首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glacimarine sediment deposited in the fjord adjacent to Muir Glacier in south-eastern Alaska consists of rhythmically laminated muds, stratified sandy mud, sand and gravelly mud facies. Cyclicity is recorded by gravelly mud facies deposited during winter by ice-rafting, black mud laminae formed by spring plankton blooms and variations in tidal rhythmite thickness and texture produced by the interaction of meltwater discharges and tidal currents in the macrotidal fjord. Regular cyclicity in laminae thickness is tested statistically by Fourier transform and can be attributed to a lunar tidal cycle control in the five cores collected up to 6 km from the sediment source. Cores close to the source can have additional laminae as a result of discharge fluctuations, and distal cores may lack full cycles because of variability in the plume path and attenuation with distance. Cyclic variations in sediment texture are recorded in magnetic susceptibility (MS) profiles of the cores. High MS values are produced by turbidite sand beds or by stratified sandy mud deposited by overflow plumes during peak summer meltwater discharge. Low values reflect muddy intervals deposited during periods of low meltwater discharge, such as during autumn and winter. Sediment accumulation rates measured by 210Pb dating range from 82 cm year–1, 2 km from the sediment source at the head of the fjord, to 16 cm year–1, 6 km away. These rates are within the same range as average sediment accumulation rates determined from cyclic seasonal markers within the cores. These data show that, with careful documentation, annual cycles of glacimarine sediment accumulation can be detected within marine cores. Cores collected from the distal portion of the basin were deposited during the transition of Muir Glacier from a tidewater terminus ending in deep water to a terrestrial glacier with an ice-contact delta deposited in front of the terminus. This transition is recorded by a coarsening-upward sedimentary sequence formed by turbidite sands originating from the prograding delta above fine-grained, laminated basin fill deposited by turbid overflow plumes.  相似文献   

2.
The effect of seeping of methane on marine sediment records has been studied in four gravity cores from Vestnesa Ridge, Svalbard margin. The area shows acoustic signs in the form of flares indicating active methane gas seepage. For a better understanding of the timing and variability of the flux of methane in the past and the effects on potential proxies, a detailed study of the diagenetic processes that may affect the composition and structure of both sediments and foraminiferal shells is needed. Here we discuss deep‐sea records from methane‐influenced environments in three cores from an active and very heterogeneous seep‐area (pockmark) and one core from outside the pockmark for background. The results include the distribution and stable isotopes of authigenic carbonates and of benthic and planktonic foraminifera, magnetic susceptibility, AMS‐14C dates, sedimentary data and biostratigraphy. Extremely low δ13C values recorded in both benthic and planktonic foraminifera during the Bølling‐Allerød interstadials indicate possible increased methane flux beginning at late Heinrich event H1. The recorded low values are mainly a result of diagenetic overprint by methane‐derived authigenic carbonates. The δ18O signals of authigenic carbonates are close to those of foraminiferal calcite and thus the δ18O records remain a valid stratigraphical tool in methane seep sites, except in the case of severely encrusted samples. In addition, the records from the active pockmark show nearly constant values of low magnetic susceptibility in contrast to higher and more variable magnetic susceptibility values from the control station and other published records from normal sediments west of Svalbard. This phenomenon is probably caused by dissolution of magnetic minerals in the reducing environmental conditions of methane seep sediments, associated with anaerobic oxidation of methane and formation of paramagnetic minerals (pyrite). This process enables magnetic susceptibility to be used as a common diagnostic tool for identifying methane‐related palaeo‐reductive environments.  相似文献   

3.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

4.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

5.
Stable isotopes, geochemical, lithological, and micropaleontological results from cores from the far northwest (FNW) Pacific and the Okhotsk and Bering seas are used to reconstruct the regional environment for the last glaciation, the deglacial transition, and the Holocene. δ18O records of planktonic foraminifera of the region show two “light” shifts during deglacial time, provoked by the freshening of the surface water and climate warming. These north Pacific terminal events (T1ANP and T1BNP) with ages of 12,500 and 9300 yr B.P., respectively, occur almost simultaneously with two episodes of accelerated glacier melting around the North Atlantic. Along with the isotopic shifts, the CaCO3content in regional sediments increased abruptly (1A and 1B carbonate peaks), probably due to changes of productivity and pore water chemistry of surface sediments. Organic matter and opal concentration increased during the transition (between T1ANP and T1BNP events) in the sediments of the FNW Pacific and the southern part of the Bering Sea and opal content increased in the Holocene in the Bering and Okhotsk Seas. δ13C records of cores from the Okhotsk and Bering seas and the FNW Pacific do not contradict the hypothesis of increased intermediate water formation in the region during glaciation. During deglaciation, accumulation of the coarse terrigenous component decreased in sediments of the Bering Sea and the FNW Pacific before the T1ANP event, probably as a result of rising sea level and opening of the Bering Strait.  相似文献   

