首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the elemental and isotopic composition of noble gases in the bulk solar wind collected by the NASA Genesis sample return mission. He, Ne, and Ar were analyzed in diamond-like carbon on a silicon substrate (DOS) and 84,86Kr and 129,132Xe in silicon targets by UV laser ablation noble gas mass spectrometry. Solar wind noble gases are quantitatively retained in DOS and with exception of He also in Si as shown by a stepwise heating experiment on a flown DOS target and analyses on other bulk solar wind collector materials. Solar wind data presented here are absolutely calibrated and the error of the standard gas composition is included in stated uncertainties. The isotopic composition of the light noble gases in the bulk solar wind is as follows: 3He/4He: (4.64 ± 0.09) × 10−4, 20Ne/22Ne: 13.78 ± 0.03, 21Ne/22Ne: 0.0329 ± 0.0001, 36Ar/38Ar 5.47 ± 0.01. The elemental composition is: 4He/20Ne: 656 ± 5, and 20Ne/36Ar 42.1 ± 0.3. Genesis provided the first Kr and Xe data on the contemporary bulk solar wind. The preliminary isotope and elemental composition is: 86Kr/84Kr: 0.302 ± 0.003, 129Xe/132Xe: 1.05 ± 0.02, 36Ar/84Kr 2390 ± 150, and 84Kr/132Xe 9.5 ± 1.0. The 3He/4He and the 4He/20Ne ratios in the Genesis DOS target are the highest solar wind values measured in exposed natural and artificial targets. The isotopic composition of the other noble gases and the Kr/Xe ratio obtained in this work agree with data from lunar samples containing “young” (∼100 Ma) solar wind, indicating that solar wind composition has not changed within at least the last 100 Ma. Genesis could provide in many cases more precise data on solar wind composition than any previous experiment. Because of the controlled exposure conditions, Genesis data are also less prone to unrecognized systematic errors than, e.g., lunar sample analyses. The solar wind is the most authentic sample of the solar composition of noble gases, however, the derivation of solar noble gas abundances and isotopic composition using solar wind data requires a better understanding of fractionation processes acting upon solar wind formation.  相似文献   

2.
Since about half a century samples from the lunar and asteroidal regoliths been used to derive information about elemental and isotopic composition and other properties of the present and past solar wind, predominantly for the noble gases and nitrogen. Secular changes of several important compositional parameters in the solar wind were proposed, as was a likely secular decrease of the solar wind flux. In 2004 NASA’s Genesis mission returned samples which had been exposed to the solar wind for almost 2.5 years. Their analyses resulted in an unprecendented accuracy for the isotopic and elemental composition of several elements in the solar wind, including noble gases, O and N. The Genesis data therefore also allow to re-evaluate the lunar and meteorite data, which is done here. In particular, claims for long-term changes of solar wind composition are reviewed.Outermost grain layers from relatively recently irradiated lunar regolith samples conserve the true isotopic ratios of implanted solar wind species. This conclusion had been made before Genesis based on the agreement of He and Ne isotopic data measured in the aluminum foils exposed to the solar wind on the Moon during the Apollo missions with data obtained in the first gas release fractions of stepwise in-vacuo etch experiments. Genesis data allowed to strengthen this conclusion and to extend it to all five noble gases. Minor variations in the isotopic compositions of implanted solar noble gases between relatively recently irradiated samples (<100 Ma) and samples irradiated billions of years ago are very likely the result of isotopic fractionation processes that happened after trapping of the gases rather than indicative of true secular changes in the solar wind composition. This is particularly important for the 3He/4He ratio, whose constancy over billions of years indicates that hardly any 3He produced as transient product of the pp-chains has been mixed from the solar interior into its outer convective zone. The He isotopic composition measured in the present-day solar wind therefore is identical to the (D + 3He)/4He ratio at the start of the suns’s main sequence phase and hence can be used to determine the protosolar D/H ratio.Genesis settled the long-standing controversy on the isotopic composition of nitrogen in lunar regolith samples. The 15N/14N ratio in the solar wind as measured by Genesis is lower than in any lunar sample. This proves that nitrogen in regolith samples is dominated by non-solar sources. A postulated secular increase of 15N/14N by some 30% over the past few Ga is not tenable any longer. Genesis also provided accurate data on the isotopic composition of oxygen in the solar wind, invaluable for cosmochemisty. These data superseded but essentially confirmed one value – and disproved a second one – derived from lunar regolith samples shortly prior to Genesis.Genesis also confirmed prior conclusions that lunar regolith samples essentially conserve the true elemental ratios of the heavy noble gases in the solar wind (Ar/Kr, Kr/Xe). Several secular changes of elemental abundances of noble gases in the solar wind had been proposed based on lunar and meteoritic data. I argue here that lunar data – in concert with Genesis – provide convincing evidence only for a long-term decrease of the Kr/Xe ratio by almost a factor of two over the past several Ga. It appears that the enhancement of abundances of elements with a low first ionisation potential in the solar wind (FIP effect) changed with time.Finally, Genesis allows a somewhat improved comparison of the present-day flux of solar wind Kr and Xe with the total amount of heavy solar wind noble gases in the lunar regolith. It remains unclear whether the past solar wind flux has been several times higher on average than it is today.  相似文献   

