首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

2.
Coal handling, crushing, washing, and other processes of coal beneficiation liberate coal particulate matter, which would ultimately contaminate the nearby soils. In this study, an attempt was made to determine the status of soil bio-indicators in the surroundings of a coal beneficiation plant, (in relation to a control site). The coal beneficiation plant is located at Sudamudih, and the control site is 5 km away from the contaminated site, which is located in the colony of Central Institute of Mining and Fuel Research Institute, Digwadih, Dhanbad. In order to estimate the impact of coal deposition on soil biochemical characteristics and to identify the most sensitive indicator, soil samples were taken from the contaminated and the control sites, and analyzed for soil organic carbon (SOC), soil N, soil basal respiration (BSR), substrate-induced respiration (SIR), and soil enzymes like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidase (PER). Coal deposition on soils improved the SOC from 10.65 to 50.17 g kg−1, CAT from 418.1 to 804.11 μg H2O2 g−1 h−1, BSR from 8.5 to 36.15 mg CO2–C kg−1 day−1, and SIR from 24.3 to 117.14 mg CO2–C kg−1 day−1. Soils receiving coal particles exhibited significant decrease in DHA (36.6 to 4.22 μg TPF g−1 h−1), PHE (0.031 to 0.017 μM g−1 h−1), PER (0.153 to 0.006 μM g−1 h−1), and soil N (55.82 to 26.18 kg ha−1). Coal depositions significantly (P < 0.01) decreased the DHA to 8.8 times, PHE to 1.8 times, and PER to 25.5 times, but increased the SOC to 4.71 times, CAT to 1.9 times, SIR to 4.82 times, and BSR to 4.22 times. Based on principal component analysis and sensitivity test, soil peroxidase (an enzyme that plays a vital role in the degradation of the aromatic organic compounds) is found to be the most important indicator that could be considered as biomarkers for coal-contaminated soils.  相似文献   

3.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

4.
Shallow surface sediment samples from the Mesopotamian marshlands of Iraq were collected and analyzed to determine the distribution, concentrations and sources of aliphatic lipid compounds (n-alkanes, n-alkanols, n-alkanoic acids, and methyl n-alkanoates) and molecular markers of petroleum in these wetlands. The sediments were collected using a stainless steel sediment corer, dried, extracted with a dichloromethane/methanol mixture and then analyzed by gas chromatography-mass spectrometry (GC–MS). The aliphatic lipid compounds included n-alkanes, n-alkanoic acids, n-alkanols and methyl n-alkanoates with concentrations ranged from 6.8 to 31.1 μg/g, 4.1 to 5.0 μg/g, 5.9 to 7.7 μg/g and from 0.3 to 5.9 μg/g, respectively. The major sources of aliphatic lipids were natural from waxes of higher plants (24–30%) and microbial residues (42–30%), with a significant contribution from anthropogenic sources (27–30%, petroleum), based on the organic geochemical parameters and indices. Further studies are needed to characterize the rate, accumulation and transformation of various organic matter sources before and after re-flooding of these wetlands.  相似文献   

5.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

6.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

7.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

8.
Excessive arsenic concentrations above the Argentinean and WHO guidelines for drinking water (10 μg L−1) affects shallow aquifers of the southern Pampean Plain (Argentina) hosted in the Pampean and the Post Pampean formations (loess and reworked loess; Plio-Pleistocene–Holocene). Health problems related to high As concentrations in drinking waters are known as Endemic Regional Chronic Hydroarsenicism. Hydrochemistry of shallow groundwaters and soil geochemistry were investigated aiming to (1) understand the partition of As in the solid phase and its relationship with unacceptable As concentrations in waters, (2) identify the provision source of As to groundwaters. Only 5% of the samples had As concentrations <10 μg L−1; in 27% As concentrations ranged from 10 to 50 μg L−1 and in 58% it reached 60–500 μg L−1. The coarse fraction (50–2,000 μm) hosts about 27% of the total As in the solid phase, being positively correlated to Ba (p < 0.01; r 2 = 0.93). About 70% is included in the <2 μm fraction and had positive correlations of As–Fe (p < 0.05; r 2 = 0.85) and As–Cr (p < 0.05; r 2 = 0.68). Soils and sediment sand fractions of vadose zones are the primary sources of As in shallow groundwater while adsorption–desorption processes, codisolution–coprecipitation, and evaporation during the dry seasons raise As concentrations in waters exceeding the guideline value for drinking water.  相似文献   

