首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new installation for the analysis of picomole quantities of nitrogen has been designed and constructed. It permits the simultaneous analysis of N and rare gases extracted from silicates by heating. The extraction procedure involves the use of a CO2 laser as a heater, and the analysis is made by static mass spectrometry using a high sensitivity, high resolution mass spectrometer. Procedural blanks of 2 picomoles N2 (60 picogram N) allow us to analyse routinely N in mg-sized samples such as mantle-derived and meteoritic minerals, and Lunar soil grains.  相似文献   

2.
Since about half a century samples from the lunar and asteroidal regoliths been used to derive information about elemental and isotopic composition and other properties of the present and past solar wind, predominantly for the noble gases and nitrogen. Secular changes of several important compositional parameters in the solar wind were proposed, as was a likely secular decrease of the solar wind flux. In 2004 NASA’s Genesis mission returned samples which had been exposed to the solar wind for almost 2.5 years. Their analyses resulted in an unprecendented accuracy for the isotopic and elemental composition of several elements in the solar wind, including noble gases, O and N. The Genesis data therefore also allow to re-evaluate the lunar and meteorite data, which is done here. In particular, claims for long-term changes of solar wind composition are reviewed.Outermost grain layers from relatively recently irradiated lunar regolith samples conserve the true isotopic ratios of implanted solar wind species. This conclusion had been made before Genesis based on the agreement of He and Ne isotopic data measured in the aluminum foils exposed to the solar wind on the Moon during the Apollo missions with data obtained in the first gas release fractions of stepwise in-vacuo etch experiments. Genesis data allowed to strengthen this conclusion and to extend it to all five noble gases. Minor variations in the isotopic compositions of implanted solar noble gases between relatively recently irradiated samples (<100 Ma) and samples irradiated billions of years ago are very likely the result of isotopic fractionation processes that happened after trapping of the gases rather than indicative of true secular changes in the solar wind composition. This is particularly important for the 3He/4He ratio, whose constancy over billions of years indicates that hardly any 3He produced as transient product of the pp-chains has been mixed from the solar interior into its outer convective zone. The He isotopic composition measured in the present-day solar wind therefore is identical to the (D + 3He)/4He ratio at the start of the suns’s main sequence phase and hence can be used to determine the protosolar D/H ratio.Genesis settled the long-standing controversy on the isotopic composition of nitrogen in lunar regolith samples. The 15N/14N ratio in the solar wind as measured by Genesis is lower than in any lunar sample. This proves that nitrogen in regolith samples is dominated by non-solar sources. A postulated secular increase of 15N/14N by some 30% over the past few Ga is not tenable any longer. Genesis also provided accurate data on the isotopic composition of oxygen in the solar wind, invaluable for cosmochemisty. These data superseded but essentially confirmed one value – and disproved a second one – derived from lunar regolith samples shortly prior to Genesis.Genesis also confirmed prior conclusions that lunar regolith samples essentially conserve the true elemental ratios of the heavy noble gases in the solar wind (Ar/Kr, Kr/Xe). Several secular changes of elemental abundances of noble gases in the solar wind had been proposed based on lunar and meteoritic data. I argue here that lunar data – in concert with Genesis – provide convincing evidence only for a long-term decrease of the Kr/Xe ratio by almost a factor of two over the past several Ga. It appears that the enhancement of abundances of elements with a low first ionisation potential in the solar wind (FIP effect) changed with time.Finally, Genesis allows a somewhat improved comparison of the present-day flux of solar wind Kr and Xe with the total amount of heavy solar wind noble gases in the lunar regolith. It remains unclear whether the past solar wind flux has been several times higher on average than it is today.  相似文献   

3.
The most fundamental character of lunar soil is its high concentrations of solar-wind-implanted elements, and the concentrations and behavior of the noble gases He, Ne, Ar, and Xe, which provide unique and extensive information about a broad range of fundamental problems. In this paper, the authors studied the forming mechanism of lunar regolith, and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil, with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition, the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas ^3He in lunar regolith will be further discussed.  相似文献   