3.
High-resolution stepped heating has been used to extract light noble gases implanted in a suite of 13 individual lunar ilmenite and iron grains and in the Kapoeta howardite by solar wind (SW) and solar energetic particle (SEP) irradiation. Isotopic analyses of gases evolved at low temperatures from the lunar grains confirm the neon and argon compositions obtained by Pepin et al. (Pepin R. O., Becker R. H., and Schlutter D. J., “Irradiation records in regolith materials, I: Isotopic compositions of solar-wind neon and argon in single lunar regolith grains”, Geochim. Cosmochim. Acta63, 2145-2162, 1999) in an initial study of 11 regolith grains, primarily ilmenites. Combination of the data sets from both investigations yields 20Ne/22Ne = 13.85 ± 0.04, 21Ne/22Ne = 0.0334 ± 0.0003, and 36Ar/38Ar = 5.80 ± 0.06 for the lunar samples; the corresponding 36Ar/38Ar ratio in Kapoeta is 5.74 ± 0.06. The neon ratios agree well with those measured by Benkert et al. (Benkert J.-P., Baur H., Signer P., and Wieler R., “He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes”, J. Geophys. Res. (Planets)98, 13147-13162, 1993) in gases extracted from bulk lunar ilmenite samples by stepped acid etching and attributed by them to the SW. The 36Ar/38Ar ratios, however, are significantly above both Benkert et al.’s (1993) proposed SW value of 5.48 ± 0.05 and a later estimate of 5.58 ± 0.03 from an acid-etch analysis of Kapoeta (Becker R. H., Schlutter D. J., Rider P. E., and Pepin R. O., “An acid-etch study of the Kapoeta achondrite: Implications for the argon-36/argon-38 ratio in the solar wind”, Meteorit. Planet. Sci.33, 109-113, 1998). We believe, for reasons discussed here and in our earlier report, that 5.80 ± 0.06 ratio most nearly represents the wind composition. The 3He/4He ratio in low-temperature gas releases, not measured in the first particle suite, is found in several grains to be indistinguishable from Benkert et al.’s (1993) SW estimate. Elemental ratios of He, Ne, and Ar initially released from grain-surface SW implantation zones are solar-like, as found earlier by Pepin et al. (1999). Gases evolved from these reservoirs at higher temperatures show evidence for perturbations from solar elemental compositions by prior He loss, thermal mobilization of excess Ne from fractionated SW components, or both.Attention in this second investigation was focused on estimating the isotopic compositions of both the SW and the more deeply sited SEP components in regolith grains. Several high-temperature “isotopic plateaus”—approximately constant isotopic ratios in gas fractions released over a number of consecutive heating steps—were observed in the close vicinities of the SEP ratios for He, Ne, and Ar reported by Benkert et al. (1993). Arguments presented in the text suggest that these plateaus are relatively free of interferences from multicomponent mixing artifacts that can mimic pure component signatures. Average SEP compositions derived from the stepped-heating plateau measurements are in remarkable agreement with the Zürich acid-etch values for all three gases.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(13-14):2145-2162
We have applied a stepwise pyrolytic extraction technique to eleven individual lunar regolith grains to investigate the compositions of light noble gases embedded in grain surfaces by solar wind irradiation, with emphasis on the rather poorly known isotopic composition of solar-wind argon. Results are intriguing: average 20Ne/22Ne ratios observed in early pyrolytic releases from ilmenite grains separated from lunar soils 71501, 79035 and 10084 agree very well with both direct measures of the solar wind neon composition in the Apollo foils and with values obtained in first releases from acid-etched ilmenites by the Zürich laboratory, whereas these same pyrolytic and acid-etch fractions carry argon isotopic signatures that significantly disagree—average 36Ar/38Ar ratios near 5.8 for thermal extraction compared to 5.4–5.5 for chemical etching at Zürich. Consideration of the isotopic and elemental data from these grains in the context of first-order diffusive modeling calculations points to gas release at low temperatures, without significant isotopic or elemental fractionation, from isolated grain-surface reservoirs of solar wind composition. The physical nature of these reservoirs is presently unknown. In this interpretation the preferred solar wind 20Ne/22Ne and 21Ne/22Ne ratios deduced from this study are respectively 13.81 ± 0.08 and 0.0333 ± 0.0003, both within error of the Zürich acid-etch values, and 36Ar/38Ar = 5.77 ± 0.08. It may be possible to reconcile the discrepancy between the acid-etch and pyrolytic estimates for the solar wind 36Ar/38Ar ratio in the context of arguments originally advanced by Benkert et al. (1993) to account for their He and Ne isotopic compositions. At the other, high-temperature end of the release profile from one of these grains there are clear isotopic indications of the presence of a Ne constituent with 20Ne/22Ne close to the 11.2 ratio found at Zürich and attributed by these workers to a deeply-sited component implanted by solar energetic particles.  相似文献   

