首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sedimentary biomarker distributions can record ocean productivity and community structure, but their interpretation must consider alteration during organic matter (OM) export and burial. Large changes in the water column redox state are known to impact on the preservation of biomarkers, but more subtle variation in sediment redox conditions, characteristic of major modern ocean basins, have been less thoroughly investigated. Here we evaluate changes in biomarker distributions during sinking and burial across a nearshore to offshore transect in the southwestern Cape Basin (South East Atlantic), which includes a range of sedimentary environments. Biomarker concentrations and distributions in suspended particulate matter from the upper water column were determined and compared with underlying sedimentary biomarker accumulation rates and distributions. Biomarker distributions were similar in surface and subsurface waters, indicating that the OM signature is exported from the ocean mixed layer with minimal alteration. We show that, while export production (100 m) is similar along this transect, 230Thxs-corrected biomarker accumulation rate varies by over an order of magnitude in sediments and is directly associated with sedimentary redox conditions, ranging from oxic to nitrogenous–ferruginous. Biomarker distributions were dominated by sterols in surface water, and by alkenones in underlying sediments, which we propose to be primarily the result of selective preservation. Notably, the difference in sediment O2 penetration depth was associated with relative biomarker preservation. Subtle variation in sedimentary redox conditions has a dramatic impact on the distribution of preserved biomarkers. We discuss mechanisms for preferential degradation of specific biomarkers within this setting.  相似文献   

2.
This paper reports on the spatial distribution patterns and investigates the controlling mechanisms of phytoplankton biomarkers (brassicasterol for diatoms, alkenones for haptophytes, dinosterol for dinoflagellates) and terrestrial biomarkers (odd C number long-chain (C27 + C29 + C31) n-alkanes) in surface sediments from the southern Yellow Sea (SYS). The contents of the phytoplankton biomarkers in the SYS surface sediments reveals a clear spatial pattern, with low values near the coasts and increased values seaward, caused by higher phytoplankton primary productivity and low sedimentation rates in the basin. The contents of terrestrial biomarkers show high values in the northern part of the study areas off the Shandong Peninsula and Jiangsu coast, caused by inputs of materials from the modern Huanghe River and the old Huanghe delta, respectively. The results also indicate that biomarker ratios offer the best approach for reconstructing marginal sea C cycles, as these proxies can be used to estimate the contributions of both terrestrial and marine organic matter and to reconstruct paleoproductivity and paleoecological changes in the SYS.  相似文献   

3.
The basin-scale spatial variability in lipid biomarker proxies in lacustrine sediments, which are established tools for studying continental environmental change, has rarely been examined. It is often implicitly assumed that a lake sediment core provides an average integral of catchment sources. Here we evaluated the distribution of lipid biomarkers in a modern ecosystem and compared it with the sedimentary record. We analyzed lipid biomarkers in terrestrial and aquatic organisms and in lake surface sediments from 17 locations within the saline–alkaline Lonar crater lake in central India. Terrestrial vegetation and lake surface sediments were characterized by relatively high average chain length (ACL) index values (29.6–32.8) of leaf wax n-alkanes, consistent with suggestions that plants in drier and warmer climates produce longer chain alkyl lipids than plants in cooler and humid areas. A heterogeneous spatial distribution of ACL values in lake surface sediments was found: at locations away from the shore, the values were highest (31 or more), possibly indicating different sources and/or transport of terrestrial biomarkers. In floating, benthic microbial mats and surface sediment, n-heptadecane, carotenoids, diploptene, phytol and tetrahymanol occurred in large amounts. Interestingly, these biomarkers of a unique bacterial community were found in substantially higher concentrations in nearshore sediment samples. We suggest that human influence and subsequent nutrient supply resulted in increased primary productivity, leading to an unusually high concentration of tetrahymanol in the nearshore sediments.In summary, the data showed that substantial heterogeneity existed within the lake, but leaf wax n-alkanes in a core from the center of the lake represented an integral of catchment conditions. However, lake level fluctuation may potentially affect aquatic lipid biomarker distributions in lacustrine sediments, in addition to source changes.  相似文献   

