首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the manufacturing of chromate salts (1972–1992) large quantities of Chromite Ore Processing Residue (COPR) were released into a decantation pond east of the former chemical plant of Porto-Romano (Durres, Albania), giving rise to yellow colored pond sediments. These Cr(VI) bearing sediments were deposited upon Quaternary silty-clay lagoonal sediments rich in iron oxides and organic matter. The pH values in these lagoonal sediments vary around 6.6, while in the pond sediments, it is mainly acidic (due to the presence of the sulfur stock piles in the area and the release of the H2SO4 from the activity of the former chemical plant), varying between 1.4 and 3.8. Continuous leaching of the COPR waste resulted in yellow-colored surface water runoff. The prediction of pH changes in the different types of sediments based upon acid/base neutralizing capacity (ANC/BNC) jointly with the quantitative data on release of heavy metals and especially Cr is considered an important advantage of the pHstat leaching test if compared to conventional leaching procedures. Thus, factors controlling the leaching of Cr(VI), Cr(III), Ca, Al, Fe, Mg from the COPR were investigated by means of pHstat batch leaching tests and mineralogical analysis. Moreover, mathematical and geochemical modeling complemented the study. The COPR in the area contain very high concentrations of chromium 24,409 mg/kg, which mainly occurs as Cr(III) (75–90%) as well as Cr(VI) (25–10%). The leaching of Cr(VI) occurs in all the range (2–10) of the tested pH values, however, it decreases under acidic conditions. Beside some reduction of Cr(VI) to Cr(III), the Cr(VI) content of the leachtes remains relatively high in the acidic environment, while the limning of Cr(VI) pond sediments will increase the release of the latter specie. The leaching of the Cr(III) occurs strictly under acidic conditions, whereby limning of these sediments will give rise to the lower solubility of Cr(III). The key mineral phases responsible for the fast release of the Cr(VI) are: the chromate salts (i.e. sodium chromate and sodium dichromate), while sparingly soluble chromatite (CaCrO4) and hashemite (BaCrO4) release Cr(VI) very slowly. Thus, pH and mineral solubility have been identified as key factors in the retention and the release of the hexavalent CrO4 2− and Cr2O7 from the COPR-rich pond sediments.  相似文献   

2.
The solubility of KFe(CrO4)2·2H2O, a precipitate recently identified in a Cr(VI)-contaminated soil, was studied in dissolution and precipitation experiments. Ten dissolution experiments were conducted at 4–75°C and initial pH values between 0.8 and 1.2 using synthetic KFe(CrO4)2·2H2O. Four precipitation experiments were conducted at 25°C with final pH values between 0.16 and 1.39. The log KSP for the reaction
相似文献   

3.

Background

The presence of natural and industrial jarosite type-compounds in the environment could have important implications in the mobility of potentially toxic elements such as lead, mercury, arsenic, chromium, among others. Understanding the dissolution reactions of jarosite-type compounds is notably important for an environmental assessment (for water and soil), since some of these elements could either return to the environment or work as temporary deposits of these species, thus would reduce their immediate environmental impact.

Results

This work reports the effects of temperature, pH, particle diameter and Cr(VI) content on the initial dissolution rates of K-Cr(VI)-jarosites (KFe3[(SO4)2 ? X(CrO4)X](OH)6). Temperature (T) was the variable with the strongest effect, followed by pH in acid/alkaline medium (H3O+/OH?). It was found that the substitution of CrO4 2?in Y-site and the substitution of H3O+ in M-site do not modify the dissolution rates. The model that describes the dissolution process is the unreacted core kinetic model, with the chemical reaction on the unreacted core surface. The dissolution in acid medium was congruent, while in alkaline media was incongruent. In both reaction media, there is a release of K+, SO4 2? and CrO4 2? from the KFe3[(SO4)2 ? X(CrO4)X](OH)6 structure, although the latter is rapidly absorbed by the solid residues of Fe(OH)3 in alkaline medium dissolutions. The dissolution of KFe3[(SO4)2 ? X(CrO4)X](OH)6 exhibited good stability in a wide range of pH and T conditions corresponding to the calculated parameters of reaction order n, activation energy E A and dissolution rate constants for each kinetic stages of induction and progressive conversion.