5.
He, Ne, Ar, Kr and Xe concentrations and isotopic abundances were measured in three bulk grain size fractions prepared from sample L-16-19, No. 120 (C level, 20–22 cm depth) returned by the Luna 16 mission. The expected anticorrelation between the concentrations of trapped solar wind noble gases and grain size is observed. Elemental abundances of solar wind trapped noble gases are similar to those previously found in corresponding grain size fractions of the Apollo 11 and 12 fines. The trapped ratio 4He20Ne varies in the soils from different lunar maria due to diffusion losses. A rough correlation of 4He20Ne with the proportion of ilmenite in these samples is apparent. The elemental and isotopic ratios of the surface correlated noble gases in Luna 16 resemble those previously found in Apollo fines. Based on 21Ne, 78Kr and 126Xe a cosmic ray exposure age of 360 my was determined. This age is similar to those obtained for the soils from other lunar maria.  相似文献   

6.
We present bulk solar wind isotopic and elemental ratios for Ar, Kr, and Xe averaged from up to 14 individual analyses on silicon targets exposed to the solar wind for ∼2.3 years during NASA’s Genesis mission. All averages are given with 1σ standard errors of the means and include the uncertainties of our absolute calibrations. The isotopic ratios 86Kr/84Kr and 129Xe/132Xe are 0.303 ± 0.001 and 1.06 ± 0.01, respectively. The elemental ratios 36Ar/84Kr and 84Kr/132Xe are 2390 ± 120 and 9.9 ± 0.3, respectively. Average fluxes of 84Kr and 132Xe in the bulk solar wind in atoms/(cm2 s) are 0.166 ± 0.009 and 0.017 ± 0.001, respectively. The flux uncertainties also include a 2% uncertainty for the determination of the extracted areas. The bulk solar wind 36Ar/38Ar ratio of 5.50 ± 0.01 and the 36Ar flux of 397 ± 11 atoms/(cm2 s) determined from silicon targets agree well with the 36Ar/38Ar ratio and the 36Ar flux determined earlier on a different type of target by Heber et al. (2009). A comparison of the solar wind noble gas/oxygen abundance ratios with those in the solar photosphere revealed a slight enrichment of Xe and, within uncertainties a roughly uniform depletion of Kr-He in the solar wind, possibly related to the first ionization potentials of the studied elements. Thus, the solar wind elemental abundances He-Kr display within uncertainties roughly photospheric compositions relative to each other. A comparison of the Genesis data with solar wind heavy noble gas data deduced from lunar regolith samples irradiated with solar wind at different times in the past reveals uniform 36Ar/84Kr ratios over the last 1-2 Ga but an increase of the 84Kr/132Xe ratio of about a factor of 2 during the same time span. The reason for this change in the solar wind composition remains unknown.  相似文献   

7.
Solar-type helium (He) and neon (Ne) in the Earths mantle were suggested to be the result of solar-wind loaded extraterrestrial dust that accumulated in deep-sea sediments and was subducted into the Earths mantle. To obtain additional constraints on this hypothesis, we analysed He, Ne and argon (Ar) in high pressure–low temperature metamorphic rocks representing equivalents of former pelagic clays and cherts from Andros (Cyclades, Greece) and Laytonville (California, USA). While the metasediments contain significant amounts of 4He, 21Ne and 40Ar due to U, Th and K