首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, a number of workers have studied the stability of deep lakes such as Lake Tanganyika, Lake Baikal and Lake Malawi. In this paper, the methods that can be used to determine the effect that the components of lakes have on the equation of state are examined. The PVT properties of Lakes have been determined by using apparent molal volume data for the major ionic components of the lake. The estimated PVT properties (densities, expansibility and compressibilities) of the lakes are found to be in good agreement with the PVT properties (P) of seawater diluted to the same salinity. This is similar to earlier work that showed that the PVT properties of rivers and estuarine waters could also be estimated from the properties of seawater.The measured densities of Lake Tanganyika were found to be in good agreement (± 2 × 10-6 g cm-3) with the values estimated from partial molal properties and the values of seawater at the same total salinity (ST = 0.568). The increase in the densities of Lake Tanganyika waters increased due to changes in the composition of the waters. The measured increase in the measured density (45 × 10-6 g cm-3) is in good agreement (46 × 10-6 g cm-3) with the values calculated for the increase in Na+, HCO3 -, Mg2+, Ca2+ and Si(OH)4.Methods are described that can be used to determine the conductivity salinity of lakes using the equations developed for seawater. By combining these relationships with apparent molal volume data, one can relate the PVT properties of the lake to those of seawater.  相似文献   

2.
Chemical and stable carbon isotopic modifications during the freezing of artificial seawater were measured in four 4 m3 tank incubations. Three of the four incubations were inoculated with a nonaxenic Antarctic diatom culture. The 18 days of freezing resulted in 25 to 27 cm thick ice sheets overlying the residual seawater. The ice phase was characterized by a decrease in temperature from −1.9 to −2.2°C in the under-ice seawater down to −6.7°C in the upper 4 cm of the ice sheet, with a concurrent increase in the salinity of the under-ice seawater and brine inclusions of the ice sheet as a result of physical concentration of major dissolved salts by expulsion from the solid ice matrix. Measurements of pH, total dissolved inorganic carbon (CT) and its stable isotopic composition (δ13CT) all exhibited changes, which suggest minimal effect by biological activity during the experiment. A systematic drop in pH and salinity-normalized CT by up to 0.37 pHSWS units and 376 μmol C kg−1 respectively at the lowest temperature and highest salinity part of the ice sheet were coupled with an equally systematic 13C enrichment of the CT. Calculations based on the direct pH and CT measurements indicated a steady increase in the in situ concentration of dissolved carbon dioxide (CO2(aq)) with time and increasing salinity within the ice sheet, partly due to changes in the dissociation constants of carbonic acid in the low temperature-high salinity range within sea ice. The combined effects of temperature and salinity on the solubility of CO2 over the range of conditions encountered during this study was a slight net decrease in the equilibrium CO2(aq) concentration as a result of the salting-out overriding the increase in solubility with decreasing temperature. Hence, the increase in the in situ CO2(aq) concentration lead to saturation or supersaturation of the brine inclusions in the ice sheet with respect to atmospheric pCO2 (≈3.5 × 10−4 atm). When all physico-chemical processes are considered, we expect CO2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.  相似文献   

3.
1860-2005年伊塞克湖水位波动与区域气候水文变化的关系   总被引:1,自引:0,他引:1  
应用吉尔吉斯坦天山伊塞克湖1860-2005年的湖水位资料及土尤克苏冰川雪线和卡拉库里气象站1879-1998年的观测资料,分析了伊塞克湖145 a来水位波动的主要原因及区域气候变化特征,并与中国新疆天山地区的博斯腾湖及1号冰川雪线变化进行了比较.结果表明:天山伊塞克湖地区近百年来气候一直处于暖干化过程,1986年以后气候有转向暖湿的迹象.这种现象是与我国西北气候由暖干向暖湿转型相对应的,是转型在空间上的向西扩展.分析认为,气候变化的暖湿转型原因主要是全球变暖导致全球水循环速度加快,西风环流和印度洋环流带来的水汽含量增加,导致了该区降水量增加;也与气候变暖使局地蒸发量加大,降水机会增多而引起降水量增加等因素有关.  相似文献   

