首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
226Ra, 228Ra and Ba distributions as well as 228Ra/226Ra and 226Ra/Ba ratios were measured in seawater, suspended and sinking particles at the DYFAMED station in the Western Mediterranean Sea at different seasons of year 2003 in order to track the build-up and fate of barite through time. The study of the 228Raex/226Raex ratios (Raex = Ra activities corrected for the lithogenic Ra) of suspended particles suggests that Baex (Baex = Ba concentrations corrected for the lithogenic Ba, mostly barite) formation takes place not only in the upper 500 m of the water column but also deeper (i.e. throughout the mesopelagic layer). Temporal changes in the 228Raex/226Raex ratios of sinking particles collected at 1000 m depth likely reflect changes in the relative proportion of barite originating from the upper water column (with a high 228Ra/226Ra ratio) and formed in the mesopelagic layer (with a low 228Ra/226Ra ratio). 228Raex/226Raex ratios measured in sinking particles collected in the 1000 m-trap in April and May suggest that barite predominantly formed in the upper water column during that period, while barite found outside the phytoplankton bloom period (February and June) appears to form deeper in the water column. Combining ratios of both the suspended and sinking particles provides information on aggregation/disaggregation processes. High 226Raex/Baex ratios were also found in suspended particles collected in the upper 500 m of the water column. Because celestite is expected to be enriched in Ra [Bernstein R. E., Byrne R. H. and Schijf J. (1998) Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. II45, 491-505], acantharian skeletons may contribute to these high ratios in shallow waters. The formation of both acantharian skeletons and barite enriched in 226Ra may thus contribute to the decrease in the dissolved 226Ra activity and 226Ra/Ba ratios of surface waters observed between February and June 2003 at the DYFAMED station.  相似文献   

2.
We measured 228Raex/226Raex and 226Raex/Baex ratios in suspended and sinking particles collected at the Oceanic Flux Program (OFP) time-series site in the western Sargasso Sea and compared them to seawater ratios to provide information on the origin and transport of barite (BaSO4) in the water column. The 228Raex/226Raex ratios of the suspended particles down to 2000 m are nearly identical to those of seawater at the same water depth. These ratios are much lower than expected if suspended barite was produced in surface waters and indicate that barite is produced throughout the mesopelagic layer. The 228Raex/226Raex activity ratios of sinking particles collected at 1500 and 3200 m varied mostly between 0.1 and 0.2, which is intermediate between the seawater ratio at these depths (<0.03) and the seawater ratios found in the upper 250 m (0.31-0.42). This suggests that excess Ba (i.e., Baex = Batotal − Balithogenic), considered to be mainly barite, present in the sinking flux is a mixture of crystals formed recently in the upper water column, formed several years earlier in the upper water column, or formed recently in deeper waters. We observe a sizeable temporal variability in the 228Raex/226Raex ratios of sinking particles, which indicates temporal variability in the relative proportion of barite crystals originating from surface (with a high 228Raex/226Raex ratio) and mesopelagic (with a low 228Raex/226Raex ratio) sources. However, we could not discern a clear pattern that would elucidate the factors that control this variability. The 226Ra/Ba ratios measured in seawater are consistent with the value reported from the GEOSECS expeditions (2.3 dpm μmol−1) below 500 m depth, but are significantly lower in the upper 500 m. High 226Raex/Baex ratios and elevated Sr concentrations in suspended particles from the upper water column suggest preferential uptake of 226Ra over Ba during formation of SrSO4 skeletons by acantharians, which must contribute to barite formation in shallow waters. Deeper in the water column the 226Raex/Baex ratios of suspended particles are lower than those of seawater. Since 228Raex/226Raex ratios demonstrate that suspended barite at these depths has been produced recently and in situ, their low 226Raex/Baex ratios indicate preferential uptake of Ba over Ra in barite formed in mesopelagic water.  相似文献   