6.
Holocene high-resolution cores from the margin of the Arctic Ocean are rare. Core P189AR-P45 collected in 405-m water depth on the Beaufort Sea slope, west of the Mackenzie River delta (70°33.03′N and 141°52.08′W), is in close vertical proximity to the present-day upper limit of modified Atlantic water. The 5.11-m core spans the interval between ∼6800 and 10,400 14C yr B.P. (with an 800-yr ocean reservoir correction). The sediment is primarily silty clay with an average grain-size of 9 φ. The chronology is constrained by seven radiocarbon dates. The rate of sediment accumulation averaged 1.35 mm/yr. Stable isotopic data (δ18O and δ13C) were obtained on the polar planktonic foraminifera Neogloboquadrina pachyderma (s) and the benthic infaunal species Cassidulina neoteretis. A distinct low-δ18O event is captured in both the benthic and planktonic data at ∼10,000 14C yr B.P.—probably recording the glacial Lake Agassiz outburst flood associated with the North Atlantic preboreal cold event. The benthic foraminifera are dominated in the earliest Holocene by C. neoteretis, a species associated with modified Atlantic water masses. This species decreases toward the core top with a marked environmental reversal occurring ∼7800 14C yr B.P., possibly coincident with the northern hemisphere 8200 cal yr B.P. cold event.  相似文献   

7.
The mineralogy, geochemistry, and radiocarbon ages of two sediment cores (GMX1 and GMX2) collected from the deep sea area of the Southwestern Gulf of Mexico (∼876–1752 m water depth) were studied to infer the sedimentation rate, provenance, heavy metal contamination, and depositional environment. The sediments are dominated by silt and clay fractions. The mineralogy determined by X-Ray diffractometry for the sediment cores reveals that montmorillonite and muscovite are the dominant clay minerals. The sections between 100 and 210 cm of the sediment cores GMX1 and GMX2, respectively, are characterized by the G. menardii group and G. Inflata planktonic foraminiferal species, which represent the Holocene and Pleistocene, respectively. The radiocarbon-age measurements of mixed planktonic foraminifera varied from ∼268 to 45,738 cal. years B.P and ∼104 to 25,705 cal. years B.P, for the sediment cores GMX1 and GMX2, respectively. The variation in age between the two sediment cores is due to a change in sediment accumulation rate, which was lowest at the location GMX1 (0.006 cm/yr) and highest at the location GMX2 (0.017 cm/yr).The chemical index of alteration (CIA), chemical index of weathering (CIW), and index of chemical maturity (ICV) values indicated a moderate intensity of weathering in the source area. The total rare earth element concentrations (∑REE) in the cores GMX1 and GMX2 vary from ∼94 to 171 and ∼78 to 151, respectively. The North American Shale Composite (NASC) normalized REE patterns showed flat low REE (LREE), heavy REE (HREE) depletion with low negative to positive Eu anomalies, which suggested that the sediments were likely derived from intermediate source rocks.The enrichment factor of heavy metals indicated that the Cd and Zn concentrations in the sediment cores were impacted by an anthropogenic source. The redox-proxy trace element ratios such as V/Cr, Ni/Co, Cu/Zn, (Cu + Mo)/Zn, and Ce/Ce* indicated that the sediments were deposited under an oxic depositional environment. The similarity in major element concentrations, REE content, and the NASC normalised REE patterns between the cores GMX1 and GMX2 revealed that the provenance of sediments remained relatively uniform or constant during deposition for ∼4.5 Ma. The major and trace element based multidimensional discrimination diagrams showed a rift setting for the core sediments, which is consistent with the geology of the Gulf of Mexico.  相似文献   