9.
Temporal variation of PM10 using 2-year data (January, 2007–December, 2008) of Delhi is presented. PM10 varied from 42 to 200 μg m−3 over January to December, with an average 114.1 ± 81.1 μg m−3. They are comparable with the data collected by Central Pollution Control Board (National Agency which monitors data over the entire country in India) and are lower than National Ambient Air Quality (NAAQ) standard during monsoon, close to NAAQ during summer but higher in winter. Among CO, NO2, SO2, rainfall, temperature, and wind speed, PM10 shows good correlation with CO. Also, PM10, PM2.5, and PM1 levels on Deepawali days when fireworks were displayed are presented. In these festive days, PM10, PM2.5, and PM1 levels were 723, 588, and 536 μg m−3 in 2007 and 501, 389, and 346 μg m−3 in 2008. PM10, PM2.5, and PM1 levels in 2008 were 1.5 times lower than those in 2007 probably due to higher mixing height (446 m), temperature (23.8°C), and winds (0.36 ms−1).  相似文献   

10.
Cadmium (Cd) is a highly toxic element and its presence in the environment needs to be closely monitored. Recent systematic surveys in French soils have revealed the existence of areas in eastern and central France, which show systematically high cadmium concentrations. It has been suggested that at least part of these anomalous levels are of natural origin. For the Lower Burgundy area in particular, a direct heritage from the Jurassic limestone bedrock is highly suspected. This potential relationship has been studied in several localities around Avallon and this study reports new evidence for a direct link between anomalously elevated cadmium contents of Bajocian and Oxfordian limestone and high cadmium concentrations in deriving soils. Soils in this area show cadmium concentrations generally above the average national population values, with contents frequently higher than the ‘upper whisker’ value of 0.8 μg g−1 determined by statistical evaluation. In parallel, limestone rocks studied in the same area exhibit cadmium concentrations frequently exceeding the mean value of 0.030–0.065 μg g−1 previously given for similar rocks by one order of magnitude, with a maximum of 2.6 μg g−1. Mean ratios between the cadmium concentrations of limestone bedrock and deriving soils (Cdsoil/Cdrock), calculated for different areas, range from 4.6 to 5.7. Calculations based on the analyses of both soils from a restricted area and fragments of bedrock sampled in the immediate vicinity of high-concentration soils are around 5.5–5.7. Cdsoil/Cdrock is useful in determining the potential of soils in Lower Burgundy to reflect and exacerbate the high concentrations of cadmium present in parent bedrocks.  相似文献   

11.
In southern California, USA, wildfires may be an important source of mercury (Hg) to local watersheds. Hg levels and Hg accumulation rates were investigated in dated sediment cores from two southern California lakes, Big Bear Lake and Crystal Lake, located approximately 40-km apart. Between 1895 and 2006, fires were routinely minimized or suppressed around Big Bear Lake, while fires regularly subsumed the forest surrounding Crystal Lake. Mean Hg concentrations and mean Hg accumulation rates were significantly higher in Crystal Lake sediments compared to Big Bear Lake sediments (Hg levels: Crystal Lake 220 ± 93 ng g−1, Big Bear Lake 92 ± 26 ng g−1; Hg accumulation: Crystal Lake 790 ± 1,200 μg m−2 year−1, Big Bear 240 ± 54 μg m−2 year−1). In Crystal Lake, the ratio between post-1965 and pre-1865 Hg concentrations was 1.1, and several spikes in Hg levels occurred between 1910 and 1985. Given the remote location of the lake, the proximity of fires, and the lack of point sources within the region, these results suggested wildfires (rather than industrial sources) were a continuous source of Hg to Crystal Lake over the last 150 years.  相似文献   