4.
Herein, lipid biomarker analysis is applied to surface sediments from the southeastern Niger Delta region for the quantitative determination of aliphatic lipids, steroids and triterpenoids in order to differentiate between natural (autochthonous vs. allochthonous) and anthropogenic organic matter (OM) inputs to this deltaic environment. This ecosystem, composed of the Cross, Great Kwa and Calabar Rivers, is receiving new attention due to increased human and industrial development activities and the potential effects of these activities impacting its environmental health. While the presence of low molecular weight n-alkanes (<C22) and the fossil biomarkers pristane and phytane in all samples, are indicative of a minor petroleum related input, the total extractable organic component of the surface sediments of these rivers remains predominantly of a natural origin as characterized by the variety and predominance of lipid classes that are mainly derived from the epicuticular waxes of vascular plants and include n-alkanes, n-alkanols, n-alkan-2-ones, n-alkanoic acids, steroids and triterpenoids. In addition, recent OM inputs from microorganisms are indicated by the presence of lower molecular weight n-alkanoic acids (Cmax = 16), while the major triterpenoids of the sediments, taraxerol and friedelin, and the major sterol, sitosterol, indicate recent OM inputs from vascular plants. Plankton-derived sterols, such as fucosterol and dinosterol, are also found in sediments from the Cross and Great Kwa Rivers and likely originate from autochthonous primary productivity. Furthermore, the coprosterols coprostanol and 24-ethylcoprostanol are present in most samples and indicate measurable anthropogenic contributions from domestic untreated sewage inputs and agricultural run-off, respectively. Of the three rivers studied, the Cross River system was excessively influenced by human and industrial development activities, including drivers such as urbanization and population center growth, land-use change to support agricultural production and animal husbandry, and petroleum exploration and production. These influences were found to be regionally specific as controlled by point sources of pollution based on the relative distributions measured and on the fact that the molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.  相似文献   

5.
Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes (εlipid) varies by as much as 10‰ among different chain lengths. Overall, εlipid values are slightly lower (−4.5‰) for angiosperm than for gymnosperm (−2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented compared with deciduous ones. We apply our modern lipid abundance patterns and εlipid results to constrain the magnitude of the carbon isotope excursion (CIE) at the onset of the Paleocene-Eocene Thermal Maximum (55.8 Ma). When Bighorn Basin (WY) sediment n-alkanes are interpreted in context of floral changes and modern n-alkane production estimates for angiosperms and gymnosperms, the CIE is greater in magnitude (−5.6‰) by ∼1‰ compared to previous estimates that do not take into account n-alkane production.  相似文献   

6.
The Maikop Formation, deposited in eastern Azerbaijan during Oligocene and Early Miocene times, contains prolific source rocks with primarily Type II organic matter. Paleontological analyses of dinoflagellate cysts revealed a Lower to Upper Oligocene age for the investigated succession near Angeharan. A major contribution of aquatic organisms (diatoms, green algae, dinoflagellates, chrysophyte algae) and minor inputs from macrophytes and land plants to organic matter accumulation is indicated by n-alkane distribution patterns, composition of steroids and δ13C of hydrocarbon biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria, chemoautotrophic bacteria, as well as green sulfur bacteria. Higher inputs of terrigenous organic matter occurred during deposition of the Upper Oligocene units of the Maikop Formation from Angeharan mountains. The terpenoid hydrocarbon composition argues for angiosperm dominated vegetation in the Shamakhy–Gobustan area.High primary bioproductivity resulted in a stratified water column and the accumulation of organic matter rich sediments in the Lower Oligocene units of the Maikop Formation. Organic carbon accumulation during this period occurred in a permanently (salinity-) stratified, mesohaline environment with free H2S in the water column. This is indicated by low pristane/phytane ratios of all sediments (varying from 0.37–0.69), lower methylated-(trimethyltridecyl)chromans ratio in the lower units and their higher contents of aryl isoprenoids and highly branched isoprenoid thiophenes. Subsequently, the depositional environment changed to normal marine conditions with oxygen deficient bottom water. The retreat of the chemocline towards the sediment–water interface and enhanced oxic respiration of OM during deposition of the Upper Oligocene Maikop sediments is proposed.Parallel depth trends in δ13C of total OM, n-alkanes, isoprenoids and steranes argue for changes in the regional carbon cycle, associated with the changing environmental conditions. Increased remineralisation of OM in a more oxygenated water column is suggested to result in low TOC and hydrocarbon contents, as well as 15N enriched total nitrogen of the Upper Oligocene units.  相似文献   