8.
The distribution patterns of benthonic and planktonic foraminifera in cores from the Ionian Basin, central Mediterranean, were investigated in relation to the deposition of sapropel S-1. The sapropel is a dark organic-rich sediment deposited under anoxic conditions during the last marine stagnation in the Early Holocene. The major divisions between both benthonic and planktonic faunas correspond to changes in the core lithology and coincide with the transitions between pre-sapropel, sapropel/'oxidized layer' and post-sapropel sediments. The faunal evidence shows that the oxidized layer belongs to the sapropel sequence. The planktonic faunas have the same species composition as in the sapropel sediment and the high density of planktonic species continues into the oxidized layer. The oxidized layer is devoid of a benthonic fauna or contains a 'sapropel-associated' fauna composed of infaunal species with an affinity to high supply of organic material material and low oxygen. High depletion in the heavy oxygen isotope in the oxidized layer substantiates the faunal evidence. A peak in abundance of the planktonic species Globorotalia inflata at the top of the oxidized layer marks the time when turnover of the water masses ended the stagnation phase and sapropel sedimentation in the Ionian Basin at about 6000 BP. The distribution of the benthonic and planktonic foraminifera shows that the sapropel in the central part of the Ionian Basin was originally almost twice as thick as it is today. When oxygen returned to the deep sediments the top of the sapropel was oxidized to 4–7 cm below its original surface. Only the lower part of the sapropel is preserved. The remainder is now a red laminated layer, the 'oxidized layer'.  相似文献   

9.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   

10.
ABSTRACT The Moroccan Turbidite System (MTS) on the north‐west African margin extends 1500 km from the head of the Agadir Canyon to the Madeira Abyssal Plain, making it one of the longest turbidite systems in the world. The MTS consists of three interconnected deep‐water basins, the Seine Abyssal Plain (SAP), the Agadir Basin and the Madeira Abyssal Plain (MAP), connected by a network of distributary channels. Excellent core control has enabled individual turbidites to be correlated between all three basins, giving a detailed insight into the turbidite depositional architecture of a system with multiple source areas and complex morphology. Large‐volume (> 100 km3) turbidites, sourced from the Morocco Shelf, show a relatively simple architecture in the Madeira and Seine Abyssal Plains. Sandy bases form distinct lobes or wedges that thin rapidly away from the basin margin and are overlain by ponded basin‐wide muds. However, in the Agadir Basin, the turbidite fill is more complex owing to a combination of multiple source areas and large variations in turbidite volume. A single, very large turbidity current (200–300 km3 of sediment) deposited most of its sandy load within the Agadir Basin, but still had sufficient energy to carry most of the mud fraction 500 km further downslope to the MAP. Large turbidity currents (100–150 km3 of sediment) deposit most of their sand and mud fraction within the Agadir Basin, but also transport some of their load westwards to the MAP. Small turbidity currents (< 35 km3 of sediment) are wholly confined within the Agadir Basin, and their deposits pinch out on the basin floor. Turbidity currents flowing beyond the Agadir Basin pass through a large distributary channel system. Individual turbidites correlated across this channel system show major variations in the mineralogy of the sand fraction, whereas the geochemistry and micropalaeontology of the mud fraction remain very similar. This is interpreted as evidence for separation of the flow, with a sand‐rich, erosive, basal layer confined within the channel system, overlain by an unconfined layer of suspended mud. Large‐volume turbidites within the MTS were deposited at oxygen isotope stage boundaries, during periods of rapid sea‐level change and do not appear to be specifically connected to sea‐level lowstands or highstands. This contrasts with the classic fan model, which suggests that most turbidites are deposited during lowstands of sea level. In addition, the three largest turbidites on the MAP were deposited during the largest fluctuations in sea level, suggesting a link between the volume of sediment input and the magnitude of sea‐level change.  相似文献   

