首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Stable carbon (δ13C) and hydrogen (δD) isotopic compositions of n-alkanes, anteiso-alkanes, n-alkanoic acids, n-alkanols, phytol and sterols in raw leaves of Acer argutum and Acer carpinifolium, their fallen leaves, mold and soils from a natural Acer forest were measured in order to: (1) understand isotopic variation of the plant biomarkers in a plant-soil system and (2) evaluate which biomarker is the most effective recorder of soil vegetation. Long-chain (> C24) n-alkanes, n-alkanoic acids and n-alkanols are gradually enriched in 13C up to 12.9‰ (average of 4.3‰) and depleted in D up to 94‰ (average of 55‰) from raw leaves to soils. However, anteiso-alkanes, phytol and sterols show little variation in both δ13C (< ± 1‰) and δD (< ± 2‰) from raw leaves to soils. These isotope signatures in a plant-soil system indicate that isoprenoid plant biomarkers such as sterols in soils faithfully preserve the isotopic compositions of dominant higher plants growing on the soils without a diagenetic effect upon the isotopic compositions. In contrast, long-chain n-alkyl molecules in soils undergo specific isotopic modification during biodegradation associated with early diagenesis and/or a significant contribution from heterotrophic reworking.  相似文献   

2.
Lipid biomarkers from a peat plateau profile from the Northeast European Russian Arctic were analyzed. The peat originated as a wet fen ca. 9 ka BP and developed into a peat bog after the onset of permafrost ca. 2.5 ka BP. The distributions and abundances of n-alkanols, n-alkanoic acids, n-alkanes, n-alkan-2-ones and sterols were determined to study the effect of degradation on their paleoclimate proxy information. Plant macrofossil analysis was also used in combination with the lipid distributions. The n-alkanol and n-alkanoic acid distributions in the upper part of the sequence generally correspond to compositions expected from plant macrofossil assemblages. Their carbon preference index (CPI) values increase with depth and age, whereas those of the n-alkanes decrease. The different CPI patterns suggest that n-alkanoic acids and n-alkanols deeper in the sequence may be produced during humification through alteration of other lipids. Excursions in the n-alkanoic acid content also suggest an important contribution of invasive roots to the lipid biomarker composition. The CPIs associated with these compounds show that under permafrost conditions organic material from Sphagnum is better preserved than material from vascular plants. Increasing stanol/stenol ratio values and decreasing n-alkane CPI values indicate progressive degradation of organic matter (OM) with depth. The n-alkan-2-one/n-alkane and n-alkan-2-one/n-alkanoic acid ratios were shown to be useful proxies that can reflect the degree of OM preservation and suggest that both microbial oxidation of n-alkanes and decarboxylation of n-alkanoic acids produce n-alkan-2-ones in this peat sequence.  相似文献   

3.
Recent sediments from an oligotrophic lake (Loch Clair) having uniform organic input for 2000 yr show changes in lipid abundance and composition, with increasing depth, attributed to diagenesis. Stability of free lipids decreases in the order n-alkanes, alkan-2-ones, sterols, n-alkanoic acids, n-alkanols, n-alkenoic acids. Diagenetic loss of shorter-chain homologues is complete within 400 yr. Stabilisation of bound relative to free lipids increases the proportion of the former with sediment age and reduces loss of shorter-chain bound homologues.In an eutrophic lake (Cross Mere), shorter-chain free and bound sedimentary lipids show increased abundance compared with Loch Clair. The relative importance of higher input of shorter-chain lipids derived from aquatic detritus, and slower initial diagenesis due to the anoxic hypolimnion, as causative factors for this difference between lake types cannot yet be assessed.  相似文献   

4.
Shallow surface sediment samples from the Mesopotamian marshlands of Iraq were collected and analyzed to determine the distribution, concentrations and sources of aliphatic lipid compounds (n-alkanes, n-alkanols, n-alkanoic acids, and methyl n-alkanoates) and molecular markers of petroleum in these wetlands. The sediments were collected using a stainless steel sediment corer, dried, extracted with a dichloromethane/methanol mixture and then analyzed by gas chromatography-mass spectrometry (GC–MS). The aliphatic lipid compounds included n-alkanes, n-alkanoic acids, n-alkanols and methyl n-alkanoates with concentrations ranged from 6.8 to 31.1 μg/g, 4.1 to 5.0 μg/g, 5.9 to 7.7 μg/g and from 0.3 to 5.9 μg/g, respectively. The major sources of aliphatic lipids were natural from waxes of higher plants (24–30%) and microbial residues (42–30%), with a significant contribution from anthropogenic sources (27–30%, petroleum), based on the organic geochemical parameters and indices. Further studies are needed to characterize the rate, accumulation and transformation of various organic matter sources before and after re-flooding of these wetlands.  相似文献   