Conclusions

The kinetic analysis related to the reaction orders and calculated activation energies confirmed that extreme pH and T conditions are necessary to obtain considerably high dissolution rates. Extreme pH conditions (acidic or alkaline) cause the preferential release of K+, SO4 2? and CrO4 2? from the KFe3[(SO4)2 ? X(CrO4)X](OH)6 structure, although CrO4 2? is quickly adsorbed by Fe(OH)3 solid residues. The precipitation of phases such as KFe3[(SO4)2 ? X(CrO4)X](OH)6, and the absorption of Cr(VI) after dissolution can play an important role as retention mechanisms of Cr(VI) in nature.
  相似文献   

4.
The risk of groundwater contamination by chromate at a former chromite ore processing industrial site in Rivera (Switzerland) was assessed by determining subsoil Cr(VI) concentrations and tracking naturally occurring Cr(VI) reduction with Cr isotopes. Using a hot alkaline extraction procedure, a total Cr(VI) contamination of several 1000 kg was estimated. Jarosite, KFe3((SO4)x(CrO4)1−x)2(OH)6, and chromatite (CaCrO4) were identified as Cr(VI) bearing mineral phases using XRD, both limiting groundwater Cr(VI) concentrations. To track assumed Cr(VI) reduction at field scale δ53Cr values of contaminated subsoil samples in addition to groundwater δ53Cr data are used for the first time. The measurements showed a fractionation of groundwater δ53Cr values towards positive values and subsoil δ53Cr towards negative values confirming reduction of soluble Cr(VI) to insoluble Cr(III). Using a Rayleigh fractionation model, a current Cr(VI) reduction efficiency of approximately 31% along a 120 m long flow path was estimated at an average linear groundwater velocity of 3.3 m/d. Groundwater and subsoil δ53Cr values were compared with a site specific Rayleigh fractionation model proposing that subsoil δ53Cr values can possibly be used to track previous higher Cr(VI) reduction efficiency during the period of industrial activity. The findings strongly favor monitored natural attenuation to be part of the required site remediation measures.  相似文献   

5.
The mobility and toxicity of Cr within surface and subsurface environments is diminished by the reduction of Cr(VI) to Cr(III). The reduction of hexavalent chromium can proceed via chemical or biological means. Coupled processes may also occur including reduction via the production of microbial metabolites, including aqueous Fe(II). The ultimate pathway of Cr(VI) reduction will dictate the reaction products and hence the solubility of Cr(III). Here, we investigate the fate of Cr following a coupled biotic-abiotic reduction pathway of chromate under iron-reducing conditions. Dissimilatory bacterial reduction of two-line ferrihydrite indirectly stimulates reduction of Cr(VI) by producing aqueous Fe(II). The product of this reaction is a mixed Fe(III)-Cr(III) hydroxide of the general formula Fe1−xCrx(OH)3 · nH2O, having an α/β-FeOOH local order. As the reaction proceeds, Fe within the system is cycled (i.e., Fe(III) within the hydroxide reaction product is further reduced by dissimilatory iron-reducing bacteria to Fe(II) and available for continued Cr reduction) and the hydroxide products become enriched in Cr relative to Fe, ultimately approaching a pure Cr(OH)3 · nH2O phase. This Cr purification process appreciably increases the solubility of the hydroxide phases, although even the pure-phase chromium hydroxide is relatively insoluble.  相似文献   