11.
The uppermost Quaternary sediments in Cartwright Saddle, Labrador Shelf, are acoustically laminated, with reflectors that can be traced over long distances. Two piston cores from the saddle record changes in sediment and meltwater delivery from the northeast margin of the Laurentide Ice Sheet (LIS) during deglaciation. Variations in sediment properties indicate a similar history of sediment accumulation over the last 12 kyr. The temporal sampling interval reaches decadal resolution in the last deglacial period 7–9 ka. Analyses of total carbonate content, sediment magnetic variables, foraminiferal species and stable isotope measurements on planktic foraminifers show that abrupt changes occurred ca. 10.9, 9.2, 8.8, 7.9 and 7 ka (with 450 yr correction). There was no distinct change in sediment character during much of the Younger Dryas chronozone. In the δ18O record, the 8.8 ka event is a dramatic 1‰ shift toward lower values, which we associate with the Noble Inlet glacial event within Hudson Strait. We do not see the pronounced low δ18O event at 7.1 ka reported off Nova Scotia, but surprisingly, neither the Nova Scotia records nor other records in the Labrador Sea capture the impressive 8.8 ka change. Serious consideration must be given to the final collapse of the LIS as the cause of the 8.2 cal. ka cold event recorded in Greenland and northwest Europe. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Western tropical Pacific sea surface temperatures and Pacific Deep Water temperatures during Marine Isotope Stage 3 have been reconstructed from the δ18O and Mg/Ca of planktonic and benthic foraminifera from Marion Dufresne core MD98-2181. This 36 m marine core was collected at 6.3°N from a water depth of 2114 m. With sediment accumulation rates of up to 80 cm/ky, it provides a decadally resolved history of ocean variability during the Last Glacial period. Surface temperatures and salinities at this site varied in close association with millennial-scale atmospheric temperature swings at high northern latitudes as reflected in the GISP2 ice core. At times of colder atmospheric temperatures over Greenland, the western Pacific was more saline and summer season SSTs were ~2 °C colder. These millennial-scale changes within the tropics are attributed to a southward displacement of the summer season ITCZ in response to steeper meridional temperature gradients within the Pacific. The benthic δ18O record from MD98-2181 documents upper Pacific Deep Water temperature and salinity variability. Benthic δ18O variations of 0.3–0.5‰ during MIS 3 indicate deep waters within the Pacific were varying by ~1–1.5 °C, with the possibility that some of the variability was due to changing salinity and minor glacial–eustatic changes. The observed deep-water variability correlates to changes in Antarctic surface temperatures and thus reflects changes in Southern Ocean temperatures at the site of Pacific Deep Water formation. The combined planktonic and benthic records from MD98-2181 thus provide a northern and southern hemispheric climate record of anti-phased variability during MIS 3 as has been inferred previously from ice core records. Furthermore, the deep sea temperature excursions appear to have led millennial variations in atmospheric CO2 as recorded in the EDML ice core by ~1 kyr.  相似文献   

13.
Lake Zürich occupies a glacially overdeepened perialpine trough in the northern Middlelands of Switzerland. A total of 154.4 m of Quaternary sediments and 47.3 m of Tertiary Molasse bedrock has been cored from the deepest part of the lake, some 10 km south of the city of Zürich. Some 16.8 m of gravels and sands directly overlying the bedrock include basal till and probably earliest subglacial fluvial and lacustrine deposits. These are overlain by 98.6 m of fine-grained, glacial-aged sediments comprising completely deformed proglacial and/or subglacial lacustrine muds, separated by four basal mud tills. The lack of interglacial sediments, fossils, and other datable material, and the presence of severe sediment deformation and unknown amounts of erosion prevent the establishment of an exact chronostratigraphy for sediments older than the upper mud till. Above it some 8.6 m of lacustrine muds were deposited, folded, faulted, and tilted during the final opening of the lake at about 17,500–17,000 years ago. Superimposed are 30.4 m of final Würm and post-glacial sediments comprising (from oldest): cyclic proglacial mud, thick-bedded and laminated mud, a complex transition zone, laminated carbonate, laminated marl, and diatom-calcite varves. These sediments reflect changing catchment and lacustrine conditions including: glacial proximity, catchment stability, lake inflow characteristics, thermal structure, chemistry, and bed stability. Average sedimentation rates ranged from 11 cm yr−1 immediately after glacier withdrawal, to as low as 0.4 mm yr−1 as the environment stabilized. The lack of coarse outwash deposits separating the fine-grained glaciolacustrine sediments from a corresponding underlying basal till suggests that deglaciation of the deep northern basin of Lake Zürich was by stagnation-zone retreat rather than by retreat of an active ice-front.  相似文献   

14.
Carbonate-dominant sediments are currently forming and accumulating over the extensive marine shelf of the passive margin of southern Australia. A dearth of continental detritus results from both a very low relief and a predominantly arid climate. The wide continental shelf is bathed by cold upwelling ocean waters that support luxuriant growths of bryozoans and coralline algae, together with sponges, molluscs, asteroids, benthic and some planktonic foraminifera. The open ocean coast is battered by a persistent southwest swell, resulting in erosion of calcrete-encrusted Pleistocene eolianites. Much sediment is reworked and overall shelf sedimentation rates are low. High-energy microtidal beach/dune systems occur between headlands and along the very long ocean beach in the Coorong region. The northern, more arid coastal areas also contain saline lakes that precipitate gypsum from infiltrated sea water, and display marginal facies of aragonite boxwork to fenestral carbonate crusts, with stromatolites and tepee structures. In contrast, the southern, seasonally humid Coorong region, has a predominantly continental groundwater regime where sulphate is rare, and the high summer evaporation precipitates dolomite, magnesite and aragonite muds. Fenestral crusts, breccias, tepees and some stromatolites are also present.