4.
微量陨石激光熔样稀有气体测定方法是一种可以在微米尺度上对几毫克陨石样品进行准确稀有气体同位素分析的方法,克服了传统全岩熔融法在测量时存在样品用量大、前处理过程复杂和样品稀有气体分布不均导致不同组分的宇宙射线暴露历史无法进一步区分等问题。但是由于该方法所用样品体积小和样品用量低,要求实验室具有超低本底的稀有气体提取系统,目前国内在微量陨石稀有气体分析技术方面尚处于起步阶段。本文采用金刚石激光样品窗成功研制了超低本底的气体提取系统,通过系统体积标定和天平称量误差、热本底、干扰元素、质量歧视及质谱灵敏度等参数的校正,在中国科学院地质与地球物理研究所建立了微量陨石激光熔样稀有气体测定方法,并对毫克级微量钙长辉长无球粒陨石Millbillillie粉末标样进行了稀有气体同位素含量和比值测定,计算获得准确一致的宇宙暴露年龄。该方法的建立,将为我国迅速发展的比较行星学和深空探测提供重要技术支撑。  相似文献   

5.
We present the elemental and isotopic composition of noble gases in the bulk solar wind collected by the NASA Genesis sample return mission. He, Ne, and Ar were analyzed in diamond-like carbon on a silicon substrate (DOS) and 84,86Kr and 129,132Xe in silicon targets by UV laser ablation noble gas mass spectrometry. Solar wind noble gases are quantitatively retained in DOS and with exception of He also in Si as shown by a stepwise heating experiment on a flown DOS target and analyses on other bulk solar wind collector materials. Solar wind data presented here are absolutely calibrated and the error of the standard gas composition is included in stated uncertainties. The isotopic composition of the light noble gases in the bulk solar wind is as follows: 3He/4He: (4.64 ± 0.09) × 10−4, 20Ne/22Ne: 13.78 ± 0.03, 21Ne/22Ne: 0.0329 ± 0.0001, 36Ar/38Ar 5.47 ± 0.01. The elemental composition is: 4He/20Ne: 656 ± 5, and 20Ne/36Ar 42.1 ± 0.3. Genesis provided the first Kr and Xe data on the contemporary bulk solar wind. The preliminary isotope and elemental composition is: 86Kr/84Kr: 0.302 ± 0.003, 129Xe/132Xe: 1.05 ± 0.02, 36Ar/84Kr 2390 ± 150, and 84Kr/132Xe 9.5 ± 1.0. The 3He/4He and the 4He/20Ne ratios in the Genesis DOS target are the highest solar wind values measured in exposed natural and artificial targets. The isotopic composition of the other noble gases and the Kr/Xe ratio obtained in this work agree with data from lunar samples containing “young” (∼100 Ma) solar wind, indicating that solar wind composition has not changed within at least the last 100 Ma. Genesis could provide in many cases more precise data on solar wind composition than any previous experiment. Because of the controlled exposure conditions, Genesis data are also less prone to unrecognized systematic errors than, e.g., lunar sample analyses. The solar wind is the most authentic sample of the solar composition of noble gases, however, the derivation of solar noble gas abundances and isotopic composition using solar wind data requires a better understanding of fractionation processes acting upon solar wind formation.  相似文献   

6.
地球岩石中稀有气体研究进展   总被引:3,自引:0,他引:3  
简要回顾了90年代以前在地球岩石稀有气体研究领域取得的成果,总结了90年代以来该领域的最新成就,最后指出了存在的问题。  相似文献   