3.
In order to determine the geochemical evolution of a freshwater limestone cave system located in central Switzerland (Hell Grottoes at Baar/Zug,) young postglacial tufaceous limestone and travertine precipitates were investigated using the 230Th/234U ingrowth system. Additional analyses of further radionuclides within the 238U decay chain, i.e. 226Ra and 210Pb, showed that the Th/U chronometer started with insignificant inherited 230Th over the entire formation period of the travertine setting (i.e. 230Th(0)=0). A contribution from detrital impurities with 230Th/234U in secular equilibrium could be precisely subtracted by applying isochron dating of cogenetic phases and recently formed travertine. The resulting precise 230Th/234U formation ages were found to be consistent with the geological stratigraphy and were furthermore used to demonstrate the applicability of the next geologically important chronometer in the 238U-decay series, based on decay of excess 226Ra normalized to the initial, i.e.226Raex/226Ra(0). This system is suitable for dating phases younger than 7000 yr when the correction of a detritus component increasingly limits the precision of the 230Th/234U chronometer. Analytical solutions of the coupled 234U/230Th/226Ra radionuclide system predicted that the 226Raex/226Ra(0) chronometer is independent of the actual 230Th activity build up from decay of 234U, if the systems starts with zero inherited 230Th(0). The data set confirmed this hypothesis and showed furthermore that the initially incorporated 226Ra excess must have remained almost uniform in all limestone over a period of at least 7000 yr, i.e. 4–5 half-lives of 226Ra. This is concluded because (i) the 226Raex/226Ra(0) ages agreed well with those derived from 230Th/234U, (ii) all data plot within uncertainty on the 226Raex/226Ra(0) decay curve and (iii) the atomic Ba/Ca ratio was found to be constant in the travertine material independent of the sample ages. Provided that such boundary conditions hold, 226Raex/226Ra(0) should be applicable to materials which are suitable for 230Th/234U dating in sedimentology and oceanography, i.e. travertine, corals, phosphorites, etc., and should strongly support 230Th/234U for samples that have been formed a few thousand years ago.  相似文献   

4.
Neodymium (Nd) isotope profiles were analyzed on two Baltic Mn/Fe precipitates (99/2 and TL1) from shallow water (20 m) of the Mecklenburg Bay. The age range of these Mn/Fe precipitates determined by 226Raex/Ba dating reaches from recent growth back to ∼4300 and 1000 yr BP, respectively. Over this time range, the Nd isotope composition varies from εNd (0) = −13.1 to −17.5 in the selected Baltic precipitates indicating substantial changes in the Nd isotope composition of the Baltic Sea. The lowest εNd values were recorded during the time interval of the Little Ice Age (LIA, AD ∼1350 to 1850). These minimum values indicate either an increase of the input of less radiogenic Nd from Scandinavian Archean-Proterozoic sources (εNd about −22) to the Baltic Sea or a decrease of the input of more radiogenic Nd from continental European sources (εNd about −12) and/or North Sea water (εNd about −10). Variations of both, erosive continental input and North Sea inflow may indicate a direct response of the Nd isotope signal in the Baltic Sea to climate changes during the LIA and be related to cyclic shifts in the atmospheric circulation triggered by the North Atlantic Oscillation (NAO). Another aspect that possibly influenced the input of trace elements and Nd isotopes into the Baltic Sea is the population development in the circum Baltic area during the LIA. The lowest εNd values also correspond to the medieval demographic crises that led to a significant decrease of agricultural activity and farmland. The reduction of soil erosion and enhanced regrowth of natural vegetation may have changed the amount and proportions of dissolved and suspended particulate matter transported into the Baltic Sea by rivers which in turn may have resulted in a change of the Nd isotope composition of Baltic Sea water.  相似文献   