4.
The geothermal field at Hofsstadir northern Snæfellsnes peninsula, Iceland produces low-temperature geothermal water with about 5.4‰ salinity. The fluid temperature is 87 °C, near the reservoir temperature of 90 °C as assessed from mineral solution/equilibrium conditions. The stable isotopic ratios δ2H and δ18O show that the water is significantly lighter than present day precipitation anywhere on the Snæfellsnes peninsula. It is offset from the meteoric water line towards isotopically depleted 18O values, most likely due to CO2(g) – H2O exchange at earlier times during evolution of the system. Such a concentration of stable isotopes is unique for Icelandic groundwaters and has not been encountered anywhere else in Iceland. The water may either have its origin far north of the Bay of Breidafjörður in the highland of the western fjordlands or dating back to a Pre-Holocene age when local precipitation was considerably lighter due to the cold climate at that time. The water is highly concentrated in Ca in comparison with seawater and also compared to that of geothermal saline water elsewhere, which indicates intensive and prolonged water–rock interaction. The 14C concentration is low, about 7.4 pMC (percent modern C), compared to the cold local groundwater of about 74.6 pMC. δ13C for the thermal and cold waters is −4.9‰ and −2.3‰, respectively. The geothermal water is used for heating the small town of Stykkishólmur through a central heat exchanger plant due to the high salinity of the water. The outbuilding of a health resort has been planned and the water has been used successfully for the treatment of psoriasis and is claimed to have beneficial effects in bathing therapy for rheumatism as well as for drinking cures.  相似文献   

5.
The alkenone unsaturation index UK′37 has been applied to reconstruct past temperature changes in both marine and lacustrine systems. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (%C37:4) can reflect surface salinity changes in lacustrine systems. Here we present long-chain C37 alkenone distribution patterns in surface sediments from Lake Qinghai, China. Surface sediments were sampled over a large range of surface salinity changes (1.7-25 g/l) within Lake Qinghai and its surrounding lakes, while temperature differences at these sampling locations should be relatively small. We have found that %C37:4 varies from 15% to 49% as surface salinity decreases. We tentatively describe this %C37:4-salinity link with a general linear regression: %C37:4 = 53.4 (±7.8) − 1.73 (±0.45) × S (n = 28, r2 = 0.62), although step-wise %C37:4 changes in response to salinity variation may exist. UK′37 values vary between 0.10 and 0.16 at these sites and the inferred range of lake water temperature changes is ∼2-3 °C, suggesting that UK′37 largely reflects temperature signal across a large salinity range, consistent with previous findings that UK′37 can indicate temperature changes over a large diversity of environmental settings. We have also found that UK′37 values are correlated with salinity changes (r2 = 0.4), and thus cannot exclude potential temperature effect on %C37:4 and salinity effect on UK′37 in this study. However, even extreme estimates of temperature differences within the lake are still unable to explain the observed %C37:4 changes. We therefore suggest that %C37:4 could be used to infer past lake salinity changes at a regional scale.  相似文献   

6.
The oxygen isotopic composition of carbonate in lakes has been used as a useful indicator in Palaeolimnological research, and has made some important contributions to our understanding of lacustrine systems. For modern lakes in arid or cold areas, however, there are few data available to test the effect of lake salinity and temperature on the oxygen isotopic composition of various carbonate sources such as ostracod, bulk carbonate, and fine-grained carbonate (< 60 μm). Here we examined the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonates, as well as that of coexisting water from Lake Qinghai and the smaller surrounding lakes and ponds on the Qinghai–Tibet Plateau. Our investigation highlights three key effects. First, the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonate in the lakes and ponds shows a clear response to lake water δ18O values, and these vary with water salinity. The relationship between lake water δ18O and salinity is not only dominated by the evaporation/freshwater input ratios, but is also controlled by the distance to the mouth of the major rivers supplying to the lake. Second, the ostracod, bulk carbonate, and fine-grained carbonate show similar isotopic change trends in the study area, and oxygen isotopic differences between ostracods and authigenic carbonate may be explained by the different water temperatures and very small ‘vital offsets’ of ostracods. Finally, the effect of water depth on temperature leads to increasing δ18O values in carbonates as water depth increases, both in benthic ostracods living on the lake bottom, as well as in bulk carbonate precipitated at the water surface.For arid, high-altitude Lake Qinghai, our results suggest that variations in the δ18O values of carbonate in Lake Qinghai are mainly controlled by the oxygen-isotope ratio of the lake water changing with water salinity. As a secondary effect, increasing water depth leads to cooler bottom and surface water, which may result in more positive δ18O values of ostracod and bulk carbonate.  相似文献   