7.
Noble gases are not rare in the Universe, but they are rare in rocks. As a consequence, it has been possible to identify in detailed analyses a variety of components whose existence is barely visible in other elements: radiogenic and cosmogenic gases produced in situ, as well as a variety of “trapped” components – both of solar (solar wind) origin and the “planetary” noble gases. The latter are most abundant in the most primitive chondritic meteorites and are distinct in elemental and isotopic abundance patterns from planetary noble gases sensu strictu, e.g., those in the atmospheres of Earth and Mars, having in common only the strong relative depletion of light relative to heavy elements when compared to the solar abundance pattern. In themselves, the “planetary” noble gases in meteorites constitute again a complex mixture of components including such hosted by pre-solar stardust grains.The pre-solar components bear witness of the processes of nucleosynthesis in stars. In particular, krypton and xenon isotopes in pre-solar silicon carbide and graphite grains keep a record of physical conditions of the slow-neutron capture process (s-process) in asymptotic giant branch (AGB) stars. The more abundant Kr and Xe in the nanodiamonds, on the other hand, show a more enigmatic pattern, which, however, may be related to variants of the other two processes of heavy element nucleosynthesis, the rapid neutron capture process (r-process) and the p-process producing the proton-rich isotopes.“Q-type” noble gases of probably “local” origin dominate the inventory of the heavy noble gases (Ar, Kr, Xe). They are hosted by “phase Q”, a still ill-characterized carbonaceous phase that is concentrated in the acid-insoluble residue left after digestion of the main meteorite minerals in HF and HCl acids. While negligible in planetary-gas-rich primitive meteorites, the fraction carried by “solubles” becomes more important in chondrites of higher petrologic type. While apparently isotopically similar to Q gas, the elemental abundances are somewhat less fractionated relative to the solar pattern, and they deserve further study. Similar “planetary” gases occur in high abundance in the ureilite achondrites, while small amounts of Q-type noble gases may be present in some other achondrites. A “subsolar” component, possibly a mixture of Q and solar noble gases, is found in enstatite chondrites. While no definite mechanism has been identified for the introduction of the planetary noble gases into their meteoritic host phases, there are strong indications that ion implantation has played a major role.The planetary noble gases are concentrated in the meteorite matrix. Ca-Al-rich inclusions (CAIs) are largely planetary-gas-free, however, some trapped gases have been found in chondrules. Micrometeorites (MMs) and interplanetary dust particles (IDPs) often contain abundant solar wind He and Ne, but they are challenging objects for the analysis of the heavier noble gases that are characteristic for the planetary component. The few existing data for Xe point to a Q-like isotopic composition. Isotopically Q-Kr and Q-Xe show a mass dependent fractionation relative to solar wind, with small radiogenic/nuclear additions. They may be closer to “bulk solar” Kr and Xe than Kr and Xe in the solar wind, but for a firm conclusion it is necessary to gain a better understanding of mass fractionation during solar wind acceleration.  相似文献   

8.
稀有气体同位素的激光探针分析:技术与应用   总被引:4,自引:0,他引:4  
稀有气体同位素的激光探针分析就是利用激光的集束性和高能性来抽提固体样品中的气体 ,然后将气体净化、分离之后送入质谱计测定其含量和同位素组成。该系统主要由显微监视系统、激光发射系统、位移调节系统、样品处理系统和质谱计组成。薄片样品放入真空样品室后 ,利用显微监视系统可以对薄片进行分析和照相 ,可以对小到 30~ 5 0 μm的微小区域定位分析。该方法的优势主要在于 :(1)系统本底非常低 ;(2 )样品用量较少 ;(3)具有很高的空间分辨率 ;(4 )利用“Q开关” ,可以用作微破裂工具 ;(5 )与熔融法相比 ,分析成本较低。它也有不足之处 :(1)系统的投入成本高 ;(2 )各稀有气体的抽提效率不均一 ,需要校正。  相似文献   