5.
In this study we experimentally determine phlogopite/melt partition coefficients of Ra and other trace elements in a lamproitic system. This work was achieved using an analytical technique (LA-ICP-MS) with low detection limits (~ 0.01 fg) permitting the measurement of the very low Ra concentrations feasible in experiments (~ 1 ppb). DRaphlogopite/melt was determined to 2.28 ± 0.44 and 2.84 ± 0.47 in two experiments, the ratio DRa/DBa is around 1.6. The compatibility of Ra in phlogopite results from an ionic radius being close to the apex of the lattice strain parabola for earth alkalis in the large XII-coordinated interlayer site of phlogopite. A re-evaluation of DRa and DRa/DBa for magmatic minerals containing appreciable Ra, yields DRamineral/melt ranging from ~ 2.6 for phlogopite down to 2–3 ? 10? 5 for pyroxenes, and DRa/DBamineral/melt from ~ 4 for leucite to 2 ? 10? 2 for orthopyroxene. The influence of melt composition on DRa/DBa is less than 10%. All investigated minerals have different DRa/DBa, strongly fractionating Ra from Ba. Thus, for magmatic systems, (226Ra)/Ba in the various minerals is not constant, these minerals do not form a straight line in the (226Ra)/Ba–(230Th)/Ba system at the time of crystallization and thus, there is no (226Ra)/Ba–(230Th)/Ba isochron at t0. 226Ra–230Th–Ba mineral dating is thus applicable only to model ages calculated from mineral–glass pairs with known DRa.  相似文献   

6.
The geochemistry of Ba, Ra, Th, and U and the potential of using 226Ra/Ba ratios as an alternative dating method are explored in modern and Holocene marine mollusc shells. Five modern shells of the Antarctic scallop Adamussium colbecki collected from the present day beach and six radiocarbon dated specimens from Holocene beach terraces of the Ross Sea region (Antarctic) between 700 and 6100 calibrated yr BP old have been analysed by mass spectrometry. In clean shells 226Ra concentrations and 226Ra/Ba ratios show a clear decrease with increasing age, suggesting the possibility of 226Ra dating. Limiting factors for such dating are Ba and 226Ra present in surface contaminants, and ingrowth of 226Ra from U present within the shell. Surface contamination is difficult to clean off entirely, but moderate levels of residual contamination can be corrected using 232Th. Sub-samples from the same shell with different proportions of contamination form a mixing line in a 226Ra/Ba-232Th/Ba graph, and the 226Ra/Ba of the pure shell can be derived from the intercept on the 226Ra/Ba axis. Contaminant corrected 226Ra/Ba ratios of late-Holocene 14C-dated samples fall close to that expected from simple 226Ra excess decay from seawater 226Ra/Ba values. 226Ra ingrowth from U incorporated into the shell during the lifetime of the mollusc can be corrected for. However, the unknown timing of post mortem U uptake into the shell makes a correction for 226Ra ingrowth from secondary U difficult to achieve. In the A. colbecki shells, 226Ra ingrowth from such secondary U becomes significant only when ages exceed ∼2500 yr. In younger shells, 226Ra/Ba ratios corrected for surface contamination provide chronological information. If evidence for a constant oceanic relationship between 226Ra and Ba in the ocean can be confirmed for that time scale, the 226Ra/Ba chronometer may enable the reconstruction of variability in sea surface 14C reservoir ages from mollusc shells and allow its use as a paleoceanographic tracer.  相似文献   

7.
Deep-sea coral has proved useful for paleoceanographic reconstructions and for documenting 14C-ages of water masses using 230Th-ages. However, for precise and accurate U-series dating, further information on coral-age structure, growth rate and diagenetic evolution is still needed. To document such processes, we used U-Th-226Ra systematics in a 40 cm diameter, Lophelia pertusa specimen collected in 1912 from the Eastern Atlantic (Sea of the Hebrides). External parts of the specimen are thought to have been alive when collected whereas more internal parts were likely dead. The “live-collected” and “dead” parts of the skeleton were sampled and analyzed for their 230Th, 232Th, 234U, 238U, 226Ra and Ba contents by thermal ionization and multicollector inductively coupled plasma mass spectrometry. 230Th/234U ratios in the most recent parts yielded ages of 86 ± 6 a and 92 ± 9 a, in agreement with the date of recovery. The older parts yielded 230Th ages ranging from 169 ± 15 to 211 ± 10 a (n = 5), but had a 31% higher U content than more recent parts of the skeleton. This raises concerns about the possibility of secondary diagenetic U uptake, although an environmentally controlled U/Ca shift between coral growth stages cannot be ruled out. 226Ra/Ba measurements were made, and model- 226Ra/Ba ages averaging 250 ± 12 yr were calculated for the older part, assuming a constant initial 226Ra/Ba ratio in bottom waters. These ages are slightly older than 230Th-ages, suggesting either that 226Ra/Ba ratios of ambient-seawater changed over time or that a diagenetic phenomenon have affected the U-series system, or both. Scanning electron microscope observations revealed bioerosion and secondary biomineralization in the older part of the coral skeleton, supporting the hypothesis that diagenetic processes may have influenced the ages obtained by the U-series toolbox. Modeled U-series ages for such an open system are discussed. However, a comparison between 14C- and 230Th-ages performed on both pristine and bioeroded parts of the coral gives coherent values (ca 450 a) for the preindustrial 14C-reservoir age of North Atlantic waters. It remains to be determined, however, whether diagenesis occurs rapidly over a short period of time, or whether it continues for longer periods. In the latter case, diagenetic processes would hamper paleoceanographic interpretations as well as the precise calculation of 14C ages of deep-water masses, based on comparative U/Th- and 14C-chronologies.  相似文献   