6.
《Applied Geochemistry》2000,15(8):1203-1218
Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of the sulfate mineral ettringite, was synthesized and characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, thermogravimetric analyses, energy dispersive X-ray spectrometry, and bulk chemical analyses. The solubility of the synthesized solid was measured in a series of dissolution and precipitation experiments conducted at 5–75°C and at initial pH values between 10.5 and 12.5. The ion activity product (IAP) for the reaction Ca6[Al(OH)6]2(CrO4)3·26H2O⇌6Ca2++2Al(OH)4+3CrO2−4+4OH+26H2O varies with pH unless a CaCrO4(aq) complex is included in the speciation model. The log K for the formation of this complex by the reaction Ca2++CrO2−4=CaCrO4(aq) was obtained by minimizing the variance in the IAP for Ca6[Al(OH)6]2(CrO4)3·26H2O. There is no significant trend in the formation constant with temperature and the average log K is 2.77±0.16 over the temperature range 5–75°C. The log solubility product (log KSP) of Ca6[Al(OH)6]2(CrO4)3·26H2O at 25°C is −41.46±0.30. The temperature dependence of the log KSP is log KSP=AB/T+D log(T) where A=498.94±48.99, B=27,499±2257, and D=−181.11±16.74. The values of ΔG0r,298 and ΔH0r,298 for the dissolution reaction are 236.6±3.9 and 77.5±2.4 kJ mol−1. the values of ΔC0P,r,298 and ΔS0r,298 are −1506±140 and −534±83 J mol−1 K−1. Using these values and published standard state partial molal quantities for constituent ions, ΔG0f,298=−15,131±19 kJ mol−1, ΔH0f,298=−17,330±8.6 kJ mol−1, ΔS0298=2.19±0.10 kJ mol−1 K−1, and ΔC0Pf,298=2.12±0.53 kJ mol−1 K−1, were calculated.  相似文献   

7.
《Applied Geochemistry》2006,21(9):1469-1481
The removal of chromate from aqueous solutions, using finely ground pyrite and biotite, was investigated by batch experiments. The kinetics and mechanism of chromate reduction are discussed here. Chromate reduction by pyrite was about 100 times faster than that by biotite, and was also faster at pH 3 than 4. When pyrite was used, more than 90% of the initial chromate was reduced within 4 h at pH 4, and within 40 min. at pH 3. However, with biotite more than 400 h was required for the reduction of 90% of the initial chromate. The results indicate that the rate of chromate reduction was strongly depending on the amount and dissolution rate of the Fe(II) in the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH)3(s), which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than the expected values. When biotite was used, the amounts of decreased Fe(II) and reduced Cr(VI) showed no stoichiometric relationship, which implies that not only was there chromate reduction by Fe(II) ions in the acidic solution, but also heterogeneous reduction of Fe(III) ions by structural Fe(II) in biotite. However, the results from a series of the experiments using pyrite showed that the concentrations of the decreased Fe(II) and the reduced Cr(VI) were close to the stoichiometric ratio of 3:1. This was because the oxidation of pyrite rapidly created Fe(II) ions, even in oxygenated solutions, and the chromate reduction by the Fe(II) ions was significantly faster than the Fe(II) ion oxygenation. When compared with the experimental sets controlled at an initial pH of 3, the pH of the biotite batch, which was not controlled, increased to 3.4. Because of the increase in the pH, Cr(VI) was not completely removed, and 25% (1.2–1.3 mg/L Cr(VI)) of the initial concentration remained for up to 1000 h. The pH increase is, in most cases, caused by the hydrolysis of clay minerals. However, in the pyrite batches, there was no difference in the variations of the chromate reduction in relation to the pH control. There was also no difference in the capacity and rate of Cr(VI) reduction in 0.01 M NaCl or Na2SO4 solutions. In the 0.01 M NaH2PO4 solution pyrite experiment, the Cr(VI) was not completely removed, despite the maintenance of the pH at 3. The dominant Fe species was about 10 mg/L Fe(III) and few Fe(II) ions existed in solution. The Fe phosphate (Fe3(PO4)2 or FePO4) coatings on the surface of pyrite prevented access of O2 or Cr(VI). Therefore, the surface coatings are likely to have caused the deterioration of the Cr(VI) reduction capacity in the NaH2PO4 solution.  相似文献   