7.
Solid bitumen occurs extensively in the paleo-reservoirs of marine sequences in southern China. The fluids in these paleo-reservoirs have usually experienced severe secondary alteration such as biodegradation and/or thermal maturation. The concentrations of extractable organic matter (EOM) in the resulting solid bitumens are too low to satisfy the amount required for instrumental analysis such as GC–MS and GC–IRMS. It is also difficult to get enough biomarkers and n-alkanes by dry pyrolysis or hydrous pyrolysis directly because such solid bitumens are hydrogen poor due to high maturities. Catalytic hydropyrolysis (HyPy) can release much more EOM from solid bitumen at mature to highly over-mature stages than Soxhlet extraction, dry pyrolysis and hydrous pyrolysis. However, whether the biomarkers in hydropyrolysates can be used for bitumen-source or bitumen–bitumen correlations has been questionable. In this study, a soft biodegraded solid bitumen sample of low maturity was thermally altered to various maturities in a closed system. HyPy was then employed to release bound biomarkers and n-alkanes. Our results show that the geochemical parameters for source and maturity based on biomarkers released from these thermally altered bitumen residues by HyPy are insensitive to the degree of thermal alteration. Furthermore, the maturity parameters are indicative of lower maturity than bitumen maturation products at a corresponding temperature. This suggests that biomarker source and maturity parameters, based on the products of HyPy, remain valid for bitumens which have suffered both biodegradation and severe thermal maturation. The distributions of δ13C of n-alkanes in hydropyrolysates are also insensitive to the temperature used for bitumen artificial maturation. Hence, the δ13C values of n-alkanes in hydropyrolysates may also provide useful information in bitumen–bitumen correlation for paleo-reservoir solid bitumens.  相似文献   

8.
Environmental parameters such as rainfall, temperature and relative humidity can affect the composition of higher plant leaf wax. The abundance and distribution of leaf wax biomarkers, such as long chain n-alkanes, in sedimentary archives have therefore been proposed as proxies reflecting climate change. However, a robust palaeoclimatic interpretation requires a thorough understanding of how environmental changes affect leaf wax n-alkane distributions in living plants. We have analysed the concentration and chain length distribution of leaf wax n-alkanes in Acacia and Eucalyptus species along a 1500 km climatic gradient in northern Australia that ranges from subtropical to arid. We show that aridity affected the concentration and distribution of n-alkanes for plants in both genera. For both Acacia and Eucalyptus n-alkane concentration increased by a factor of ten to the dry centre of Australia, reflecting the purpose of the wax in preventing water loss from the leaf. Furthermore, Acacian-alkanes decreased in average chain length (ACL) towards the arid centre of Australia, whereas Eucalyptus ACL increased under arid conditions. Our observations demonstrate that n-alkane concentration and distribution in leaf wax are sensitive to hydroclimatic conditions. These parameters could therefore potentially be employed in palaeorecords to estimate past environmental change. However, our finding of a distinct response of n-alkane ACL values to hydrological changes in different taxa also implies that the often assumed increase in ACL under drier conditions is not a robust feature for all plant species and genera and as such additional information about the prevalent vegetation are required when ACL values are used as a palaeoclimate proxy.  相似文献   

9.
The surface sediments collected from the southern Mariana Trench at water depths between ca. 4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture (UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C27–C29 regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent. This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios (ranging from 0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio (10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C19–C22 and the n-fatty acids C20:0–C22:0 were depleted in 13C by 3‰ compared to n-alkanes C16–C18 and the n-fatty acids C14:0–C18:0, respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon “lighter” terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment.  相似文献   

10.
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated.Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.  相似文献   

11.
To determine the degree of hydrocarbon contamination and the contribution of local petroleum industries to contaminant loadings in sediments from the Beiluohe River, China, 12 surface sediment samples were collected for geochemical analysis in 2005. Sediment samples were extracted by organic solvents, separated by silica gel column chromatography and the profiles of n-alkanes, biomarkers and polycyclic aromatic hydrocarbons (PAHs) in sediments were analyzed by gas chromatography with flame ionization detector and gas chromatography/mass spectroscopy. Concentrations of total hydrocarbons in the sediments varied from 12.1 to 3,761.5 μg g−1 dry wt, indicating that most sediments in Beiluohe River was only slightly to moderately contaminated by hydrocarbons. Concentrations of PAHs for six samples (sum of 16 isomers) varied from 17.7 to 407.7 ng g−1 dry wt and at present low levels of PAHs did not cause adverse biological effects in Beiluohe River sedimentary environment. PAH compositions, n-alkanes and biomarker profiles all suggested that there were different sources of contaminations in studied areas. n-Alkanes reflect two distinct sources: a fossil n-alkane series from crude oil at sites S40, S43, S87 and plantwax n-alkanes at sites S39 and S45. Judged by their PAH ratios, the sediments at site S15 were pyrolytic, sediments at S17 and S43 were petrogenic, and sediments at S39, S40 and S64 had a mixture source of pyrolytic and petrogenic.  相似文献   