8.
The relative abundance of 226Ra and 228Ra were determined in the groundwater from 125 drilled wells containing from < 0.1 to 51.3 pCi/l of 226Ra. The determination of 228Ra was carried out with a liquid scintillation counter by measuring only the weakly energetic β particles emitted from 228Ra. Thus the interference from the daughter nuclides of 226Ra was avoided, without specific separation of 228Ac. The direct measurement of 228Ra made the method decisively simpler and faster in terms of the chemistry involved.The concentration of 228Ra was found to be independent of the amount of 226Ra present in the samples. The concentrations of 228Ra were nearly the same over the whole range of 226Ra concentrations and the average sol226Ra228Ra ratio sharply increased as the 226Ra content of water increased. The 226Ra228Ra ratio in the drilled wells varied from 0.3 to 26. Abnormally high 226Ra228Ra ratios were found in areas with known uranium deposits as well as in several drilled wells at other locations. The abnormally high 226Ra228Ra ratios present in groundwater suggest that the radioactivity anomaly is caused by uranium deposits and not by common rocks. In samples with a low radioactivity level the average 226Ra228Ra ratio was slightly below unity, corresponding to the typical U/Th ratio of granite, the most common kind of rock in the study area. The samples from the rapakivi area proved to be exceptional in that they had a low 226Ra228Ra ratio independent of the concentration of 226Ra.  相似文献   

9.
Sixty-eight groundwater samples from the Ganges-Brahmaputra floodplain in the Bengal Basin were analyzed to assess the groundwater geochemistry, the subsurface hydrology, the buffering effects of sediments on trace metal concentrations and their isotopic compositions, and the magnitude of the subsurface trace element flux to the Bay of Bengal and to the global ocean. Samples obtained from depths of 10 to 350 m were measured for major and trace elements, dissolved gas, and tritium. On the basis of the 3He/3H ages, the groundwater at depth (30-150 m) appears to be continually replenished, indicating that this recharge of groundwater to depth must ultimately be balanced by a significant quantity of submarine discharge into the Bay of Bengal. Using the 3He/3H groundwater age-depth relationship to calculate a recharge rate of 60 ± 20 cm/yr, we estimate a subsurface discharge into the Bay of Bengal of 1.5 ± 0.5 × 1011 m3/yr, or 15% of the surface Ganges-Brahmaputra river (GBR) flux. Several trace elements, especially Sr and Ba, display elevated concentrations averaging 7 to 9 times the surface GBR water values. The submarine groundwater fluxes of Sr and Ba to the oceans are 8.2 ± 2 × 108 and 1.5 ± 0.3 × 108 mol/yr, or 3.3 and 1.2%, respectively, of the world total, or equal to the surface GBR Sr and Ba estimated fluxes. Our groundwater flux for Ba agrees with the estimate of Moore (1997) (3 × 108-3 × 109 mol/yr), on the basis of measured Ba and Ra excesses in the Bay of Bengal. Other trace metals, such as U and Mo, are at low but measurable levels and are not major contributors to the global flux in this river system. A comparison of the Sr and Ba concentrations, plus 87Sr/86Sr ratios in groundwater to the oxalate extractable fractions of a coastal sediment core, suggests that weathering of carbonates and minor silicates, coupled with cation exchange plus adsorption and desorption reactions, controls the trace element concentrations and 87Sr/86Sr isotopic compositions in both the groundwater and river water. Our data also imply that other coastal floodplains (e.g., the Mekong and the Irrawaddy rivers) that have high precipitation rates and rapid accumulation of immature sediments are likely to make significant contributions to the global oceanic trace metal budgets and have an impact on the Sr isotopic evolution in seawater.  相似文献   