7.
Lake Tai (Tai Hu) is located in the S part of the Yangtze River delta, has a surface area of 2,425 km2, a mean depth of 2.12 m, and a volume of 5.15 km3. The climate of the region is characterised by an average annual air temperature of 15.7°C, precipitation of 1,178 mm and evaporation from the water surface of about 1,024 mm. The average annual water temperature is 17.1°C. A positive and a negative thermocline may occur in one day, a characteristic of polymictic lakes. The average water level is 3.03 m above Wusong datum. Total annual inflow was 8.7 km3 with a total outflow of 9.0 km3 and a residence time about 212 days during an average water year. Influent-effleunt currents and wind currents both occured in the lake with a velocity of between 0,1 and 0,3 m s–1; the height of wind generated waves up to 1 m when the wind velocity was about 13 m s–1. The average transparency of lake was 0.39 m and the water colour about XV-XVI. The salinity of water was 157.66 mg 1–1, alkalinity 1.22 meq 1–1, total hardness 1.523 meq 1–1 and the pH 8.0. The lake water belonged to calcium bicar-bonate and calcium-sodium bicarbonate types during the study period. The biota had 114 genera of phytoplankton, 122 species of zooplankton, 68 species of benthos, 61 species of aquatic macrophytes and 106 species of fish. Ten species were considered predominant:Microcystis aeruginosa, Anabaena spiroides, Chroomonas acuta, Strobilidum velox, Tintinnopsis conicus, Corbicula fluminea, Zizania latifolia, Phragmites communis, Coilia ectenes taihuensis, and Protosalanx hyalocranius.  相似文献   

8.
As one of the lakes on the Yunnan-Guizhou plateau, Lake Chenghai, which is a typical closed lake with the precipitation accounting for one-third or more of the annual water input, has a high total salinity (almost like a saline lake). The inorganic C, O isotopic composition of lake sediments bears much sensitive information about environmental change in the catchment, while their correlations revealed the hydrological conditions under which the lake was closed. Their compositional variations are controlled by temperature, precipitation, photosynthesis, dissolving equilibrium of the carbonate system and hydrological condition. According to our research on inorganic C, O isotopic composition of Lake Chenghai sediments, we investigated the environmental change of this catchment several decades ago. The results showed that Lake Chenghai has kept good hydrological closing conditions in the past several decades, as indicated by the good correlation of inorganic C, O isotopic composition of sediments; and that the environmental change in this catchment shows a tendency of periodical evolution on a 10−11-years scale, although the signal noise is relatively high at the bottom of the sediment core. And we also can extend C, O isotopes, a sensitive environmental indicator, to nearly saline lake environments with a high degree of mineralization.  相似文献   

9.
The electrical conductivity of basaltic melts has been measured in real-time after fO2 step-changes in order to investigate redox kinetics. Experimental investigations were performed at 1 atm in a vertical furnace between 1200 and 1400 °C using air, pure CO2 or CO/CO2 gas mixtures to buffer oxygen fugacity in the range 10−8 to 0.2 bars. Ferric/ferrous ratios were determined by wet chemical titrations. A small but detectable effect of fO2 on the electrical conductivity is observed. The more reduced the melt, the higher the conductivity. A modified Arrhenian equation accounts for both T and fO2 effects on the electrical conductivity. We show that time-dependent changes in electrical conductivity following fO2 step-changes monitor the rate of Fe2+/Fe3+ changes. The conductivity change with time corresponds to a diffusion-limited process in the case of reduction in CO-CO2 gas mixtures and oxidation in air. However, a reaction at the gas-melt interface probably rate limits oxidation of the melt under pure CO2. Reduction and oxidation rates are similar and both increase with temperature. Those rates range from 10−9 to 10−8 m2/s for the temperature interval 1200-1400 °C and show activation energy of about 200 kJ/mol. The redox mechanism that best explains our results involves a cooperative motion of cations and oxygen, allowing such fast oxidation-reduction rates.  相似文献   