8.
The redox-sensitive stable isotope geochemistry of chromium bears the potential to monitor the attenuation of chromate pollution and to investigate changes in environmental conditions in the present and the past. The use of stable Cr isotope data as a geo-environmental tracer, however, necessitates an understanding of the reaction kinetics and Cr fractionation behaviour during redox transition and isotope exchange. Here, we report stable chromium isotope fractionation data for Cr(VI) reduction, Cr(III) oxidation and isotopic exchange between soluble Cr(III) and Cr(VI) in aqueous media. The reduction of Cr(VI) to Cr(III) with H2O2 under strongly acidic conditions shows a near-equilibrium isotope fractionation of Δ53/52Cr(Cr(III)-Cr(VI)) of −3.54 ± 0.35‰. At pH neutrality, however, the reduction experiments show a kinetic isotope fractionation Δ53/52Cr(Cr(III)-Cr(VI)) of −5‰ for the extent of reduction of up to 85% of the chromium. The oxidation of Cr(III) to Cr(VI) in alkaline media, using H2O2 as the oxidant, cannot be explained by a single, unidirectional reaction. Our experiments indicate that the involvement of the unstable intermediates Cr(IV) and Cr(V) and their disproportionation during redox reactions between Cr(III) and Cr(VI) influence the overall fractionation factor, depending on the prevailing pH conditions and the reaction rates. No detectable isotope exchange between soluble Cr(VI) and Cr(III) species at pH values of 5.5 and 7 was revealed over a timescale of days to weeks. This means that, at least within such a time frame, the isotopic composition of Cr(VI) in a natural system will not be influenced by equilibration with any Cr(III) and thus reveal the true extent of reduction, given that the Cr isotope composition of the source Cr(VI) and the fractionation factor for the prevailing conditions are known.  相似文献   

9.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

10.
The interaction of Cr(VI) with barite is studied by quantifying the effect of this mineral on the net flux of chromate ions diffusing through an artificial porous medium consisting of barite grains embedded in a matrix of silica hydrogel. The gel suppresses convection and advection, only allowing diffusion of the aqueous ions, which eventually can be sorbed on the surface of the embedded grains. We find that long-term Cr(VI) uptake by barite occurs by epitaxial overgrowth of a Ba(CrO4,SO4) solid solution with the barite structure. In these particular experiments, the epitaxial crystallites have compositions around BaCr0.89S0.11O4. Sorption on barite reduces the net flux of chromate ions in relation to the flow through an equivalent (with the same porosity and tortuosity) but unreactive quartz-gel composite. A linear sorption model with a factor Kd = 0.291 was used to account for the experimental results. This factor is a complex measure that depends on the bulk medium characteristics and on the tendency of CrO42− to partition into barite under the precipitation conditions. Here, we assess the operating precipitation conditions in terms of possible limiting scenarios of supersaturation and discuss their influence on the partitioning of CrO42− ions into barite. The results demonstrate that precipitation of Ba(SO4,CrO4) solid solutions may be an option to control the concentration of Cr(VI) in natural waters. Neglecting to consider such solid solution formation will lead to overestimates of the availability and mobility of Cr(VI) in the environment.  相似文献   

11.
Al2 (SO4)3, 18H2O, FeCl3 and Ca (OH)2 were used for the treatment of tannery wastewaters. The influences of pH and coagulant dosages were studied. Conditions were optimised according to the pollutant removal efficiencies, the volume of decanted sludge and the biodegradability index improvement. The results indicate that 67–71% of total COD, 76–92% of color and 79–97% of Cr can be removed using the optimum coagulant dosages at the optimum pH range. Al2 (SO4)3, 18H2O and Ca (OH)2 produced better results than FeCl3 in terms of COD, color and Cr removal as well as in terms of biodegradability improvement. Moreover, Al2 (SO4)3, 18H2O and FeCl3 produced the least amount of sludges for a given amounts of COD, color and Cr removed in comparison with Ca (OH)2. Al2 (SO4)3, 18H2O seems to be suitable for yielding high pollutant removals and corresponding low volumes of decanted sludges in addition to improving wastewaters biodegradability index.  相似文献   