12.
《Applied Geochemistry》2005,20(3):455-464
In order to characterize the H isotopic compositions of individual lipid compounds from different terrestrial depositional environments, the δD values of C-bound H in individual n-alkanes from typical terrestrial source rocks of the Liaohe Basin and the Turpan Basin, China, were measured using gas chromatography–thermal conversion–isotope ratio mass spectrometry (GC–TC–IRMS). The analytical results indicate that the δD values of individual n-alkanes in the extracts of terrestrial source rocks have a large variation, ranging from −140‰ to −250‰, and are obviously lighter than the δD of marine-sourced n-alkanes. Moreover, a trend of depletion in 2H(D) was observed for individual n-alkanes from different terrestrial depositional environments, from saline lacustrine to freshwater paralic lacustrine, and to swamp. For example, the δD values of n-alkanes from a stratified saline lacustrine environment vary from −140‰ to −200‰, δD for n-alkanes from swamp facies range from −200‰ to −250‰, while those from freshwater paralic lacustrine–lacustrine environments fall between the δD values of the end members. The shift toward lighter δD from saltwater to freshwater environments indicates that the source water δD is the major controlling factor for the H isotopic composition of individual compounds. In addition, H exchange between formation water and sedimentary organic matter may possibly be important in regard to the δD of individual n-alkanes. Therefore, other lines of geochemical evidence must be considered when depositional paleoenvironments of source rocks are reconstructed based on the H isotopic composition of individual n-alkanes.  相似文献   

13.
We conducted an extensive survey of hydrogen-isotopic compositions (D/H ratios) of diverse sedimentary lipids from the Santa Barbara Basin (SBB), offshore southern California. The main goal of this survey was to assess the diversity of D/H ratios in lipids from marine sediments, in order to provide a more detailed understanding of relevant biological and geochemical factors impacting lipid isotopic variability. A total of 1182 individual δD values are reported from two stations in SBB, one located in the suboxic basin depocenter and the other on the fully oxic flank of the basin. Sediments collected from the basin depocenter span a depth of ∼2.5 m and reach the methanogenic zone. Lipids that were analyzed include n-alkanes, n-alkanols and alkenols, short- and long-chain fatty acids, linear isoprenoids, steroids, and hopanoids, and exhibit several systematic patterns. First, there are no significant differences in δD values between the two sampling locations, nor with increasing depth for most lipids, indicating that degradation does not influence sedimentary lipid δD values. Second, relatively large differences in δD values among differing molecular structures are observed in all samples. n-Alkyl lipids of probable marine origin have typical δD values between −150 and −200‰, those from terrestrial leaf waxes and aquatic plants range from −80 to −170‰, while petroleum n-alkanes are typically −90 to −150‰. Third, lipids inferred to derive from bacteria (branched fatty acids and hopanols) living at the sediment surface or in the water column tend to be D-enriched relative to similar algal products by 30‰ or more. At the same time, several other lipids have δD values that decrease strongly with depth, presumably as a result of in situ production by anaerobic bacteria. This dichotomy in isotopic compositions of bacterial lipids is inconsistent with a nearly constant D/H fractionation during lipid biosynthesis, and likely reflects significant variations associated with metabolism.  相似文献   