10.
The solubility of silver sulphide (acanthite/argentite) has been measured in aqueous sulphide solutions between 25 and 400°C at saturated water vapour pressure and 500 bar to determine the stability and stoichiometry of sulphide complexes of silver(I) in hydrothermal solutions. The experiments were carried out in a flow-through autoclave, connected to a high-performance liquid chromatographic pump, titanium sampling loop, and a back-pressure regulator on line. Samples for silver determination were collected via the titanium sampling loop at experimental temperatures and pressures. The solubilities, measured as total dissolved silver, were in the range 1.0 × 10−7 to 1.30 × 10−4 mol kg−1 (0.01 to 14.0 ppm), in solutions of total reduced sulphur between 0.007 and 0.176 mol kg−1 and pHT,p of 3.7 to 12.7. A nonlinear least squares treatment of the data demonstrates that the solubility of silver sulphide in aqueous sulphide solutions of acidic to alkaline pH is accurately described by the reactions0.5Ag2S(s) + 0.5H2S(aq) = AgHS(aq) Ks,1110.5Ag2S(s) + 0.5H2S(aq) + HS = Ag(HS)2− Ks,122Ag2S(s) + 2HS = Ag2S(HS)22− Ks,232where AgHS(aq) is the dominant species in acidic solutions, Ag(HS)2− under neutral pH conditions and Ag2S(HS)22− in alkaline solutions. With increasing temperature the stability field of Ag(HS)2− increases and shifts to more alkaline pH in accordance with the change in the first ionisation constant of H2S(aq). Consequently, Ag2S(HS)22− is not an important species above 200°C. The solubility constant for the first reaction is independent of temperature to 300°C, with values in the range logKs,111 = −5.79 (±0.07) to −5.59 (±0.09), and decreases to −5.92 (±0.16) at 400°C. The solubility constant for the second reaction increases almost linearly with inverse temperature from logKs,122 = −3.97 (±0.04) at 25°C to −1.89 (±0.03) at 400°C. The solubility constant for the third reaction increases with temperature from logKs,232 = −4.78 (±0.04) at 25°C to −4.57 (±0.18) at 200°C. All solubility constants were found to be independent of pressure within experimental uncertainties. The interaction between Ag+ and HS at 25°C and 1 bar to form AgHS(aq) has appreciable covalent character, as reflected in the exothermic enthalpy and small entropy of formation. With increasing temperature, the stepwise formation reactions become progressively more endothermic and are accompanied by large positive entropies, indicating greater electrostatic interaction. The aqueous speciation of silver is very sensitive to fluid composition and temperature. Below 100°C silver(I) sulphide complexes predominate in reduced sulphide solutions, whereas Ag+ and AgClOH are the dominant species in oxidised waters. In high-temperature hydrothermal solutions of seawater salinity, chloride complexes of silver(I) are most important, whereas in dilute hydrothermal fluids of meteoric origin typically found in active geothermal systems, sulphide complexes predominate. Adiabatic boiling of dilute and saline geothermal waters leads to precipitation of silver sulphide and removal of silver from solution. Conductive cooling has insignificant effects on silver mobility in dilute fluids, whereas it leads to quantitative loss of silver for geothermal fluids of seawater salinity.  相似文献   