decay, no solar-type primordial noble gases were observed. Most of these were obviously lost during metamorphism preceding 30 km subduction depth. We also analysed magnetic fines from two Pacific ODP drillcore samples, which contain solar-type He and Ne dominated by solar energetic particles (SEP). The existing noble gas isotope data of deep-sea floor magnetic fines and interplanetary dust particles demonstrate that a considerable fraction of the extraterrestrial dust reaching the Earth has lost solar wind (SW) ions implanted at low energies, leading to a preferential occurrence of deeply implanted SEP He and Ne, fractionated He/Ne ratios and measurable traces of spallogenic isotopes. This effect is most probably caused by larger particles, as these suffer more severe atmospheric entry heating and surface ablation. Only sufficiently fine-grained dust may retain the original unfractionated solar composition that is characteristic for the Earths mantle He and Ne. Hence, in addition to the problem of metamorphic loss of solar noble gases during subduction, the isotopic and elemental fractionation during atmospheric entry heating is a further restriction for possible subduction hypotheses.  相似文献   

8.
Meteorite “finds” from the terrestrial hot deserts have become a major contributor to the inventory of Martian meteorites. In order to understand their nitrogen and noble gas components, we have carried out stepped heating experiments on samples from two Martian meteorites collected from hot deserts. We measured interior and surface bulk samples, glassy and non-glassy portions of Dar al Gani 476 and Sayh al Uhaymir 005. We have also analyzed noble gases released from the Antarctic shergottite Lewis Cliff 88516 by crushing and stepped heating. For the hot desert meteorites significant terrestrial Ar, Kr, Xe contamination is observed, with an elementally fractionated air (EFA) component dominating the low temperature releases. The extremely low Ar/Kr/Xe ratios of EFA may be the result of multiple episodes of trapping/loss during terrestrial alteration involving aqueous fluids. We suggest fractionation processes similar to those in hot deserts to have acted on Mars, with acidic weathering on the latter possibly even more effective in producing elementally fractionated components. Addition from fission xenon is apparent in DaG 476 and SaU 005. The Ar-Kr-Xe patterns for LEW 88516 show trends as typically observed in shergottites - including evidence for a crush-released component similar to that observed in EETA 79001. A trapped Ne component most prominent in the surface sample of DaG 476 may represent air contamination. It is accompanied by little trapped Ar (20Ne/36Ar > 50) and literature data suggest its presence also in some Antarctic finds. Data for LEW 88516 and literature data, on the other hand, suggest the presence of two trapped Ne components of Martian origin characterized by different 20Ne/22Ne, possibly related to the atmosphere and the interior. Caution is recommended in interpreting nitrogen and noble gas isotopic signatures of Martian meteorites from hot deserts in terms of extraterrestrial sources and processes. Nevertheless our results provide hope that vice-versa, via noble gases and nitrogen in meteorites and other relevant samples from terrestrial deserts, Martian secondary processes can be studied.  相似文献   