14.
During the last decade, compound-specific hydrogen isotope analysis of plant leaf-wax and sedimentary n-alkyl lipids has become a promising tool for paleohydrological reconstructions. However, with the exception of several previous studies, there is a lack of knowledge regarding possible effects of early diagenesis on the δD values of n-alkanes. We therefore investigated the n-alkane patterns and δD values of long-chain n-alkanes from three different C3 higher plant species (Acer pseudoplatanus L., Fagus sylvatica L. and Sorbus aucuparia L.) that have been degraded in a field leaf litterbag experiment for 27 months.We found that after an initial increase of long-chain n-alkane masses (up to ∼50%), decomposition took place with mean turnover times of 11.7 months. Intermittently, the masses of mid-chain n-alkanes increased significantly during periods of highest total mass losses. Furthermore, initially high odd-over-even predominances (OEP) declined and long-chain n-alkane ratios like n-C31/C27 and n-C31/C29 started to converge to the value of 1. While bulk leaf litter became systematically D-enriched especially during summer seasons (by ∼8‰ on average over 27 months), the δD values of long-chain n-alkanes reveal no systematic overall shifts, but seasonal variations of up to 25‰ (Fagus, n-C27, average ∼13‰).Although a partly contribution by leaf-wax n-alkanes by throughfall cannot be excluded, these findings suggest that a microbial n-alkane pool sensitive to seasonal variations of soil water δD rapidly builds up. We propose a conceptual model based on an isotope mass balance calculation that accounts for the decomposition of plant-derived n-alkanes and the build-up of microbial n-alkanes. Model results are in good agreement with measured n-alkane δD results. Since microbial ‘contamination’ is not necessarily discernible from n-alkane concentration patterns alone, care may have to be taken not to over-interpret δD values of sedimentary n-alkanes. Furthermore, since leaf-water is generally D-enriched compared to soil and lake waters, soil and water microbial n-alkane pools may help explain why soil and sediment n-alkanes are D-depleted compared to leaves.  相似文献   

15.
The current geochemical study of n-alkanes, steranes, and triterpanes in bitumen from the Late Maastrichtian–Paleocene El Haria organic-rich facies in West of Gafsa, southern Tunisia, was performed in order to characterize with accuracy their geochemical pattern. The type of organic matter as deduced from n-alkanes, steranes, and triterpanes distributions is type II/III mixed oil/gas prone organic matter. Isoprenoids and biomarkers maturity parameters (i.e., T s/T m, 22S/(22S?+?22R) of the C31 αβ-hopanes ratios, 20S/(20R?+?20S) and ββ/(ββ?+?αα) of C29 steranes), revel that the organic-rich facies were deposited during enhanced anoxic conditions in southern Tunisa. The organic matter is placed prior to the peak stage of the conventional oil window (end of diagenesis–beginning of catagenesis). All these result are suggested by total organic carbon analysis, bitumen extraction and liquid chromatography data. Thus, the n-alkanes, triterpane, and steranes study remains valuable and practical for geochemical characterization of sedimentary organic matter.  相似文献   

16.
《Applied Geochemistry》2004,19(1):55-72
Bulk and molecular stable C isotopic compositions and biomarker distributions provide evidence for a diverse community of algal and bacterial organisms in the sedimentary organic matter of a carbonate section throughout the Permian–Triassic (P/Tr) transition at the Idrijca Valley, Western Slovenia. The input of algae and bacteria in all the Upper Permian and Lower Scythian samples is represented by the predominance of C15–C22 n-alkanes, odd C-number alkylcyclohexanes, C27 steranes and substantial contents of C21–C30 acyclic isoprenoids. The occurrence of odd long-chain n-alkanes (C22–C30) and C29 steranes in all the samples indicate a contribution of continental material. The decrease of Corg and Ccarb contents, increase of Rock-Eval oxygen indices, and 13C-enrichment of the kerogen suggest a decrease in anoxia of the uppermost Permian bottom water. The predominance of odd C-number alkylcycloalkanes, C27 steranes, and C17 n-alkanes with δ13C values ∼−30‰, and 13C-enrichment of the kerogens in the lowermost Scythian samples are evidence of greater algal productivity. This increased productivity was probably sustained by a high nutrient availability and changes of dissolved CO2 speciation associated to the earliest Triassic transgression. A decrease of Corg content in the uppermost Scythian samples, associated to a 13C-depletetion in the carbonates (up to 4‰) and individual n-alkanes (up to 3.4‰) compared to the Upper Permian samples, indicate lowering of the primary productivity (algae, cyanobacteria) and/or higher degradation of the organic matter.  相似文献   