11.
This study aimed to analyze the oxygen isotope composition of water, ice, and snow in water bodies isolated from the White Sea and to identify the structural peculiarities of these pools during the winter period. The studies were performed during early spring in Kandalaksha Bay of the White Sea, in Velikaya Salma Strait and in Rugoserskaya Inlet. The studied water bodies differ in their degree of isolation from the sea. In particular, Ermolinskaya Inlet has normal water exchange with the sea; the Lake on Zelenyi Cape represents the first stage of isolation; i. e., it has permanent water exchange with the sea by the tide. Kislo-Sladkoe Lake receives sea water from time to time. Trekhtsvetnoe Lake is totally isolated from the sea and is a typical meromictic lake. Finally, Nizhnee Ershovskoe Lake exhibits some features of a saline water body. The oxygen isotope profile of the water column in Trekhtsvetnoe Lake allows defining three layers; this lake may be called typically meromictic. The oxygen isotope profile of the water column in Kislo-Sladkoe Lake is even from the surface to the bottom. The variability of δ18O is minor in Lake on Zelenyi Cape. A surface layer (0–1 m) exists in Nizhnee Ershovskoe Lake, and the oxygen isotope variability is well pronounced. Deeper, where the freshwater dominates, the values of ?18Îvary insignificantly disregarding the water depth and temperature. This fresh water lake is not affected by the seawater and is not stratified according to the isotope profile. It is found that applying the values of ?18Î and profiles of temperature and salinity may appear as an effective method in defining the water sources feeding the water bodies isolated from the sea environment.  相似文献   

12.
Analyses of fluid-inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75 - 358 and Cl/Br 67 - 394, respectively, and this variation trend coincides with the seawater evaporation trajectory on the basis of the Na/Br and Cl/Br ratios. The average Cl/Br and Na/Br ratios of mineralizing fluids are 185 and 173 respectively, which are very close to the ratios ( 120 and 233 ) of the residual evaporated seawater past the point of halite precipitation. It is suggested that the original mineralizing brine was derived from highly evapo-rated seawater with a high salinity. However, the inclusion fluids have absolute Na values of 69.9—2606.2 mmol kg^-1 and Cl values of 106.7 — 1995.5 mmol kg^-1. Most of the values are much less than those of seawater: Na, 485 mmol kg^-1 and Cl, 566 mmol kg^-1 , respectively; the salinity measured from fluid inclusions of the deposits ranges from 2.47 wt% to 15.78 wt% NaCl equiv. The mineralizing brine has been diluted. The δ ^18O and δD values of ore-forming fluids vary from -8.21‰ to 9.51‰ and from -40.3‰ to -94.3‰, respectively. The δD values of meteoric water in this region varied from - 80‰ to - 100‰ during the Jurassic. This evidenced that the ore-forming fluids are the mixture of seawater and meteoric water. Highly evaporated seawater was responsible for leaching and extracting Pb, Zn and Fe, and mixed with and diluted by descending meteoric water, which resulted in the formation of ores.  相似文献   

13.
To understand the geochemical cycle of Hg in hypereutrophic freshwater lake, two sampling campaigns were conducted in Lake Taihu in China during May and September of 2009. The concentrations of unfiltered total Hg (unfTHg) were in the range of 6.8–83 ng L−1 (28 ± 18 ng L−1) in the lake water and total Hg in the sediment was 12–470 ng g−1, both of which are higher than in other background lakes. The concentration of unfTHg in ∼11% of the lake water samples exceeded the second class of the Chinese environmental standards for surface water of 50 ng L−1 (GB 3838-2002), indicating that a high ecological risk is posed by the Hg in Lake Taihu. However, the concentrations of unfiltered total MeHg (unfMeHg) were relatively low in the lake water (0.14 ± 0.05 ng L−1, excluding two samples with 0.81 and 1.0 ng L−1). Lake sediment MeHg varied from 0.2–0.96 ng g−1, with generally low ratios of MeHg/THg of <1%. The low concentrations of TMeHg in the lake water may have resulted from a strong uptake by the high primary productivity and the demethylation of MeHg in oxic conditions. In addition, contrary to the results of previous research conducted in deep-water lakes and reservoirs, the low concentrations of MeHg and low ratio of MeHg/THg in the lake sediment indicates that the net methylation of Hg was not accelerated by the elevated organic matter load created by the eutrophication of Lake Taihu. The results also showed that sediments were a source of THg and MeHg in the water. Higher diffusion fluxes of THg and MeHg may be partly responsible for the higher concentrations of THg in the lake water in May, 2009.  相似文献   