5.
We analyzed speleothem calcite from the Oregon Caves National Monument, southwestern Oregon, to determine the preservation, distribution, concentrations and sources of aliphatic lipid compounds preserved in the calcite. Maximum speleothem growth rate occurs during interglaciations and minimum during glacial intervals. Concentrations of the total lipid compounds range from 0.5 to 12.9 μg g−1. They increase at times of low speleothem growth rate, suggesting dilution, whereas the apparent accumulation rate of lipid compounds tends to be highest during times of fastest speleothem growth rate. Such increased accumulation generally corresponds to times of warm (interglacial) climate, suggesting either a greater source of organic materials during interglacial times and/or greater efficiency of compound capture during more rapid calcite growth. Aliphatic lipid compounds include homologous n-alkanoic acids, n-alkanols and methyl n-alkanoates and sterols with concentrations ranging from 0.3 to 7.8 μg g−1, 0.4 to 1.1 μg g−1, 0.5 to 9.6 μg g−1 and 0.1 to 2.7 μg g−1, respectively. Minor amounts of branched methyl n-alkanoates and dimethyl n-alkanedioates are also present. The high concentrations of methyl n-alkanoates are the result of esterification reactions of free fatty acids in alkaline solutions with high pH values associated with the dripping cave waters. The distribution patterns and geochemical parameters and indices indicate that the major sources of the aliphatic lipids involved leaching from higher plants and microbial residues derived from the soil zone above the cave system. The estimated percentage of microbial inputs ranged from 42 to 90% of the total lipids and also showed an increase in accumulation during warm climates. These well-preserved lipid compounds in speleothem calcite could be used as biomarkers for paleoenvironmental study.  相似文献   

6.
The concentrations of polar organic compounds including n-alkanoic acids, n-alkanols, steroids and triterpenoids were determined in extracts of shallow sediments from the Mesopotamian marshlands of Iraq. The sediments were collected by a stainless steel sediment corer, extracted with a dichloromethane and methanol mixture (3:1 v:v) by ultrasonic agitation and then analyzed by gas chromatography–mass spectrometric (GC–MS). The analysis results showed that the n-alkanoic acids ranged from C8 to C20 with concentrations of 7.8 ± 1.2 μg/g sample, whereas the concentrations of n-alkanols, which ranged from C12 to C39 were from 28.6 ± 4.3 to 121.7 ± 18.3 μg/g sample. The steroids and triterpenoids included stenols, stanols, stenones, stanones, tetrahymanol, tetrahymanone and extended ββ-hopanes. The total concentrations of steroids and triterpenoids ranged from 26.8 ± 4.1 to 174.6 ± 26.2 μg/g and from 0.74 ± 0.11 to 11.2 ± 1.7 μg/g sample, respectively. The major sources of these lipids were from natural vegetation, microbial (plankton) residues and bacteria in the sediments, with some contribution from anthropogenic sources (livestock, sewage and petroleum). Further studies of these wetlands are needed to characterize the input rate, transformation and diagenesis of the organic matter and to assess its various sources.  相似文献   