10.
The natural radiological characteristics and their respective annual effective dose (AED) rates, produced by 226Ra, 232Th and 40K in coal, fly ash and bottom ash from two large coal-fired power plants (CFPPs) of Xi’an were determined by means of γ-ray spectrometry. The average activity concentrations of 226Ra, 232Th and 40K in all ash samples (fly ash and bottom ash samples) from the two CFPPs were 67.6, 74.3 and 225.3 Bq kg−1, respectively. The results are compared with data from other locations. To evaluate the radiological hazards of the natural radioactivity, the radium equivalent activity (Raeq), air absorbed dose rate (D), AED and external hazard index (H ex) are compared with internationally accepted values. Raeq and H ex of all samples except three fly ash samples were less than the limits of 370 Bq kg−1 and unity, respectively. The average D and AED for ash samples were 86.8 nGy h−1 and 0.11 mSv y−1, respectively, which exceed the world average and Xi’an average values.  相似文献   

11.
《Applied Geochemistry》2003,18(7):1095-1110
The exchange of 226Ra and trace metals across the tailings-water interface and the mechanisms governing their mobility were assessed via sub-centimetre resolution profiling of dissolved constituents across the tailings–water interface in Cell 14 of the Quirke Waste Management Area at Rio Algom's Quirke Mine, near Elliot Lake, Ontario, Canada. Shallow zones (<1.5 m water depth) are characterized by sparse filamentous vegetation, well-mixed water columns and fully oxygenated bottom waters. Profiles of dissolved O2, Fe and Mn indicate that the tailings deposits in these areas are sub-oxic below tailings depths of ∼3 cm. These zones exhibit minor remobilization of Ra in the upper 5 cm of the tailings deposit; 226Ra fluxes at these sites are relatively small, and contribute negligibly to the water column activity of 226Ra. The shallow areas also exhibit minor remobilization of Ni, As, Mo and U. The release of these elements to the water cover is, however, limited by scavenging mechanisms in the interfacial oxic horizons. The presence of thick vegetation (Chara sp.) in the deeper areas (>2 m water depth) fosters stagnant bottom waters and permits the development of anoxia above the benthic boundary. These anoxic tailings are characterized by substantial remobilization of 226Ra, resulting in a relatively large flux of 226Ra from the tailings to the water column. The strong correlation between the porewater profiles of 226Ra and Ba (r2=0.99), as well as solubility calculations, indicate that the mobility of Ra is controlled by saturation with respect to a poorly ordered and/or impure barite phase [(Ra,Ba)SO4]. In the anoxic zones, severe undersaturation with respect to barite is sustained by microbial SO4 reduction. Flux calculations suggest that the increase in 226Ra activity in the water cover since 1995 (from <0.5 to 2.5 Bq l−1) can be attributed to an increase in the spatial distribution of anoxic bottom waters caused by increased density of benthic flora. The anoxic, vegetated areas also exhibit minor remobilization with respect to dissolved As, Ni and Zn. The removal of trace metals in the anoxic bottom waters appears to be limited by the availability of free sulphide. Collectively, the data demonstrate that while the water cover over the U mill tailings minimizes sulphide oxidation and metal mobility, anoxic conditions which have developed in deeper areas have led to increased mobility of 226Ra.  相似文献   