12.
A novel complex continuous system of solid solutions involving vauquelinite Pb2Cu(CrO4)(PO4)(OH), bushmakinite Pb2Al(VO4)(PO4)(OH), ferribushmakinite Pb2Fe3+(VO4)(PO4)(OH), and a phase with the endmember formula Pb2Cu(VO4)(PO4)(H2O) or Pb2Cu(VO4)(РО3ОН)(ОН) is studied based on samples from the oxidation zone of the Berezovskoe, Trebiat, and Pervomaisko-Zverevsky deposits in the Urals, Russia. This is the first natural system in which chromate and vanadate anions show a wide range of substitutions and the most extensive solid solution system involving (CrO4)2– found in nature. The major couple substitution is Cr6+ + Cu2+ ? V5+ + M3+, where M = Fe, Al. The correlation coefficients calculated from 125 point analyses are: 0.96 between V and (Fe + Al), 0.96 between Cr and (Cu + Zn),–0.96 between V and (Cu + Zn),–0.97 between Cr and (Fe + Al), and–0.97 between (Fe + Al) and (Cu + Zn). The substitutions V5+ ? Cr6+ (correlation coefficient–0.98) and to a lesser extent P5+ ? As5+ (correlation coefficient–0.86) occur at two types of tetrahedral sites, whereas the metal–nonmetal/metalloid substitutions, i.e., V or Cr for P or As, are minor. The substitution Fe3+ ? Al3+ is also negligible in this solid solution system.  相似文献   

13.
The paper reports results of an experimental thermochemical study (in a heat-flux Tian-Calvet microcalorimeter) of montmorillonite from (I) the Taganskoe and (II) Askanskoe deposits and (III) from the caldera of Uzon volcano, Kamchatka. The enthalpy of formation Δ f H el 0 (298.15 K) of dehydrated hydroxyl-bearing montmorillonite was determined by melt solution calorimetry: ?5677.6 ± 7.6 kJ/mol for Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 (I), ?5614.3 ± 7.0 kJ/mol for Na0.4K0.1(Ca0.1Mg0.3Al1.5Fe 0.1 3+ )[Si3.9Al0.1O10](OH)2 (II), ?5719 ± 11 kJ/mol for K0.1Ca0.2Mg0.2(Mg0.6Al1.3Fe 0.1 3+ ) [Si3.7Al0.3O10](OH)2 (III), and ?6454 ± 11 kJ/mol for water-bearing montmorillonite (I) Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 · 2.6H2O. The paper reports estimated enthalpy of formation for the smectite end members of the theoretical composition of K-, Na-, Mg-, and Ca-montmorillonite and experimental data on the enthalpy of dehydration (14 ± 2 kJ per mole of H2O) and dehydroxylation (166 ± 10 kJ per mole of H2O) for Na-montmorillonite.  相似文献   

14.
The identification of the mineral species controlling the solubility of Al in acidic waters rich in sulfate has presented researchers with several challenges. One of the particular challenges is that the mineral species may be amorphous by X-ray diffraction. The difficulty in discerning between adsorbed or structural sulfate is a further complication. Numerous studies have employed theoretical calculations to determine the Al mineral species forming in acid sulfate soil environments. The vast majority of these studies indicate the formation of a mineral species matching the stoichiometry of jurbanite, Al(OH)SO4·5H2O. Much debate, however, exists as to the reality of jurbanite forming in natural environments, particularly in view of its apparent rare occurrence. In this work the use of Al, S and O K-edge XANES spectroscopy, in combination with elemental composition analyses of groundwater precipitates and a theoretical analysis of soluble Al concentrations ranging from pH 3.5 to 7, were employed to determine the mineral species controlling the solubility of Al draining from acid sulfate soils into Blacks Drain in north-eastern New South Wales, Australia. The results indicate that a mixture of amorphous Al hydroxide (Al(OH)3) and basaluminite (Al4(SO4)(OH)10·5H2O) was forming. The use of XANES spectroscopy is particularly useful as it provides insight into the nature of the bond between sulfate and Al, and confirms the presence of basaluminite. This counters the possibility that an Al hydroxide species, with appreciable amounts of adsorbed sulfate, is forming within these groundwaters.Below approximately pH 4.5, prior to precipitation of this amorphous Al(OH)3/basaluminite mixture, our studies indicate that the Al3+ activity of these acidic sulfate-rich waters is limited by the availability of dissolved Al from exchangeable and amorphous/poorly crystalline mineral species within adjacent soils. Further evidence suggests the Al3+ activity below pH 4.5 is then further controlled by dilution with either rainwater or pH 6-8 buffered estuarine water, and not a notional Al(OH)SO4 mineral species.  相似文献   