7.
A 40 cm deep Sphagnum-dominated peat monolith from Bolton Fell Moss in Northern England was systematically investigated by lipid molecular stratigraphy and compound-specific δ13C and δD analysis using gas chromatography (GC), GC-mass spectrometry (GC-MS), GC-combustion-isotope ratio-MS (GC-C-IRMS) and GC-thermal conversion-IRMS (GC-TC-IRMS) techniques. 210Pb dating showed the monolith accumulated during the last ca. 220 yr, a period encompassing the second part of Little Ice Age. While the distributions of lipids, including n-alkan-1-ols, n-alkan-2-ones, wax esters, sterols, n-alkanoic acids, α,ω-alkandioic acids and ω-hydroxy acids, display relatively minor changes with depth, the cooler climate event was recorded in the concentrations of n-alkanes and organic carbon, CPI values of n-alkanes and n-alkanoic acids, and the ratio of 5-n-alkylresorcinols/sterols. Superimposed on the fossil fuel effect, the relatively cooler climate event was also recorded by δ13C values of individual hydrocarbons, especially the C23n-alkane, a major compound in certain Sphagnum spp. The δD values of the C29 and C33n-alkanes correlated mainly with plant composition and were relatively insensitive to climatic change. In contrast the C23n-alkane displayed variation that correlated strongly with recorded temperature for the period represented by the monolith, agreeing with previously reported deuterium records in tree ring cellulose spanning the same period in Scotland, Germany and the USA, with more negative values occurring during the second part of Little Ice Age. These biomarker characteristics, including the compound-specific δ13C and δD records, provide a new set of proxies of climatic change, potentially independent of preserved macrofossils which will be of value in deeper sections of the bog where the documentary records of climate are unavailable and humification is well advanced.  相似文献   

8.
River runoff and atmospheric fallout (dust and air particulate matter) are major input sources of natural and anthropogenic terrestrial organic and inorganic components to the Arabian seas. In this study, we report on the various lipid tracer compounds that might be transported to the Arabian Gulf by rivers, dust, and air particulate matter. These are based on geochemical analysis of sediment, dust, and particulate samples collected from Iraq, Kuwait, and Saudi Arabia. The samples were extracted with a dichloromethane/methanol mixture and analyzed by gas chromatography-mass spectrometry. The extractable organic compounds (lipids) in the samples include n-alkanes, n-alkanoic acids, n-alkanols, methyl n-alkanoates, steroids, triterpenoids, carbohydrates, and petroleum hydrocarbons. The steroids and triterpenoids were major components in river and wetland samples. The major sources of these lipids were from natural vegetation, microbial (plankton and bacteria) residues in the sediments, sand, and soils, with some contribution from anthropogenic sources. Accordingly, these sources could be major inputs to the Arabian seas besides the autochthonous marine products. Future studies of the organic and inorganic biogeochemistry on river, dust, and coastal areas are needed to characterize the various regional sources, transformation, and diagenetic processes of the organic matter en route to the marine environment.  相似文献   

9.
Herein, lipid biomarker analysis is applied to surface sediments from the southeastern Niger Delta region for the quantitative determination of aliphatic lipids, steroids and triterpenoids in order to differentiate between natural (autochthonous vs. allochthonous) and anthropogenic organic matter (OM) inputs to this deltaic environment. This ecosystem, composed of the Cross, Great Kwa and Calabar Rivers, is receiving new attention due to increased human and industrial development activities and the potential effects of these activities impacting its environmental health. While the presence of low molecular weight n-alkanes (<C22) and the fossil biomarkers pristane and phytane in all samples, are indicative of a minor petroleum related input, the total extractable organic component of the surface sediments of these rivers remains predominantly of a natural origin as characterized by the variety and predominance of lipid classes that are mainly derived from the epicuticular waxes of vascular plants and include n-alkanes, n-alkanols, n-alkan-2-ones, n-alkanoic acids, steroids and triterpenoids. In addition, recent OM inputs from microorganisms are indicated by the presence of lower molecular weight n-alkanoic acids (Cmax = 16), while the major triterpenoids of the sediments, taraxerol and friedelin, and the major sterol, sitosterol, indicate recent OM inputs from vascular plants. Plankton-derived sterols, such as fucosterol and dinosterol, are also found in sediments from the Cross and Great Kwa Rivers and likely originate from autochthonous primary productivity. Furthermore, the coprosterols coprostanol and 24-ethylcoprostanol are present in most samples and indicate measurable anthropogenic contributions from domestic untreated sewage inputs and agricultural run-off, respectively. Of the three rivers studied, the Cross River system was excessively influenced by human and industrial development activities, including drivers such as urbanization and population center growth, land-use change to support agricultural production and animal husbandry, and petroleum exploration and production. These influences were found to be regionally specific as controlled by point sources of pollution based on the relative distributions measured and on the fact that the molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.  相似文献   