9.
Solar-type helium (He) and neon (Ne) in the Earths mantle were suggested to be the result of solar-wind loaded extraterrestrial dust that accumulated in deep-sea sediments and was subducted into the Earths mantle. To obtain additional constraints on this hypothesis, we analysed He, Ne and argon (Ar) in high pressure–low temperature metamorphic rocks representing equivalents of former pelagic clays and cherts from Andros (Cyclades, Greece) and Laytonville (California, USA). While the metasediments contain significant amounts of 4He, 21Ne and 40Ar due to U, Th and K decay, no solar-type primordial noble gases were observed. Most of these were obviously lost during metamorphism preceding 30 km subduction depth. We also analysed magnetic fines from two Pacific ODP drillcore samples, which contain solar-type He and Ne dominated by solar energetic particles (SEP). The existing noble gas isotope data of deep-sea floor magnetic fines and interplanetary dust particles demonstrate that a considerable fraction of the extraterrestrial dust reaching the Earth has lost solar wind (SW) ions implanted at low energies, leading to a preferential occurrence of deeply implanted SEP He and Ne, fractionated He/Ne ratios and measurable traces of spallogenic isotopes. This effect is most probably caused by larger particles, as these suffer more severe atmospheric entry heating and surface ablation. Only sufficiently fine-grained dust may retain the original unfractionated solar composition that is characteristic for the Earths mantle He and Ne. Hence, in addition to the problem of metamorphic loss of solar noble gases during subduction, the isotopic and elemental fractionation during atmospheric entry heating is a further restriction for possible subduction hypotheses.  相似文献   

10.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   

11.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

12.
A laser microprobe capable of analysing nitrogen and noble gases in individual grains with masses less than a milligram is described. It can be used in both continuous wave (CW) mode, useful for stepwise heating of an individual grain, as well as in pulsed mode, useful for ablating material from a small selected area of a sample, for gas extraction. We could achieve low blanks (in ccSTP units) for 4He(4.8 x 10{-12}),22Ne(1.0 x 10{-12}),36Ar(1.0 x10 -13),84Kr(2.9 x 10{-14}),132 Xe(2.6 x 10{-14}), and N (87 pg), using this system. Preliminary data for individual chondrules from the Dhajala meteorite show that noble gases and nitrogen from grains as small as 170 microgram can be analysed using the present laser microprobe setup. The amount of trapped neon in Dhajala chondrules is very small, and nitrogen in the chondrules is isotopically heavier as compared to the bulk meteorite.  相似文献   

13.
从球粒陨石的酸不溶残渣中分离出了携带有惰性气体同位素异常的金刚石、碳化硅和石墨颗粒。这些同位素异常用太阳系内部过程是无法解释的,它们被归因于太阳系外多种核合成组分的不完全混合,称为原始惰性气体同位素异常,这三种矿物颗粒被称为前太阳颗粒。介绍了这三种前太阳颗粒的分离过程、存在部位、粒度大小、所携带惰性气体组分的同位素组成,以及这些惰性气体和携带物的成因,并对它们的科学意义进行了简要的讨论。  相似文献   

14.
Bulk meteorite samples of various chemical classes and petrologic types (mainly carbonaceous chondrites) were systematically investigated by the stepped combustion method with the simultaneous isotopic analysis of carbon, nitrogen, and noble gases. A correlation was revealed between planetary noble gases associating with the Q phase and isotopically light nitrogen (δ15N up to –150‰). The analysis of this correlation showed that the isotopically light nitrogen (ILN) is carried by Q. In most meteorites, isotopically heavy nitrogen (IHN) of organic compounds (macromolecular material) is dominant. The ILN of presolar grains (diamond and SiC) and Q can be detected after separation from dominant IHN. Such a separation of nitrogen from Q and macromolecular material occurs under natural conditions and during laboratory stepped combustion owing to Q shielding from direct contact with oxygen, which results in Q oxidation at temperatures higher than the temperatures of the release of most IHN. There are arguments that ILN released at high temperature cannot be related to nanodiamond and SiC. The separation effect allowed us to constrain the contents of noble gases in Q, assuming that this phase is carbon-dominated. The directly measured 36Ar/C and 132Xe/C ratios in ILN-rich temperature fractions are up to 0.1 and 1 × 10–4 cm3/g, respectively. These are only lower constraints on the contents. The analysis of the obtained data on the three-isotope diagram δ15N–36Ar/14N showed that Q noble gases were lost to a large extent from most meteorites during the metamorphism of their parent bodies. Hence, the initial contents of noble gases in Q could be more than an order of magnitude higher than those directly measured. Compared with other carbon phases, Q was predominantly transformed to diamond in ureilites affected by shock metamorphism. The analysis of their Ar–N systematics showed that, similar to carbonaceous chondrites, noble gases were lost from Q probably before its transformation to diamond.  相似文献   