9.
The concentration and the isotopic ratios of noble gases He, Ne, Ar, Kr and Xe were measured in porewater trapped in shallow sediments of the estuary of the St-Lawrence River, Québec, Canada. The gases are atmospheric in origin but most samples have gas concentrations 1.7-28 times higher than those expected in solution in water at equilibrium with the atmosphere. Elemental fractionation of heavier noble gases Kr and Xe compared to Ar strongly suggests that noble gases were adsorbed on sediments or organic matter and then desorbed into porewaters due to depressurization, as collected samples were brought to the surface. Atmospheric Ar in porewater is used as a reference to measure the N2-fluxes at the water-sediment interface. Ignoring the Ar enrichments observed in porewater could lead to a severe underestimation of the denitrification rate in oceans and estuaries.  相似文献   

10.
The most fundamental character of lunar soil is its high concentrations of solar-wind-implanted elements, and the concentrations and behavior of the noble gases He, Ne, Ar, and Xe, which provide unique and extensive information about a broad range of fundamental problems. In this paper, the authors studied the forming mechanism of lunar regolith, and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil, with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition, the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas ^3He in lunar regolith will be further discussed.  相似文献   

11.
The cosmic ray exposure (CRE) ages of aubrites are among the longest of stone meteorites. New aubrites have been recovered in Antarctica, and these meteorites permit a substantial extension of the database on CRE ages, compositional characteristics, and regolith histories. We report He, Ne, and Ar isotopic abundances of nine aubrites and discuss the compositional data, the CRE ages, and regolith histories of this class of achondrites. A Ne three-isotope correlation reveals a solar-type ratio of 20Ne/22Ne = 12.1, which is distinct from the present solar wind composition and lower than most ratios observed on the lunar surface. For some aubrites, the cosmic ray-produced noble gas abundances include components produced on the surface of the parent object. The Kr isotopic systematics reveal significant neutron-capture-produced excesses in four aubrites, which is consistent with Sm and Gd isotopic anomalies previously documented in some aubrites. The nominal CRE ages confirm a non-uniform distribution of exposure times, but the evidence for a CRE age cluster appears doubtful. Six meteorites are regolith breccias with solar-type noble gases, and the observed neutron effects indicate a regolith history. ALH aubrites, which were recovered from the same location and are considered to represent a multiple fall, yield differing nominal CRE ages and, if paired, document distinct precompaction histories.  相似文献   