10.
Lake Kivu is a gas-charged East African rift lake with currently anoxic bottom water. The extractable compounds and residual organic matter of a short sediment core have δ13C values typical of lacustrine microbial detritus. The total extracts consist primarily of polar compounds such as n-alkanoic acids, hydroxyalkanoic acids, triterpenoids, steroids and monosaccharides, with minor amounts of n-alkanes and n-alkanols. These tracer compounds and δ13C values indicate that the organic matter in the surficial and deeper sedimentary record was dominated by bacterial sources. The sapropelic sediment between these horizons contains organic matter from primarily algal with lesser bacterial input. Terrestrial organic markers are minor in all samples. The major fractions of the compounds in the total extracts were oxidized in the upper water column prior to transit through the anoxic bottom water to sedimentary deposition. The sapropelic horizon may reflect lake water turnover with ventilation or hydrothermal activity and consequently increased algal blooms.  相似文献   

11.
Results of chemical treatments to isolate a pool of biochemically resistant soil organic matter (SOM) remain equivocal because they do not exhibit the expected relative increase in the proportion of resistant material with decrease in total SOM during long term biological mineralization. On the other hand, certain OM (considered to be enriched in aliphatic compounds) resists H2O2 oxidation as a result of association with minerals as well as its specific chemical recalcitrance, thereby protecting it against microbial degradation. Clay fractions isolated from soils under long term cultivation or long term bare fallow were examined using preparative thermochemolysis with TMAH (tetramethylammonium hydroxide, an alkylating agent) before and after peroxide treatment to characterise the molecular structure of the hydrophobic part (e.g. lipids). Results showed an increase in the proportion of some of the lipids after peroxide treatment, the lipids identified being mainly fatty acids (FAs) and hydrocarbons. The H2O2-resistant pools of lipids have an exclusively microbial signature but their quantity and relative distributions differed depending on land use. In the case of acids (as methyl esters), peroxide treatment appeared to mimic long term microbial oxidation, but this was not the case for n-alkanes. Chemical methods, such as H2O2, may not effectively mimic long term biological oxidation of clay-associated OM because, in isolation, they cannot account for the strong interaction between biochemical recalcitrance and physical protection, which exists even within the clay size fraction.  相似文献   

12.
《Applied Geochemistry》2006,21(6):919-940
Smoke particulate matter from grasses (Gramineae, temperate, tropical and arctic) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on pre-cleaned quartz fiber filters. The filtered particles were extracted with dichloromethane/methanol and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by GC–MS. The major organic components directly emitted in grass smoke particles were the homologous series of n-alkanoic acids from plant lipids, n-alkanes from epicuticular wax, and sterols and triterpenols. The major natural products altered by combustion included pyrolysis products from cellulose and lignin biopolymers, and oxidation products from triterpenoids and sterols. Polycyclic aromatic hydrocarbons (PAH) were also present; however, only as minor components. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are in these cases source specific. The major components are adsorbed on or trapped in smoke particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from grass burning.  相似文献   

13.
Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility.Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.  相似文献   

14.
Soil and sand fine particles, which may be resuspended as fine dust in the atmosphere, contain a variety of anthropogenic and natural organic components. Samples of fine soil and sand particles (sieved to <125 μM) were collected from the Riyadh area in the summer of 2003 and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The derivatized total extracts were analyzed by gas chromatography–mass spectrometry in order to characterize the composition and sources of the organic components. Both anthropogenic and natural biogenic inputs were the major sources of the organic compounds in these extracts. Discarded plastics and vehicular emission products were the major anthropogenic sources in the fine particles from populated areas of the city. Their tracers were plasticizers, UCM, n-alkanes, hopanes and traces of steranes. Vegetation was the major natural source of organic compounds in samples from outside Riyadh and included n-alkanols, n-alkanoic acids, n-alkanes, methyl alkanoates, sterols and triterpenoids. Carbohydrates had high concentrations (42–54%) in all samples and indicate sources from decomposition of cellulose and/or the presence of viable microbiota such as bacteria and fungi. The results were also compared with the data obtained in winter 2002 and showed that anthropogenic inputs were higher in summer than in winter, whereas the opposite trend was observed for natural inputs.  相似文献   