15.
A green-coloured phyllosilicate occurring on the walls of amygdaloidal cavities and along fractures in the Deccan Flood basalts at Killari, Maharashtra, India, has been identified as iron-rich saponite with a chemical composition [Na0.60 K0.40 Ca0.47] {Mg2.05Fe3.95} (Si6.45Al1.55) O20(OH)4. In order to explore the possible application of this phyllosilicate for environmental management, we have carried out X-ray photon spectroscopic (XPS) and diffuse reflectance spectroscopic (DRS) measurements on the dichromate solutions, in both the untreated and treated form. The dichromate solution treated with the saponite samples show a remarkable capability not only to adsorb hexavalent chromium but also effect a reduction of hexavalent to trivalent chromium at an efficiency of 75%. These valence states of chromium were characterised unambiguously by XPS and DRS spectra collected at room temperature. Our studies show that Killari saponite is capable of reducing Cr (VI) to Cr (III). The ferrous saponite in Deccan Flood basalts could therefore be a useful mineral in environmental management in areas affected by Cr (VI) effluents.  相似文献   

16.
Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity for the remediation of COPR related Cr(VI) contamination, with the synthetic nZVI demonstrating greater reactivity than the BnM. However, the biosynthesized BnM was also capable of significant Cr(VI) reduction and demonstrated a greater efficiency for the coupling of its electrons towards Cr(VI) reduction than the nZVI.  相似文献   

17.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

18.
Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4 = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29-75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4 present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone.  相似文献   

19.
The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L-1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH)2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II)aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II)aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.  相似文献   

20.
Zusammenfassung Meixnerit, Mg6Al2(OH)18·4H2O, kommt als sekundäres Mineral in Klüften eines Serpentins in der Nähe von Ybbs-Persenbeug (Niederösterreich) vor. Die Kristalle sind blättchenförmig, farblos durchsichtig, optisch ein-achsig-negativ mitn 0=1,517. Die Spaltbarkeit parallel (00.1) ist perfekt. Meixnerit ist trigonal-rhomboedrisch, RaumgruppeR m,a=3,0463 (15) Å,c=22,93 (2) Å,Z=3/8. Strukturell ist er eng mit dem Hydrotalkit verwandt. Das neue Mineral wurde zu Ehren von Herrn Prof. Dr.H. Meixner, Salzburg, benannt.
Meixnerite, Mg6Al2(OH)18·4H2O, a new magnesium-aluminum-hydroxide mineral
Summary Meixnerite, Mg6Al2(OH)18·4H2O, occurs as a secondary mineral in cracks of a serpentine rock near Ybbs-Persenbeug (Lower Austria). The crystals are tabular, colorless transparent, optically uni-axial negative withn 0=1.517, cleavage parallel (00.1) perfect. Meixnerite is trigonal rhombohedral, space groupR m,a=3.0463 (15) Å,c=22.93 (2) Å,Z=3/8. It is structurally related to hydrotalcite. The new mineral is named in honour of Prof. Dr.H. Meixner, Salzburg.


Mit 1 Abbildung  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号