St. Vincent and Spencer gulfs both afford some protection from ocean swell, but tidal amplitude and currents increase, and a depth and inundation-related zonation of plants and animals is established. Muddy carbonate sand accumulates on the sea floor below 30 m, where filter-feeding bryozoans, bivalves and sponges dominate. In shallower regions, seagrass meadows contain a rich fauna that results in rapid accumulation of an unsorted muddy bioclastic sand. Mangrove woodlands backed by saline marsh with cyanobacterial mats are common, and accumulate mud-rich and gastropod-bearing sediment. As tidal amplitude and desiccation increase northward into both gulfs, a supratidal zone bare of vegetation (sabkha) becomes the site for deposition of gypsum-rich and fenestral calcitic mud.  相似文献   


15.
Piper  Hiscott  & Normark 《Sedimentology》1999,46(1):47-78
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known.
The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses.
Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.  相似文献   

16.
台湾峡谷HD133和HD77柱状样的沉积构成和发育背景   总被引:1,自引:0,他引:1  
分别对南海东北部台湾峡谷内水深3 280 m的HD133和峡谷外水深3 378 m的HD77重力活塞柱状样进行了沉积物粒度、古生物和碳酸钙含量分析,利用AMS14C同位素测年和沉积速率初步认定是属于MIS3a以来的沉积。按沉积物粒度和碳酸钙含量可将两支柱状样划分为3套沉积层段:上部层段1和下部层段3均以粉砂质黏土为主,夹薄层粉砂,深水底栖有孔虫含量高,碳酸钙低于10%,代表受重力流作用较弱的正常深海沉积;中部层段2发育一套以中-细粒为主的厚砂层,含大量浅水底栖有孔虫,碳酸钙含量可高达60%,AMS14C测年出现倒置现象,表明主要为浅水重力流沉积。柱状样的沉积构成响应同期海平面变化,特别表现在深水砂层沉积的两大控制因素:在时间上,低海平面时期大量浅水和陆源碎屑物质直接输送到陆坡之下的深水区,形成富砂的层段2;在空间上,峡谷水道是重力流的物质输送通道,地形优势使得重力流携带物优先在水道中发生沉积,造成HD133柱的含砂量明显高于HD77柱状样。  相似文献   

17.
On the southeast Australian continental margin, mixed siliciclastic and temperate carbonate sediments are presently forming along the narrow 20–35 km‐wide northern New South Wales shelf over an area of 4960 km2. Here, year‐round, highly energetic waves rework inner and mid‐shelf clastic sediments by northward longshore currents or waning storm flows. The strong East Australian Current flows south, sweeping clastic and outer shelf biogenic sands and gravels. Quaternary siliciclastic inner shelf cores consist of fine to medium, lower shoreface sand and graded storm beds of fine to coarse sand. Physically abraded, disarticulated molluscs such as Donacidae and Glycymeridae form isolated gravel lags. Highstand inner shelf clastics accumulate at 0.53 m/103 y in less than 50 m water depth. Clastic mid‐shelf cores contain well‐sorted, winnowed, medium shoreface sands, with a fine sand component. Fine sand and mud in this area is discharged mainly from New South Wales’ largest river, the Clarence. The seaward jutting of Byron Bay results in weakened East Australia Current flows through the mid‐shelf from Ballina to Yamba allowing the fine sediments to accumulate. Quaternary carbonate outer shelf cores have uniform and graded beds forming from the East Australian Current and are also influenced by less frequent storm energy. Modern clastic‐starved outer shelf hardgrounds are cemented by coralline algae and encrusting bryozoans. Clay‐sized particles are dominantly high‐Mg calcite with minor aragonite and smectite/kaolinite. Carbonate sands are rich in bryozoan fragments and sponge spicules. Distinctive (gravel‐sized) molluscs form isolated shells or shell lag deposits comprising Limopsidae and Pectinidae. The upper slope sediments are the only significant accumulation of surficial mud on the margin (18–36 wt%), filling the interstices of poorly sorted, biogenic gravels. Pectinid molluscs form a basal gravel lag. During highstand the outer shelf accumulates sediment at 0.40 m/103 y, with the upper slope accumulating a lower 0.23 m/103 y since transgression. Transgression produced a diachronous (14–10 ka) wave‐ravinement surface in all cores. Relict marine hardgrounds overlie the wave‐ravinement surface and are cemented by inorganic calcite from the shallow and warm East Australian Current. Transgressive estuarine deposits, oxygen isotope Stage 3–5 barriers or shallow bedrock underlie the wave‐ravinement surface on the inner and mid shelf. Northern New South Wales is an example of a low accommodation, wave‐ and oceanic current‐dominated margin that has produced mixed siliciclastic‐carbonate facies. Shelf ridge features that characterise many storm‐dominated margins are absent.  相似文献   