12.
210Pb geochronologies of Cd, Cu, Hg, and Pb fluxes were obtained from the intertidal mudflat sediments of the coastal lagoons Chiricahueto, Estero de Urías, and Ohuira in the Mexican Pacific. The Cu and Hg sediment concentrations at the three lagoons fell within the ranges of 6–76 μg g−1 and 0.1 to 592 ng g−1, respectively; Chiricahueto and Estero de Urías sediments had comparable Cd and Pb concentrations within the ranges of 0.2–2.1 μg g−1 and 10–67 μg g−1, respectively; whereas in Ohuira lagoon, Cd concentrations were lower (0.1–0.5 μg g−1) and Pb concentrations were higher (115–180 μg g−1) than in the other lagoons. The metal fluxes (μg cm−2 y−1) for the three lagoons fell within the ranges of 0.02–0.15 for Cd, 0.7–6.0 for Cu, 0.001–0.045 for Hg, and 0.7–20 for Pb. The Hg pollution in Estero de Urías was attributed to the exhausts of the thermoelectric plant of Mazatlan and the metal enrichment in Chiricahueto and Ohuira was related to the agrochemical wastes from the croplands surrounding these lagoons.  相似文献   

13.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

14.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   

15.
The presence of arsenic (As) in groundwater and its effect on human health has become an issue of serious concern in recent years. The present study assessed the groundwater quality of the Bishnupur District, Manipur, with respect to drinking water standards. Higher concentrations of pH, iron and phosphate were observed at several locations. Phosphate and iron levels were highest in the pre-monsoon, followed by monsoon and post-monsoon seasons. The arsenic concentrations were highest during post-monsoon (1–200 μg L−1) as compared to pre-monsoon (1–108 μg L−1) and monsoon (2–99 μg L−1). Kwakta and Ngakhalawai show higher levels of arsenic concentration as compared to the prescribed World Health Organization (WHO) and Bureau of Indian Standards (BIS) norms. Arsenic showed a strong positive correlation with phosphate and negative correlation with sulphate, suggesting a partial influence of anthropogenic sources. The study suggests that the Bishnupur area has an arsenic contamination problem, which is expected to increase in the near future.  相似文献   

16.
We have investigated the geochemistry of supraglacial streams on the Canada Glacier, Taylor Valley, Antarctica during the 2001–2002 austral summer. Canada Glacier supraglacial streams represent the link between primary precipitation (i.e. glacier snow) and proglacial Lake Hoare. Canada Glacier supraglacial stream geochemistry is intermediate between glacier snow and proglacial stream geochemistry with average concentrations of 49.1 μeq L−1 Ca2+, 19.9 μeq L−1 SO42−, and 34.3 μeq L−1 HCO3. Predominant west to east winds lead to a redistribution of readily soluble salts onto the glacier surface, which is reflected in the geochemistry of the supraglacial streams. Western Canada Glacier supraglacial streams have average SO42−:HCO3 equivalent ratios of 1.0, while eastern supraglacial streams average 0.5, suggesting more sulfate salts reach and dissolve in the western supraglacial streams. A graph of HCO3 versus Ca2+ for western and eastern supraglacial streams had slopes of 0.87 and 0.72, respectively with R2 values of 0.84 and 0.83. Low concentrations of reactive silicate (> 10 μmol L−1) in the supraglacial streams suggested that little to no silicate weathering occurred on the glacier surface with the exception of cryoconite holes (1000 μmol L−1). Therefore, the major geochemical weathering process occurring in the supraglacial streams is believed to be calcite dissolution. Proglacial stream, Anderson Creek, contains higher concentrations of major ions than supraglacial streams containing 5 times the Ca2+ and 10 times the SO42−. Canada Glacier proglacial streams also contain higher concentrations (16.6–30.6 μeq L−1) of reactive silicate than supraglacial streams. This suggests that the controls on glacier meltwater geochemistry switch from calcite and gypsum dissolution to both salt dissolution and silicate mineral weathering as the glacier meltwater evolves. Our chemical mass balance calculations indicate that of the total discharge into Lake Hoare, the final recipient of Canada Glacier meltwater, 81.9% is from direct glacier runoff and 19.1% is from proglacial Andersen Creek. Although during a typical, low melt ablation season Andersen Creek contributes over 40% of the water added to Lake Hoare, its overall chemical importance is diluted by the direct inputs from Canada Glacier during high flow years. Decadal warming events, such as the 2001–2002 austral summer produce supraglacial streams that are a major source of water to Lake Hoare.  相似文献   