12.
Two samples of produced-water collected from a storage tank at US Geological Survey research site B, near Skiatook Lake in northeastern Oklahoma, have activity concentrations of dissolved 226Ra and 228Ra that are about 1500 disintegrations/min/L (dpm/L). Produced-water also contains minor amounts of small (5–50 μm) suspended grains of Ra-bearing BaSO4 (barite). Precipitation of radioactive barite scale in the storage tank is probably hindered by low concentrations of dissolved SO4 (2.5 mg/L) in the produced-water. Sediments in a storage pit used to temporarily collect releases of produced-water have marginally elevated concentrations of “excess” Ra (several dpm/g), that are 15–65% above natural background values. Tank and pit waters are chemically oversaturated with barite, and some small (2–20 μm) barite grains observed in the pit sediments could be transferred from the tank or formed in place. Measurements of the concentrations of Ba and excess Ra isotopes in the pit sediments show variations with depth that are consistent with relatively uniform deposition and progressive burial of an insoluble Ra-bearing host (barite?). The short-lived 228Ra isotope (half-life = 5.76 a) shows greater reductions with depth than 226Ra (half-life = 1600 a), that are likely explained by radioactive decay. The 228Ra/226Ra activity ratio of excess Ra in uppermost pit sediments (1.13–1.17) is close to the ratio measured in the samples of produced-water (0.97, 1.14). Declines in Ra activity ratio (excess) with sediment depth can be used to estimate an average rate of burial of 4 cm/a for the Ra-bearing contaminant. Local shallow ground waters contaminated with NaCl from produced-water have low dissolved Ra (<20 dpm/L) and also are oversaturated with barite. Barite is a highly insoluble Ra host that probably limits the environmental mobility of Ra at site B.  相似文献   

13.
Sediment cores were collected from deep-water areas of Lake Chenghai, China in June 1997. The vertical profile of 137Cs activity gives reliable geochronological results. The results also indicate that sediment accumulation rates in deep-water areas of Lake Chenghai were relatively constant in recent decades, averaging 0.43 g cm− 2 y− 1, despite a variable organic carbon influx. 210Pbeq (= 226Ra) activity was relatively constant also, with an average value of 54.3 ± 3.2 Bq kg− 1. Vertical profiles of 210Pbex (= 210Pbtotal − 226Ra) decreased exponentially, resulting in somewhat lower sediment accumulation rates (0.3 g cm− 2 y− 1). These lower rates are likely less reliable, as the relatively large fluctuations in 210Pbex activities correlate closely to the organic carbon (Corg) content of the sediments. For example, the vertical profile of 210Pbex activity displays peaks at mass depths of 3.7-4.7 g cm− 2 (10-12 cm) and 10-11 g cm− 2(25-28 cm), similar to the maxima in the vertical profile of Corg. This phenomenon must be related to the delivery of particulate organic matter (POM) from the water to the sediments, or to watershed soil erosion. Since the mean atomic ratios of Horg / Corg and Corg / Norg in Lake Chenghai sediments are 5.5 and 7.0, respectively, indicating that POM was predominantly derived from the remains of authigenic algae, this eliminates watershed erosion rates as a primary control on lake sedimentation rates as resolved by 210Pbex. Sedimentation fluxes (F(Corg)) of particulate organic carbon since 1970 varied between 60 to 160 g m− 2 y− 1, and appeared to closely influence variations in 210Pbex concentrations. For example, sedimentation fluxes of 210Pbex (F(210Pbex)) showed maxima in the years 1972-1974 and 1986-1989, likely reflecting historical variations of lake biological productivity or carbon preservation.  相似文献   

14.
228Ra, 226Ra, and 222Rn activities were determined on over 150 ground water samples collected from drilled, public water supply wells throughout South Carolina. A wide range of aquifer lithologies were sampled including the crystalline rocks of the Piedmont and sedimentary deposits of the Coastal Plain. A significant linear relationship between log 228Ra and log 226Ra (n = 182, r = 0.83) was indistinguishable between Piedmont and Coastal Plain ground water. Median 228Ra226Ra activity ratios for the Piedmont, 1.2, and Coastal Plain, 1.3, ground water are close to estimated average crustal 232Th238U activity ratios of 1.2 to 1.5 corresponding to Th/U weight ratios of 3.5 to 4.5. A linear correlation was also found between log 222Rn and log 226Ra for Piedmont (n = 68, r = 0.62) and Coastal Plain (n = 89, r = 0.64) ground water. However, the median 222Rn226Ra activity ratio for Piedmont ground water, 6100, was much higher than for Coastal Plain ground water, 230. Higher excess 222Rn activities may be due to greater retention of 226Ra by the chemically active Piedmont aquifers compared to the more inert sand aquifers sampled in the Coastal Plain. The relationship between log 228Ra and log 226Ra was used to predict total Ra (228Ra + 226Ra) distributions in Appalachian and Atlantic and Gulf Coastal Plain ground water. Predictions estimate that 2.4% of Appalachian and 5.3% of Atlantic and Gulf Coastal Plain ground water supplies contain total Ra activities in excess of the 5 pCi/l limit established by the U.S. Environmental Protection Agency. These predictions also indicate that 40–50% of these ground water wells may be overlooked using the presently suggested screening activity of 3.0 pCi/l of 226Ra for 228Ra analysis.  相似文献   