15.
Solar wind (SW) helium, neon, and argon trapped in a bulk metallic glass (BMG) target flown on NASA’s Genesis mission were analyzed for their bulk composition and depth-dependent distribution. The bulk isotopic and elemental composition for all three elements is in good agreement with the mean values observed in the Apollo Solar Wind Composition (SWC) experiment. Conversely, the He fluence derived from the BMG is up to 30% lower than values reported from other Genesis bulk targets or in-situ measurements during the exposure period. SRIM implantation simulations using a uniform isotopic composition and the observed bulk velocity histogram during exposure reproduces the Ne and Ar isotopic variations with depth within the BMG in a way which is generally consistent with observations. The similarity of the BMG release patterns with the depth-dependent distributions of trapped solar He, Ne, and Ar found in lunar and asteroidal regolith samples shows that also the solar noble gas record of extraterrestrial samples can be explained by mass separation of implanted SW ions with depth. Consequently, we conclude that a second solar noble gas component in lunar samples, referred to as the “SEP” component, is not needed. On the other hand, a small fraction of the total solar gas in the BMG released from shallow depths is markedly enriched in the light isotopes relative to predictions from implantation simulations with a uniform isotopic composition. Contributions from a neutral solar or interstellar component are too small to explain this shallow sited gas. We tentatively attribute this superficially implanted gas to low-speed, current-sheet related SW, which was fractionated in the corona due to inefficient Coulomb drag. This fractionation process could also explain relatively high Ne/Ar elemental ratios in the same initial gas fraction.  相似文献   

16.
We have analyzed nitrogen, neon and argon abundances and isotopic ratios in target material exposed in space for 27 months to solar wind (SW) irradiation during the Genesis mission. SW ions were extracted by sequential UV (193 nm) laser ablation of gold-plated material, purified separately in a dedicated line, and analyzed by gas source static mass spectrometry. We analyzed gold-covered stainless steel pieces from the Concentrator, a device that concentrated SW ions by a factor of up to 50. Despite extensive terrestrial N contamination, we could identify a non-terrestrial, 15N-depleted nitrogen end-member that points to a 40% depletion of 15N in solar-wind N relative to inner planets and meteorites, and define a composition for the present-day Sun (15N/14N = [2.26 ± 0.67] × 10−3, 2σ), which is indistinguishable from that of Jupiter’s atmosphere. These results indicate that the isotopic composition of nitrogen in the outer convective zone of the Sun has not changed through time, and is representative of the protosolar nebula. Large 15N enrichments due to e.g., irradiation, low temperature isotopic exchange, or contributions from 15N-rich presolar components, are therefore required to account for inner planet values.  相似文献   