14.
The present study reports on perturbations of the water column by large rainfall at Lake Alchichica, a saline lake in Central Mexico. Alchichica is located in the “Llanos de San Juan,” a high-altitude plateau with a minimum elevation of 2,300 m above sea level. The climate is arid with annual precipitation less than 400 mm and annual evaporation of 500–600 mm. A single day large rainfall event delivered 1,810,000 m3 of water to the basin, raising the lake’s water level by about 1 m. Temperature and salinity profiles showed an atypical temperature inversion up to 1°C in the upper layer accompanied by salinity decrease up to 0.5 g l−1. Transparency and pH were slightly altered, but dissolved oxygen, nutrients and chlorophyll a concentrations were not changed. In spite of the heavy rainfall and associated wind, the effects of the event were limited to the upper half of the epilimnion. After 2 days, the lake water level returned to its original level. The rapid leakage of the runoff minimized any long-term effects of the large rainfall.  相似文献   

15.
The skeletal oxygen isotope ratio of Porites corals is the most frequently used proxy of past seawater temperature and composition for tropical and subtropical oceans. However, field calibration of the proxy signals is often difficult owing to the dual dependence of skeletal oxygen isotope ratio on temperature and the oxygen isotope composition of water. We conducted tank experiments in which we grew Porites spp. colonies for 142 d in thermostated seawater at five temperature settings between 21°C and 29°C under moderate light intensity of 250 μmol m−2 s−1 with a 12:12 light:dark photoperiod. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation, thus providing an ideal situation for precise calibration of oxygen isotope ratio proxy signals. However, the oxygen isotope ratios displayed an unusually large intercolony variability (∼1‰) at each temperature setting although the mean slope (∼0.15‰ °C−1) obtained for the temperature-skeletal oxygen isotope ratio relationship was close to previous results. The intercolony variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. No correlation was found between skeletal carbon isotope ratios and temperature. The carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. Observed intercolony variability in skeletal carbon isotope ratios (∼5‰) can be partly attributed to growth-rate-related kinetic isotope effects.  相似文献   

16.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

17.
Evolution of the shallow groundwater quality under saline intrusion in porous aquifer system has been studied with environmental isotopes and geochemistry in the Laizhou Bay area, China. Two campaigns of water sampling from various sources were carried out in spring and winter for environmental isotopic and chemical analyses. The origin of groundwater salinity from intrusion of both modern seawater and deep brine water was identified by analysing the correlations between 18O, D, T, Cl, SO42− and electrical conductivity. The results indicate that the brine is originated from evaporating and concentrating of intruded seawater and its δD and δ18O are different from modern seawater but similar to those of mixture of seawater with fresh groundwater. It is hard to distinguish the salinity origin in this area by the δD–δ18O relationship alone. The relations between δ18O and conductivity, Cl and SO42− have been used to identify the salinity origin due to the distinct difference in salinity between the brine and seawater, conjunctively with use of T. A threshold of T = 12 TU was adopted to identify the origin of saline groundwater.  相似文献   

18.
We report seawater boron concentration (mg kg−1) and chlorinity (‰) values measured in seawater samples (n = 139) collected at various depths in the North Pacific and North Atlantic oceans and the East/Japan Sea (located in the western temperate North Pacific). Our results indicate that variations in seawater boron concentration are strongly coupled to variations in chlorinity (and salinity), yielding a mean boron to chlorinity ratio of 0.2414 ± 0.0009 mg kg−1 ‰−1 (boron to salinity ratio = 0.1336 ± 0.0005 mg kg−1 ‰−1). This ratio was surprisingly universal throughout the water column in the three marine basins and across widely different ocean surface regimes, but differs from the generally accepted ratio of 0.232 ± 0.005 mg kg−1 ‰−1 determined by Uppström (1974), which was based on only 20 measurements at four sites in the tropical Pacific Ocean. In converting total alkalinity to carbonate alkalinity (and vice versa) for thermodynamic calculations, the difference between these two ratios leads to a difference of 5 μmol kg−1 in estimates for ocean surface waters, where the contribution of borate to total alkalinity is typically greatest. We suggest the use of the new boron to chlorinity ratio for predicting seawater boron concentrations using chlorinity (or salinity) data.  相似文献   

