加后减小再增加的"N"字型趋势;别拉洪河流域湿地高-高自相关类型有逐渐减少并向流域下游扩张的趋势,而低-低自相关类型有逐渐增加并向流域上游扩张的趋势;湿地空间自相关表现出明显的尺度效应,随着研究尺度的增大湿地空间自相关性逐渐增强;别拉洪河流域湿地空间自相关的动态变化主要是由人类对湿地的开发造成的。  相似文献   

12.
Effects of sediment extraction and dam construction on changes of riverbed characteristics over yearly to decadal scales in the lower Tedori River of Japan are clarified. Over 1950–1991, the riverbed degraded in excess of 0.5–3.5 m. Concurrently, riverbed sediment volume of the 0–16 km reach decreased by 12.7 × 106 m3. Intensive sediment extraction was the dominant cause of riverbed degradation during the period. During 1991–2007, an increase in riverbed sediment volume of 0.6 × 106 m3 resulted in accretion of the riverbed by average depth 0.04 m. The cessation of sand and gravel mining (SGM), coupled with Tedorigawa Dam operation since 1980, was responsible for that accretion. Temporal change in riverbed elevation during 1950–2007 indicates that there were five phases of vertical adjustment. Combination of nonlinear regression models described four of these phases well. During 1950–1979, the first four modes of empirical orthogonal function analysis successfully captured temporal and spatial responses of the riverbed to natural and anthropogenic impacts. That is, the first mode explained the mean riverbed profile and temporal variation in riverbed sediment volume. The second through fourth spatial eigenfunctions reflected spatial variation in vertical adjustment rate for phases II, III and I, respectively. The corresponding temporal eigenfunctions explained the respective effects on the riverbed of SGM, of imbalance between sediment transport capacity and sediment supply, and of dredging activity.  相似文献   

13.

Satellite altimetry has been widely used to determine surface elevation changes in polar ice sheets. The original height measurements are irregularly distributed in space and time. Gridded surface elevation changes are commonly derived by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height change estimates. This article assesses how methodological choices related to those two steps affect the accuracy of surface elevation changes, and how well this accuracy is represented by formal uncertainties. In a simulation environment resembling CryoSat-2 measurements acquired over a region in northeast Greenland between December 2010 and January 2014, different local topography modeling approaches and different cell sizes for RAA, and four interpolation approaches are tested. Among the simulated cases, the choice of either favorable or unfavorable RAA affects the accuracy of results by about a factor of 6, and the different accuracy levels are propagated into the results of interpolation. For RAA, correcting local topography by an external digital elevation model (DEM) is best, if a very precise DEM is available, which is not always the case. Yet the best DEM-independent local topography correction (nine-parameter model within a 3,000 m diameter cell) is comparable to the use of a perfect DEM, which exactly represents the ice sheet topography, on the same cell size. Interpolation by heterogeneous measurement-error-filtered kriging is significantly more accurate (on the order of 50% error reduction) than interpolation methods, which do not account for heterogeneous errors.

  相似文献   

14.
Natural wetlands are thought to be one of the largest natural sources of atmospheric methane concentrations. Although numerous studies referred to the rate of methane fluxes in different geophysical regions, only a few had estimates of the overall geographical methane emissions in China. This study estimated the spatial variations of annual methane emissions with the pixel size of 1 km × 1 km from natural wetlands, excluding water surface, in China. The natural wetland areas were extracted from the database of the 2000 land covers, and geophysical divisions were used to represent different climate conditions. Methane emission in every geophysical region was calculated based on methane release factors obtained from an extensive overview of published literature and the data of elevation and vegetation proportion. The estimated annual methane emissions ranged from 0 to 5,702.8 kg per pixel within the area of 1 km2, and the spatial variation in methane emissions was strongly correlated with proportion of wetlands in the area. The total methane emission from natural wetland in China ranged from 3.48 to 7.16 Tg (terrogram, unit of weight) per year, with the mean value of 4.94 Tg per year, based on the area 133,000 km2 of natural wetlands. Specifically, the wetland in Northeast China had the highest contribution in China (39 %). Inner Mongolia and Qinghai-Tibet highland represented for about 25 and 21 %, respectively. The other 15 % of the measured methane was released in Northwest, North, Central, and South China.  相似文献   