12.
The noble gas isotopic composition and content data of 2 alkali basalts, 3 Iherzolite xenoliths and one clinopyroxene megacryst from the Kuandian region have confirmed the occurrence of a fractionation of noble gases during magmatism. Light noble gases such as He and Ne are high in mobility and appear to be incompatible as compared with heavy ones ( such as Kr and Xe). Therefore, light noble gases are abundant in volcanics, especially in the volcanics with bubbles; lherzolite xenoliths have relatively high heavy noble gases. The clinopyroxene megacryst has the lowest abundance of noble gases, probably due to its high P-T origin. Noble gas isotopic composition of the clinopyroxene megacryst reveals that the mantle source beneath the Kuandian area has an MORB-like reservoir with^3 He/^4He ratio of—10 Ra(Ra: atmospheric^3 He/^4He ratio) and^40 Ar/^36 Ar ratio of 345.6. The Iherzolite xenoliths possess moderate^3 He/^4He ratios of 2.59 -4.53 Ra, reflecting the loss of primary helium during rock deformation or metasomatism caused by enriched mantle fluids during the up-lifting. The alkali volcanics have very low^3 He/^4 He ratios(0.47—0.61 Ra),indicating a contribution of radiogenic^4 He, probably having resulted from crust contamination. Most of the samples have excess^21 Ne and^22 Ne as compared with atmospheric neon, but Kr and Xe isotopic compositions are indistinguishable from atmospheric values within uncertainties with only individual samples having excess^129Xe,^134Xeand^136 Xe.  相似文献   

13.
Two examined fragments of the Kaidun meteorite principally differ in the concentrations of isotopes of noble gases and are very heterogeneous in terms of the isotopic composition of the gases. Because these fragments belong to two basically different types of meteoritic material (EL and CR chondrites), these characteristics of noble gases could be caused by differences in the cosmochemical histories of the fragments before their incorporation into the parent asteroid. As follows from the escape kinetics of all gases, atoms of trapped and cosmogenic noble gases are contained mostly in the structures of two carrier minerals in the samples. The concentrations and proportions of the concentrations of various primary noble gases in the examined fragments of Kaidun are obviously unusual compared to data on most currently known EL and CR meteorites. In contrast to EL and CR meteorites, which contain the primary component of mostly solar provenance, the elemental ratios and isotopic composition of Ne and He in the fragments of Kaidun correspond to those typical of the primary components of A and Q planetary gases. This testifies to the unique conditions under which the bulk of the noble gases were trapped from the early protoplanetary nebula. The apparent cosmic-ray age of both of the Kaidun fragments calculated based on cosmogenic isotopes from 3He to 126Xe varies from 0.027 to 246 Ma as a result of the escape of much cosmogenic isotopes at relatively low temperatures. The extrapolated cosmic-ray age of the Kaidun meteorite, calculated from the concentrations of cosmogenic isotopes of noble gases, is as old as a few billion years, which suggests that the material of the Kaidun meteorite could be irradiated for billions of years when residing in an unusual parent body.  相似文献   

14.
Noble gases are not rare in the Universe, but they are rare in rocks. As a consequence, it has been possible to identify in detailed analyses a variety of components whose existence is barely visible in other elements: radiogenic and cosmogenic gases produced in situ, as well as a variety of “trapped” components – both of solar (solar wind) origin and the “planetary” noble gases. The latter are most abundant in the most primitive chondritic meteorites and are distinct in elemental and isotopic abundance patterns from planetary noble gases sensu strictu, e.g., those in the atmospheres of Earth and Mars, having in common only the strong relative depletion of light relative to heavy elements when compared to the solar abundance pattern. In themselves, the “planetary” noble gases in meteorites constitute again a complex mixture of components including such hosted by pre-solar stardust grains.The pre-solar components bear witness of the processes of nucleosynthesis in stars. In particular, krypton and xenon isotopes in pre-solar silicon carbide and graphite grains keep a record of physical conditions of the slow-neutron capture process (s-process) in asymptotic giant branch (AGB) stars. The more abundant Kr and Xe in the nanodiamonds, on the other hand, show a more enigmatic pattern, which, however, may be related to variants of the other two processes of heavy element nucleosynthesis, the rapid neutron capture process (r-process) and the p-process producing the proton-rich isotopes.“Q-type” noble gases of probably “local” origin dominate the inventory of the heavy noble gases (Ar, Kr, Xe). They are hosted by “phase Q”, a still ill-characterized carbonaceous phase that is concentrated in the acid-insoluble residue left after digestion of the main meteorite minerals in HF and HCl acids. While negligible in planetary-gas-rich primitive meteorites, the fraction carried by “solubles” becomes more important in chondrites of higher petrologic type. While apparently isotopically similar to Q gas, the elemental abundances are somewhat less fractionated relative to the solar pattern, and they deserve further study. Similar “planetary” gases occur in high abundance in the ureilite achondrites, while small amounts of Q-type noble gases may be present in some other achondrites. A “subsolar” component, possibly a mixture of Q and solar noble gases, is found in enstatite chondrites. While no definite mechanism has been identified for the introduction of the planetary noble gases into their meteoritic host phases, there are strong indications that ion implantation has played a major role.The planetary noble gases are concentrated in the meteorite matrix. Ca-Al-rich inclusions (CAIs) are largely planetary-gas-free, however, some trapped gases have been found in chondrules. Micrometeorites (MMs) and interplanetary dust particles (IDPs) often contain abundant solar wind He and Ne, but they are challenging objects for the analysis of the heavier noble gases that are characteristic for the planetary component. The few existing data for Xe point to a Q-like isotopic composition. Isotopically Q-Kr and Q-Xe show a mass dependent fractionation relative to solar wind, with small radiogenic/nuclear additions. They may be closer to “bulk solar” Kr and Xe than Kr and Xe in the solar wind, but for a firm conclusion it is necessary to gain a better understanding of mass fractionation during solar wind acceleration.  相似文献   