17.
Lipid biomarkers from a peat plateau profile from the Northeast European Russian Arctic were analyzed. The peat originated as a wet fen ca. 9 ka BP and developed into a peat bog after the onset of permafrost ca. 2.5 ka BP. The distributions and abundances of n-alkanols, n-alkanoic acids, n-alkanes, n-alkan-2-ones and sterols were determined to study the effect of degradation on their paleoclimate proxy information. Plant macrofossil analysis was also used in combination with the lipid distributions. The n-alkanol and n-alkanoic acid distributions in the upper part of the sequence generally correspond to compositions expected from plant macrofossil assemblages. Their carbon preference index (CPI) values increase with depth and age, whereas those of the n-alkanes decrease. The different CPI patterns suggest that n-alkanoic acids and n-alkanols deeper in the sequence may be produced during humification through alteration of other lipids. Excursions in the n-alkanoic acid content also suggest an important contribution of invasive roots to the lipid biomarker composition. The CPIs associated with these compounds show that under permafrost conditions organic material from Sphagnum is better preserved than material from vascular plants. Increasing stanol/stenol ratio values and decreasing n-alkane CPI values indicate progressive degradation of organic matter (OM) with depth. The n-alkan-2-one/n-alkane and n-alkan-2-one/n-alkanoic acid ratios were shown to be useful proxies that can reflect the degree of OM preservation and suggest that both microbial oxidation of n-alkanes and decarboxylation of n-alkanoic acids produce n-alkan-2-ones in this peat sequence.  相似文献   

18.
Multi-biomarkers were characterized in surface soils with different vegetation during an annual cycle in Oregon, U.S.A., to study the composition and dynamics of soil organic matter (SOM). The major compound classes identified include saccharides, steroids, terpenoids, and homologous series of aliphatic lipids (n-alkanoic acids, n-alkanols, and n-alkanes). Saccharides, n-alkanoic acids, and sterols were the most dominant compound groups identified in Ryegrass field soils, whereas n-alkanoic acids, n-alkanols, and sterols were dominant in soils under conifer and deciduous vegetation. Plant species, instead of microbial organisms, was found to be the primary source influencing the concentration and distribution of the major biomarker tracers in the studied surface soils. Over an annual cycle, concentrations of higher plant lipids such as monoacyl glycerides, sterols, n-alkanoic acids and total wax were higher during summer (especially June–August). During fall into winter, the concentrations of all compounds decreased to steady state levels due to cessation of de novo synthesis and concomitant biodegradation and remineralization of detritus. Sucrose and glucose reached maximum concentrations during spring (especially March–May), which could be related with plant growth, especially rootlets in the soils. Mycose, the microbial/fungal metabolite, maximized during late summer, suggesting the concomitant increase of microbial/fungal activity with the increasing primary production. The composition and variation of biomarkers observed over an annual cycle improved our understanding of SOM dynamics in temperate soils, which could also be linked to regional and global carbon cycles.  相似文献   

19.
Lake Kivu is a gas-charged East African rift lake with currently anoxic bottom water. The extractable compounds and residual organic matter of a short sediment core have δ13C values typical of lacustrine microbial detritus. The total extracts consist primarily of polar compounds such as n-alkanoic acids, hydroxyalkanoic acids, triterpenoids, steroids and monosaccharides, with minor amounts of n-alkanes and n-alkanols. These tracer compounds and δ13C values indicate that the organic matter in the surficial and deeper sedimentary record was dominated by bacterial sources. The sapropelic sediment between these horizons contains organic matter from primarily algal with lesser bacterial input. Terrestrial organic markers are minor in all samples. The major fractions of the compounds in the total extracts were oxidized in the upper water column prior to transit through the anoxic bottom water to sedimentary deposition. The sapropelic horizon may reflect lake water turnover with ventilation or hydrothermal activity and consequently increased algal blooms.  相似文献   

20.
In response to the lack of studies focussing on the residence time of molecular biomarkers in soils, the lipid content of three soil profiles from the French Massif Central with different land use history were examined. The free neutral lipid content of two reference soil profiles developed under grassland and forest vegetation, and of a former grassland soil converted to forest about 60 years ago, was analysed using gas chromatography–mass spectrometry (GC–MS). Wax esters as well as the ratio of major homologues of n-alkanes and n-alkan-2-ones could be used to characterise the overlying vegetation in the reference forest and grassland soil profiles, but failed to distinguish the respective grassland and forest contributions to the profile of the soil that had changed use. For n-alkanes and n-alkan-2-ones, the failure might be attributed either to mixing of the molecular patterns inherited from the former and current plant cover, whereas for compounds such as wax esters simple degradation is likely to be involved. Conversely, iso- and anteiso-C15:0 fatty acid methyl esters (FAMEs; of bacterial origin), steroids (tracing cattle faecal contamination), tricyclic diterpenoids and their oxygenated derivatives, as well as methoxyserratenes (inherited from Pinaceae) and triterpenyl acetates (specific to the Asteraceae), proved to be effective in distinguishing current land use for the reference soil profiles and for the converted soil. The persistence of these compounds in the changed use soil allowed us to estimate their residence time in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号