18.
In sediments, diffusive transport of ions and molecules is basically influenced by two sediment characteristics: tortuosity and porosity. For the first time, the formation factor F, which combines the effect of tortuosity and porosity on diffusion, was quantified in freshwater sediments at submillimeter resolution. Sediment cores were treated with KCl and F was determined using a resistivity sensor and K+ selective electrodes.F was determined in sediments from different water depths of the eutrophic Lake Zug (Switzerland): In sandy sediments from a shallow site (12 m depth), F increased by approximately 50% within a few millimeters below the sediment surface. In clayey and silty sediments from the oxic (<80 m depth) and seasonally anoxic (80-120 m depth) zones of the lake, the initial increase in F was only 20%. In the permanent anoxic zone (>160 m depth), F increased by only 10% just below the sediment surface. Values of F were correlated with the porosity at each depth. We found close correlations of F = 1.02 · φ−1.81 for clay-silt sediments, and F = 1.04 · φ−1.21 for sandy sediments. The exponents are considerably smaller in Lake Zug than found for marine sediments, thus, diffusive transport seems to be less affected by tortuosity in this freshwater system.  相似文献   

19.
对南海北部MD05-2904孔45 m的连续沉积物中提取的浮游有孔虫Globigerinoides ruber(白色)进行稳定同位素分析, 得到晚MIS 8以来(时间跨度257 ka, 平均时间分辨率228 a)的高分辨率沉积记录, δ18O和δ13C的频谱分析显示了强烈的岁差(23.4 ka、19.8 ka)、半岁差(11.7 ka、9.9 ka)周期.MD05-2904孔MIS 24时间段的氧同位素记录了格陵兰冰心中发现的Dansgaard/Oeschger和Heinrich事件.与葫芦洞石笋记录及南海邻区浮游有孔虫氧同位素记录的对比显示了受季风控制的区域因素, 如降雨、河流输入导致的盐度变化等对表层海水组成的影响.氧同位素在MIS 3、MIS 6的早期以及MIS 7.4偏轻; 而在MIS 5.5偏重, 这种现象解释为降雨量和蒸发量共同作用的结果.而末次冰盛期高达6570 cm/ka的沉积速率反映了低海平面时孔位离岸距离缩短带来丰富的沉积物源.   相似文献   

20.
对西菲律宾海Ph05-5柱状样190ka以来钙质超微化石进行了氧碳同位素分析.研究结果表明, 钙质超微化石δ18O值在末次间冰期(MIS 5e) 和全新世明显低于末次冰期(MIS5d~2) 和倒数第二次冰期(MIS6).超微化石δ18O值与浮游和底栖有孔虫δ18O值都呈明显的正相关关系, 但超微化石δ18O平均值比浮游有孔虫Globigerinoides rubber δ18O平均值高0.431×10-3, 比Neogloboquadrina dutertrei δ18O平均值低0.410×10-3, 而这三者又远远低于底栖有孔虫Cibicides wullerstorfi的δ18O平均值.超微化石δ13C值变化阶段性特征明显, 并与该孔超微化石绝对丰度变化趋势极为相似, 二者共同反映出西菲律宾海大约从190ka到110ka的MIS6和大约MIS 5e期, 表层海水初级生产力相当稳定且显著低于其他各时期; 大约从MIS5d期开始表层初级生产力显著上升, 初级生产力的这一高值一致持续到约25ka左右的末次冰期; 在25ka以来的MIS1、2期, 表层初级生产力有所下降, 但仍高于190ka到110ka的MIS6和MIS 5e期.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号