19.
选择青藏高原14个代表性现代湖泊的表层沉积物为研究对象,它们是冷湖、大苏干湖、小苏干湖、大柴旦湖、小柴旦湖、托素湖、尕海、茶卡湖、唐古拉-1、错鄂、乃日平错、纳木错、空姆错和普莫雍错,探讨这些湖泊碳酸盐矿物组成及相应氧稳定同位素组成的影响因素。XRD结果显示这些湖泊的碳酸盐矿物多以方解石为主,并含白云石。其中冷湖以白云石为主,尕海还含有一定量的文石。碳酸盐氧同位素分析结果显示总碳酸盐δ18O在-15.9‰到2.6‰范围变化,方解石δ18O变化范围为-16.2‰~3.9‰,白云石δ18O变化在-15.3‰~-5.4‰范围内。通过氧同位素与湖区环境因素的相关性分析,认为总碳酸盐δ18O受湖水δ18O组成、温度、降水量/蒸发量、盐度、海拔和纬度多种因素影响;方解石δ18O主要受湖水δ18O、温度、盐度、海拔和纬度的影响;白云石δ18O受降水量/蒸发量和盐度的影响。总碳酸盐δ18O对湖水δ18O、温度、海拔和纬度的响应是以方解石为载体而体现的;总碳酸盐δ18O对降水量/蒸发量的响应则归因于白云石δ18O对其的响应结果;另外总碳酸盐δ18O通过方解石和白云石δ18O的叠加作用响应于盐度。该研究初步建立了总碳酸盐、方解石和白云石氧同位素与环境各个指标之间的响应关系,对于揭示过去青藏高原地区环境变化有重要意义。  相似文献   

20.
Our analysis of lipid molecular fossils from a Lake Titicaca (16° S, 69° W) sediment core reveals distinct changes in the ecology of the lake over an ∼25,000-yr period spanning latest Pleistocene to late Holocene time. Previous investigations have shown that over this time period Lake Titicaca was subject to large changes in lake level in response to regional climatic variability. Our results indicate that lake algal populations were greatly affected by the changing physical and chemical conditions in Lake Titicaca. Hydrocarbons are characterized by a combination of odd-numbered, mid- to long-chain (C21-C31) normal alkanes and alkenes. During periods when lake level was higher (latest Pleistocene, early Holocene, and late Holocene), the C21n-alkane, and the C25 and C27 alkenes dominate hydrocarbon distributions and indicate contribution from an algal source, potentially the freshwater alga Botryococcus braunii. The C30 4 α-methyl sterol (dinosterol) increases sharply during the mid-Holocene, suggesting a greatly increased dinoflagellate presence at that time. Long-chain alkenones (LCAs) become significant during the early Holocene and are highly abundant in mid-Holocene samples. There are relatively few published records of LCA detection in lake sediments but their occurrence is geographically widespread (Antarctica, Asia, Europe, North America). Lake Titicaca represents the first South American lake and the first low-latitude lake in which LCAs have been reported. LCA abundance and distribution may be related to the temperature-dependent response of an unidentified algal precursor. Although the LCA unsaturation indices cannot be used to determine absolute Lake Titicaca temperatures, we suspect that the published LCA U37K unsaturation calibrations can be applied to infer relative temperatures for early to mid-Holocene time when LCA concentrations are high. Using these criteria, the U37K unsaturation indices suggest relatively warmer temperatures in the mid-Holocene. In contrast to previous speculation, lipid analysis provides little evidence of a greatly increased presence of aquatic plants during the mid-Holocene. Instead, it appears that a few algal species were dominant in the lake. Based on the dramatic rise in abundances of LCAs and dinosterol during the early to mid-Holocene, we suspect that the algal producers of these compounds rose in response to a combination of physical and chemical changes in the lake. These include temperature, salinity, and alkalinity changes that occurred as lake level dropped sharply during a multi-millennial drought affecting the Central Andean Altiplano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号