15.
《Applied Geochemistry》2001,16(1):95-108
Bottom sediments and suspended matter from the shelf and slope areas off northeastern Taiwan were analyzed for sterol, n-alkanol and n-alkane compositions. The Σ(algal sterols/cholesterol) ratios (mean±1σ) were 1.00±0.31 (n=7) for the shelf sediments, 3.29±0.61 (n=7) for the slope sediments, and 1.54±0.19 (n=3) for the suspended matter. The much higher proportion of cholesterol in the shelf sediments is most likely derived from mollusks in the relict sediments. An additional sterol source for the shelf sediments probably is suspended matter in the water column although the shelf has no apparent sedimentation. Results from phytol and n-alkanols suggest recent inputs of lipids from the water column to the shelf. The stanol/stenol ratios are lower for the older shelf sediments than for the younger slope sediments.  相似文献   

16.
Biomarker compositions of particulate organic matter (POM) from the oligotrophic Lake Brienz and the eutrophic Lake Lugano (both Switzerland) are compared, in order to obtain information about organic matter (OM) production and transformation processes in relation to water column stratification. Eutrophic conditions in Lake Lugano are reflected by enhanced alkalinity, elevated total organic carbon (TOC) and chlorin contents compared with Lake Brienz. Lower δ13C values of dissolved inorganic carbon (DIC) in Lake Lugano reflect enhanced OM respiration in the water column.Differences in OM dynamics between both lakes, as well as seasonal variations, are evidenced by TOC-normalised concentration profiles of total fatty acids (FAs) and total neutrals. In Lake Brienz, the results reflect the relative contributions of primary productivity and refractory, allochthonous OM to POM, governed by particle load and interflows due to density stratification. The depth trends at Lake Lugano are a result of high primary productivity, water column stratification and associated particle load in the upper layers, as well as microbially induced degradation close to the chemocline and greater preservation under anoxic conditions. Minor differences exist with regard to the OM composition. In both lakes, FA distributions and the composition of n-alkanols indicate a predominant autochthonous OM source (algae, zooplankton, bacteria). Inputs of OM from diatoms are reflected in highly-branched isoprenoid (HBI) alkenes, 16:1 n-FAs and 24-methylcholesta-5,22-dien-3β-ol (either epibrassicasterol or brassicasterol). Differences in relative proportions of n-C16 vs. n-C18 FAs and alkanols, respectively, as well as in the percentages of C27, C28 and C29 sterols relative to the sum of sterols are related to differences in the abundances of chrysophytes, diatoms and green algae within the euphotic zone of both lakes as well as in bacterial activity and soil in-wash. High relative proportions of cholesterol in the autumn samples, most pronounced at Lake Lugano, were attributed to an increased input from zooplankton grazing in the water column.Differences in OM degradation processes are reflected in slightly higher chlorin index values and higher relative proportions of saturated vs. unsaturated n-FAs in Lake Lugano. Higher contents of branched chain FAs, 16:1ω7 n-FA, and enhanced 18:1ω7/18:1ω9 n-FA ratios suggest enhanced bacterial biomass in the water column of Lake Lugano close to the chemocline. Increasing proportions of saturated n-FAs and n-alkanols with increasing water depth, most distinct in the autumn for both lakes, argue for intensified bacterial activity and degradation of OM during autumn. High relative contents of sterols and low n-alkanol concentrations in POM close to the chemocline at Lake Lugano during spring are interpreted to reflect higher primary productivity in the photic zone, OM export to the deeper parts and enhanced degradation rates of more labile constituents (i.e. C13–C20 n-alkanols), as compared to Lake Brienz.  相似文献   

17.
We present a systematic study of chain-length distributions and D/H ratios of n-alkyl lipids (both n-alkanes and n-alkanoic acids) in a wide range of terrestrial and aquatic plants around and in Blood Pond, Massachusetts, USA. The primary goal is to establish a model to quantitatively assess the aquatic plant inputs of the mid-chain length n-alkyl lipids to lake sediments and to determine the average hydrogen isotopic ratios of these lipids in different plants. Our results show that middle-chain n-alkyl lipids (C21-C23n-alkanes and C20-C24n-alkanoic acids) are exceptionally abundant in floating and submerged aquatic plants, in contrast to the dominance of long-chain n-alkyl lipids (C27-C31n-alkanes and C26-C32n-alkanoic acids) in other plant types, which are consistent with previously published data from Mountain Kenya and the Tibetan Plateau. Combining available data in different environmental settings allows us to establish statistically robust model distributions of n-alkyl lipids in floating/submerged macrophytes relative to other plant types. Based on the model distributions, we established a multi-source mixing model using a linear algebra approach, in order to quantify the aquatic inputs of mid-chain n-alkyl lipids in lake sediments. The results show that ∼97% of the mid-chain n-alkyl lipids (C23n-alkane and C22n-acid (behenic acid)) in Blood Pond sediments are derived from floating and submerged macrophytes. In addition, D/H ratios of C22n-acid and C23n-alkane in the floating and submerged plants from Blood Pond display relatively narrow ranges of variation (−161 ± 16‰ and −183 ± 18‰, respectively). Our study demonstrates that mid-chain n-alkyl lipids such as C23n-alkane and C22n-acid could be excellent recorders of past lake water isotopic ratios in lakes with abundant floating and submerged macrophyte inputs.  相似文献   