15.
In the greater Himalayan region, wetland ecosystems such as lakes, marshes, and peat lands play an important role in regulating the flow of major rivers. These ecosystems are often overlooked and not well represented on land-use planning and conservation maps. Wetland complexes are partly ephemeral and difficult to map accurately either with digital image processing or visual interpretation. This study developed a hybrid method of extracting spatial patterns of wetland areas which combines month-on-month multispectral classifications of Moderate Resolution Imaging Spectroradiometer data with a sample wetland extraction method based on knowledge of the spectral characteristics of satellite data and wetland ecological systems. The results were compared with the best available sources for lakes and wetlands on global and national scales. It was demonstrated that the method could extract wetlands automatically to a reasonable degree of accuracy and, therefore, reduce the need for extensive ground knowledge. The model was transferred by adjusting parameters through application of high-resolution satellite data (Landsat) in some sub-basin areas. These findings are cognizant with field interviews conducted by wetland experts. The hybrid method and high-altitude wetlands maps will provide decision makers with valuable information about wetland distribution and change in response to global warming and human activities.  相似文献   

16.
兴隆庄煤矿近井网和井筒十字中线破坏严重,为了保障煤矿正常的生产需求,利用GPS技术建立了D级GPS近井网,利用三等水准测量确定了近井网各GPS点的正常高程,并利用高精度全站仪恢复了井筒十字中线,进行了垂直度检测,埋设了基桩点。  相似文献   

17.
结合GPS控制网和三等精密水准网的对比试验,构建了GPS测高技术中高程拟合模型,据此对锦赤铁路三标段工程项目进行分析。实例中选取多项式曲面拟合方法,进行高程内插计算,并将拟合结果与水准测量结果进行对比,结果表明:GPS高程拟合的内、外符合精度完全满足铁路工程精度要求,精度可达到2~3cm。  相似文献   

18.
Wetlands play an important role in water conservation, environmental protection, and biodiversity conservation. Remote sensing is an economical and efficient technique for wetland monitoring which can limit disturbance in sensitive areas and support wetland conservation. In this paper, we used three phases of Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) remote sensing images from October 1989, October 1999, and October 2009 to study wetlands in Xingzi County. The images were segmented using the object-oriented remote sensing image interpretation software eCognition Developer 8.64, then segmented images were classified by slope, digital elevation model (DEM) data, Normalized Difference Vegetation Index (NDVI), Specific Leaf Area Vegetation Index (SLAVI), and Land and Water Masks (LWM) index to produce land type classification maps. Land use change information was obtained by analyzing the superposition of two classification maps of the wetland area from different years. The results showed that landscape patches in Xingzi County displayed fragmentation in their spatial distribution over time. Based on an index of changes in landscape patches, the fastest growing landscape type is grassland, while the fastest decreasing type is irrigated land. Dominant driving factors of changes in Xingzi County’s wetland landscape are population growth and policy changes.  相似文献   

19.
We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0–4 m), the shallow root zone (0–0.35 m), and the full sediment profile (0–6 m) in response to site hydrology (daily river stage and daily groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0–0.35 m], middle zone [0.35–4 m], and bottom zone [4–6]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly, with changes in soil elevation for the entire profile (Adjusted R2 = 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 = 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.  相似文献   

20.
Examination of two lines of repeated leveling in North Carolina and Georgia reveals
1. (1) apparent uplift at the Blue Ridge-Piedmont physiographic boundary (the AtlanticGulf drainage divide) relative to the Atlantic Coastal Plain on the east and the Valley and Ridge province to the west; and
2. (2) large tilts over short baselines superimposed upon the regional pattern in the vicinity of the nearby Blue Ridge—Piedmont geologic boundary (the Brevard fault zone). In the North Carolina profile a very pronounced correlation between topography and movement suggests possible systematic leveling error, but the observed movements appear to be larger than those normally attributed to leveling error. Thus, either refraction or rod errors are larger than expected, or the movement is real and strongly correlates with topography along this portion of the leveling line.
Anomalously high stream-gradients over both resistant and nonresistant lithologies are found around the drainage divide in North Carolina, and may be associated with the relative uplift inferred from releveling. The drainage divide in Georgia, also characterized by relative uplift on the movement profile, approximately separates two different types of stream patterns. In both cases evidence presented here suggests that stream morphology may be responding to contemporary deformation as implied by the observed elevation changes. The relative uplift in North Carolina also correlates with a positive Bouguer gravity anomaly of 30–40 mGal in the midst of the regional Blue Ridge gravity low, although the significance of the correlation is unclear.The close spatial correspondence between the zone of maximum uplift and the drainage divide suggests that the vertical movements and geomorphic anomalies may result from the same mechanism, although the nature of such is unclear. One possible mechanism could be displacement at depth along the nearby Brevard zone. However, on the basis of dislocation modeling it appears that the geodetic observations cannot be adequately explained by surface deformation associated with any simple models of slip on the Brevard zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号