17.
Mineral-melt partition coefficients of all noble gases (min/meltDi) have been obtained for olivine (ol) and clinopyroxene (cpx) by UV laser ablation (213 nm) of individual crystals grown from melts at 0.1 GPa mixed noble gas pressure. Experimental techniques were developed to grow crystals virtually free of melt and fluid inclusions since both have been found to cause profound problems in previous work. This is a particularly important issue for the analysis of noble gases in crystals that have very low partition coefficients relative to coexisting melt and fluid phases. The preferred partitioning values obtained for the ol-melt system for He, Ne, Ar, Kr, and Xe are 0.00017(13), 0.00007(7), 0.0011(6), 0.00026(16), and , respectively. The respective cpx-melt partition coefficients are 0.0002(2), 0.00041(35), 0.0011(7), 0.0002(2), and . The data confirm the incompatible behaviour of noble gases for both olivine and clinopyroxene but unlike other trace elements these values show little variation for a wide range of atomic radius. The lack of dependence of partitioning on atomic radius is, however, consistent with the partitioning behaviour of other trace elements which have been found to exhibit progressively lower dependence of min/meltDi on radius as the charge decreases. As all noble gases appear to exhibit similar min/meltDi values we deduce that noble gases are not significantly fractionated from each other by olivine and clinopyroxene during melting and fractional crystallisation. Although incompatible, the partitioning values for noble gases also suggest that significant amounts of primordial noble gases may well have been retained in the mantle despite intensive melting processes. The implication of our data is that high primordial/radiogenic noble gas ratios (3He/4He, 22Ne/21Ne, and 36Ar/40Ar) characteristic of plume basalt sources can be achieved by recycling a previously melted (depleted) mantle source rather than reflecting an isolated, non-degassed primordial mantle region.  相似文献   

18.
Noble gases trapped in meteorites are tightly bound in a carbonaceous carrier labeled “phase Q.” Mechanisms having led to their retention in this phase or in its precursors are poorly understood. To test physical adsorption as a way of retaining noble gases into precursors of meteoritic materials, we have performed adsorption experiments for Ar, Kr, and Xe at low pressures (10−4 mbar to 500 mbar) encompassing pressures proposed for the evolving solar nebula. Low-pressure adsorption isotherms were obtained for ferrihydrite and montmorillonite, both phases being present in Orgueil (CI), for terrestrial type III kerogen, the best chemical analog of phase Q studied so far, and for carbon blacks, which are present in phase Q and can be considered as possible precursors.Based on adsorption data obtained at low pressures relevant to the protosolar nebula, we propose that the amount of noble gases that can be adsorbed onto primitive materials is much higher than previously inferred from experiments carried out at higher pressures. The adsorption capacity increases from kerogen, carbon blacks, montmorillonite to ferrihydrite. Because of its low specific surface area, kerogen can hardly account for the noble gas inventory of Q. Carbon blacks in the temperature range 75 K-100 K can adsorb up to two orders of magnitude more noble gases than those found in Q. Irreversible trapping of a few percent of noble gases adsorbed on such materials could represent a viable process for incorporating noble gases in phase Q precursors. This temperature range cannot be ruled out for the zone of accretion of the meteorite precursors according to recent astrophysical models and observations, although it is near the lower end of the temperatures proposed for the evolving solar nebula.  相似文献   

19.
地热系统惰性气体同位素地球化学是地热成因研究的重要手段。许多惰性气体同位素都可用于地热系统的研究中,主要目的为揭示热田的热源性质、深-浅层地热流体的内在联系和循环深度等。本文从惰性气体理化特点、样品采集、测试技术及数据等若干方面介绍了惰性气体研究方法,重点探讨了在自由气和溶解气两种形态下,热泉、喷气孔、热水井不同环境下的惰性气体采样方法,还介绍了成熟的惰性气体同位素的测试方法,即利用磁偏转静态真空质谱计分析测试方法,最后基于世界各地典型地热系统的惰性气体测试数据,讨论地热系统的气体来源判别,不同气源的混合比例计算等,进而确定地热流体循环深度。  相似文献   

20.
月球极度亏损挥发分,但是月壤中赋存有大量的稀有气体,主要来源于太阳风注入、宇宙射线作用和放射性同位素衰变等过程。月岩和月壤样品的稀有气体研究,不仅是获取月球表面形成和演化历史、近地空间小行星撞击历史等的重要内容,更是解译40亿年以来太阳风演化的惟一可行途径。本文主要介绍月岩和月壤中的太阳风记录、宇宙射线暴露年龄、Ar-Ar定年以及稀有气体测试技术等方面研究的进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号