18.
Soil organic matter (SOM) is important for soil fertility and for the global C cycle. Previous studies have shown that during SOM formation no new compound classes are formed and that it consists basically of plant- and microorganism-derived materials. However, little data on the contribution from microbial sources are available. Therefore, we investigated previously in a model study the fate of C from 13C-labelled Gram-negative bacteria in soil (Kindler, R., Miltner, A. Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil – mineralization and contribution to SOM. Soil Biology and Biochemistry 38, 2860–2870) and showed that 44% of the bulk 13C remained in the soil. Here we present the corresponding data on the fate of amino acids hydrolysed from proteins, which are the most abundant components of microbial biomass. After 224 days incubation, the label in the total amino acids in the soil amended with 13C-labelled cells decreased only to >95%. The total amino acids therefore clearly showed a lower turnover than the bulk 13C and a surprisingly stable concentration. Proteins therefore have to be considered as being stabilised in soil in dead, non-extractable biomass or cell fragments by known general stabilisation mechanisms. The label in the amino acids in a fraction highly enriched in living microbial biomass decreased to a greater extent, i.e. to 25% of the initially added amount. The amino acids removed from this fraction were redistributed via the microbial food web to non-living SOM. All amino acids in the microbial biomass were degraded at similar rates without a change in isotopic signature. The nuclear magnetic resonance (NMR) spectra of the soils were very similar and indicate that the residues of the degraded microbial biomass were very similar to those of the SOM and are a significant source for the formation of the SOM.  相似文献   

19.
Surface sediments from the subtropical Pearl River estuary and adjacent South China Sea were investigated by molecular organic geochemical methods to determine the composition, distribution and origin of extractable lipids (n-alkanes, n-alkanols and sterols). The absolute and organic C normalized concentrations of total alkane, n-alkanol, and sterol ranged from 0.16 to 2.67 μg g−1 and 0.9 to 12.3 μg g−1 OC, 24.4 to 427.3 ng g−1 and 63.2 to 1966.7 ng g−1 OC, and 9.0 to 493.5 ng g−1 and 58.4 to 1042.4 ng g−1 OC, respectively. The spatial distributions of these biomarkers indicated that terrestrial-derived molecular biomarkers such as long-chain n-alkanes, n-alkanols and plant-derived sterols were higher at the river mouth and along the coastline, suggesting that a higher proportion of terrestrial particulate organic matter was deposited there. Relatively lower amounts of marine-derived biomarkers such as short-chain n-alkanes, algal sterols at the river mouth reflected the lower primary productivity due to high turbidity. The spatial patterns of these biomarkers were partially related to the estuarine processes and conditions, evidencing an increased terrestrial signal from the Pearl River mouth to the inner estuary, and enhanced marine conditions further offshore.  相似文献   

20.
Diatomaceous ooze of the shelf off Walvis Bay (S.W. Africa) was analysed for lipid material. The lipids from the sediment consist of a mixture of hydrocarbons, alcohols, ketones, fatty acids, sterols, carotenoid pigments and chlorophylls. The total fatty acid mixture has been analysed by capillary gas chromatography mass spectrometry and shown to consist of straight chain, iso-, anteiso- and isoprenoid acids. The environmental setting of the S.W. African shelf (Walvis Bay) makes it possible to discuss these fatty acids as markers for the fate of organic matter. The acids in the sediment point to a generation during passage of algal lipids through levels of microbial activity either on or slightly above the burial surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号