15.
This study was conducted to define the geochemical controls on 226Ra during raffinate (pH = 1.2) neutralization to pH 10 at the Key Lake U mill in northern Saskatchewan, Canada. High activities (120–150 Bq/L) of aqueous phase 226Ra are present in raffinate produced during milling of U ore. The solubility control of 226Ra in the SO4-rich, hydrometallurgical raffinate solutions often involves the addition of BaCl2 to form a radium-barite co-precipitate (Ba(Ra)SO4). As such, neutralization experiments were conducted with samples of mill raffinate using Ca(OH)2 or NaOH with and without the addition of BaCl2. Radium-226 activity decreased from 150 to <4 Bq/L for all combinations of neutralizing agents with Ca(OH)2 + BaCl2 being the most effective combination (final activity ∼1.0 Bq/L; ∼99.3% removal). In the absence of BaCl2, Ca(OH)2 more efficiently removed 226Ra than NaOH between pH 4 and 8, due to the co-precipitation of 226Ra with gypsum. Overall, neutralization with the addition of BaCl2 reduced 226Ra activities at lower pH values (by pH 4.5), due to co-precipitation of 226Ra with BaSO4. At varying concentrations of BaCl2, aqueous phase activities of 226Ra converged, but did not attain steady-state values during neutralization and would continue to decrease with time. Sequential extractions indicated that 226Ra in precipitates formed during neutralization of the mill raffinate is dominated by amorphous and crystalline Fe hydroxide phases, consistent with raffinate neutralization experiments that showed that adsorption onto ferrihydrite can remove most 226Ra in the raffinate. Data generated in this study are being used to define the long-term geochemical controls on 226Ra in U mill processes and tailings.  相似文献   

16.
《Applied Geochemistry》2001,16(1):109-122
The purpose of this study was to elucidate the processes controlling the distribution and behavior of the longer-lived Ra isotopes in continuous Paleozoic carbonate aquifers of parts of Missouri, Kansas, and Oklahoma. Activities of (228Ra) and (226Ra) were analyzed in fresh and saline ground waters, brines, and rocks. The fluids have a wide salinity range (200–250,000 mg l−1 total dissolved solids). The (226Ra) activity ranges from 0.66–7660 dpm kg−1 and correlates with salinity and other alkaline earth element (Ca, Sr, and Ba) concentrations. The range of (228Ra:226Ra) ratios in the fluids (0.06–1.48) is similar to that in the aquifer rocks (0.21–1.53). The relatively low mean fluid (228Ra:226Ra) ratio (0.30) reflects the low Th:U ratio of the predominant carbonate aquifer rock. Radium occurs mostly (≥77%) as Ra2+ species in the fluids. Salinity-dependent sorption–desorption processes (with log K values from 100–104 and negatively correlated with salinity), involving Th-enriched surface coatings on aquifer flow channels, can explain the rapid solid–fluid transfer of Ra isotopes in the system and the correlation of Ra with salinity.  相似文献   