17.
Elevated concentrations of arsenic in the sediment and pore water in the Sundarban wetlands pose an environmental risk. Adsorption and desorption are hypothesized to be the major processes controlling arsenic retention in surface sediment under oxic/suboxic condition. This study aims to investigate sorption kinetics of As(III & V) and its feedback to arsenic mobilization in the mangrove sediment. It ranges from sand to silty clay loam and shows the adsorption of As(III & V) following the Langmuir relation. Estimates of the maximum adsorption capacity are 59.11 ± 13.26 μg g−1 for As(III) and 58.45 ± 8.75 μg g−1 at 30°C for As(V) in the pH range 4 to 8 and salinity 15–30 psu. Extent of adsorption decreases with increasing pH from 4 to 8 and desorption is the rate-limiting step in the reaction of arsenic with sediment. Arsenic in the sediment could be from a Himalayan supply and co-deposited organic matter drives its release from the sediment. Arsenic concentration in the sediment is well below its maximum absorption capacity, suggesting the release of sorbed arsenic in pore water by the microbial oxidation of organic matter in the sediment with less feedback of adsorption.  相似文献   

18.
The rates of grain growth of stoichiometric dolomite [CaMg(CO3)2] and magnesite (MgCO3) have been measured at temperatures T of 700–800°C at a confining pressure P c of 300 MPa, and compared with growth rates of calcite (CaCO3). Dry, fine-grained aggregates of the three carbonates were synthesized from high purity powders by hot isostatic pressing (HIP); initial mean grain sizes of HIP-synthesized carbonates were 1.4, 1.1, and 17 μm, respectively, for CaMg(CO3)2, MgCO3, and CaCO3, with porosities of 2, 28, and 0.04% by volume. Grain sizes of all carbonates coarsened during subsequent isostatic annealing, with mean values reaching 3.9, 5.1, and 27 μm for CaMg(CO3)2, MgCO3, and CaCO3, respectively, in 1 week. Grain growth of dolomite is much slower than the growth rates of magnesite or calcite; assuming normal grain growth and n = 3 for all three carbonates, the rate constant K for dolomite (≃5 × 10−5 μm3/s) at T = 800°C is less than that for magnesite by a factor of ~30 and less than that for calcite by three orders of magnitude. Variations in carbonate grain growth may be affected by differences in cation composition and densities of pores at grain boundaries that decrease grain boundary mobility. However, rates of coarsening correlate best with the extent of solid solution; K is the largest for calcite with extensive Mg substitution for Ca, while K is the smallest for dolomite with negligible solid solution. Secondary phases may nucleate at advancing dolomite grain boundaries, with implications for deformation processes, rheology, and reaction kinetics of carbonates.  相似文献   

19.
We measured seasonal variations in microzooplankton grazing in Long Island Sound (LIS) and San Francisco Bay (SFB). There was consistent evidence of nutrient limitation in LIS, but not SFB. We found higher chlorophyll a concentrations in LIS compared with SFB. In spite of differences in phytoplankton, there were no differences in microzooplankton abundance (summer: LIS, 12.4 ± 1.8 × 103 indiv. L−1; SFB, 14.1 ± 3.0 × 103 indiv. L−1), biomass (summer: LIS, 30.4 ± 5.0 μg C L−1; SFB, 26.3 ± 5.9 μg C L−1), or grazing rates (summer: LIS, 0.66 ± 0.19 day−1; SFB, 0.65 ± 0.18 day−1) between the two estuaries. In common with many other investigators, we found many instances of saturated as well as insignificant grazing. We suggest that saturation in some cases may result from high particle loads in turbid estuarine systems and that insignificant grazing may result from extreme saturation of the grazing response due to the need to process non-food particles.  相似文献   

20.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号