17.
Natural radioactivity in sediment of Wei River,China   总被引:1,自引:0,他引:1  
The concentrations of natural radionuclides in sediment of Wei River of China were measured using γ-ray spectrometry with the aim of estimating the radiation hazard as establishing a database for radioactivity levels of river sediment of China. The activity concentrations of 226Ra, 232Th and 40K in sediment samples ranged from 10.4 to 39.9 Bq kg−1, 15.3 to 54.8 Bq kg−1 and 514.8 to 1,175.5 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil and Shaanxi soil. Radium equivalent activity (Raeq), external hazard index (H ex) and representative level index (I γr) were calculated for the samples to assess the radiation hazards arising due to the use of these sediment samples in the construction of dwellings. All the sediment samples have Raeq lower than the limit of 370 Bq kg−1, H ex less than unity and I γr close to 1 Bq kg−1. The overall mean outdoor terrestrial gamma dose rate is 64.8 nGy h−1 and the corresponding outdoor annual effective dose is 0.079 mSv. None of the studied location is considered a radiological risk and sediment can be safely used in construction.  相似文献   

18.
Gamma activity from the naturally occurring radionuclides namely, 226Ra, 232Th, the primordial radionuclide 40K was measured in the soil of Cuihua Mountain National Geological Park, China using γ-ray spectrometry technique. The mean activity of 226Ra, 232Th and 40K were found to be 27.2 ± 6.5, 43.9 ± 6.2 and 653.1 ± 127.6 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil. The radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, and the external hazard index were evaluated and compared with the internationally approved values. All the soil samples have Raeq lower than the limit of 370 Bq kg−1 and H ex less than unity. The overall mean outdoor terrestrial gamma dose rate is 66.3 nGy h−1 and the corresponding outdoor annual effective dose is 0.081 mSv.  相似文献   

19.
Koprubasi, located within Manisa Province near the Izmir, is the biggest uranium mine where uranium ores originate from Neogene aged altered sandstone and conglomerate layers. The main objective of this study is to determine the radiation hazard associated with radioactivity levels of uranium ores, and the rocks and sediments around Koprubasi. In this regard, measured activity levels of 226Ra, 232Th and 40K were compared with world averages. The average activity levels of 226 Ra, 232Th and 40K were measured to be 5369.75, 124.78 and 10.0 Bq/kg in uranium ores, 24.32, 52.94 and 623.38 Bq/kg in gneiss, 46.24, 45.13 and 762.26 Bq/kg in sandstone and conglomerate, 73.11, 43.15 and 810.65 Bq/kg in sediments, respectively. All samples have high 226Ra and 40K levels according to world average level. As these sediments are used as construction materials and in agricultural activities within the study area, the radiation hazard are calculated by using dose rate (D), annual effective dose rate (He), radium equivalent activity (Raeq) and radiation hazard index (Iyr). All the samples have Raeq levels that are lower than the world average limit of 370 Bq/kg. On the other hand, D, He and Iyr values are higher than world average values. These results indicate that the uranium ores in the Koprubasi is the most important contributor to the natural radiation level. The radioactivity levels of sediments and rocks make them unsuitable for use as agricultural soil and as construction materials. Moreover, it is determined that shallow groundwater in sediments and deep groundwater in conglomerate rocks and also surface water sources in the Koprubasi have high 226Ra content. According to environmental radioactive baseline, some environmental protection study must be taken in Koprubasi uranium site and the environment.  相似文献   

20.
《Applied Geochemistry》1998,13(3):339-347
Activities of the naturally occurring radionuclide 234Th were determined in water samples of Mecklenburg Bay (SW Baltic Sea) using a new Th-specific diatomite adsorption technique followed by liquid scintillation spectrometry. Activities of “dissolved” (operationally defined as Th in the centrifugate) and particulate 234Th varied in the range of 1.4–6.9 and 0.9–9.3 mBq l−1, respectively. A significant correlation between Kd and SPM concentration was found. From this particle-concentration effect, the “colloidal pumping” model predicts that 98% of the “dissolved” Th is associated with colloids rather than being truly dissolved. Relative to calculated activities of the parent nuclide 238U in the Bay, the 234Th data yielded mean 234Th scavenging residence times in the range of 1.2–9.7 days. Particulate 234Th activities are inversely correlated to SPM concentrations. Particle residence times ranged from a few days in winter up to 20 days in spring characterized by less intense bottom currents. The hydrodynamic regime is the master variable controlling scavenging of Th and other similarly particle-reactive elements in Mecklenburg Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号