15.
The Northwest Shelf of the Delaware Basin, SE New Mexico is the site of several large and productive oil and gas fields. The most productive reservoirs are located in the late Pennsylvanian Morrow and early Permian Abo formations. Production from the latter more important play is predominately from fluvial Abo red beds of the Pecos Slope Field. The oxidizing conditions implied by the reddish color of the formation require an external hydrocarbon source. To test the existing migration model for the region and constrain the location of potential hydrocarbon sources, we measured the elemental and isotopic composition of noble gases produced along with the hydrocarbons. We found the hydrocarbons to be highly enriched in radiogenic 4He, 40*Ar and nucleogenic 21*Ne [F(4He) = 44,000-250,000; 40Ar/36Ar = 400-3145; 21Ne/22Ne = 0.044-0.071]. The greatest enrichments occur in the Pecos Slope gas fields. The hydrocarbons also contain three independent nonradiogenic noble gas components each with an atmospheric isotopic composition. One component is most likely air-saturated water (ASW). The second component is enriched in the heavy noble gases [F(130Xe) > 8.5] and is derived from the hydrocarbon sources. The third component is enriched in Ne [F(20Ne) > 0.8] that we believe is degassed from sources within the reservoirs. This component is correlated with but decoupled from the dominant source of radiogenic 4He and 40*Ar. Very high concentrations of 4He (up to ∼1% by volume) in the Pecos slope reservoirs require a source external to the reservoirs, such as the underlying Precambrian basement granites and sedimentary equivalents. Structural buckles cutting through the Pecos field may act as high flux vertical pathways for the radiogenic 4He. If the hydrocarbons in the Pecos slope fields have migrated northward from the deeper Delaware Basin, as suggested by compositional trends, then perhaps the buckles also play an important role in the distribution and filling of the Pecos slope reservoirs.  相似文献   

16.
We have studied lunar impact spherules from the Apollo 12 and Apollo 14 landing sites, examining the isotopic composition of argon released by stepwise heating. Elsewhere, we reported the formation ages of these spherules, determined by the 40Ar/39Ar isochron method. Here, we discuss solar and cosmogenic argon from the same spherules, separating these two components by correlating their partial releases with the releases of calcium-derived 37Ar on a “cosmochron” diagram. We use the abundances of cosmogenic argon to derive a cosmic ray exposure age for each spherule, and demonstrate that single scoops of lunar soil contain spherules which have experienced very different histories of exposure and burial. The solar argon is seen to be separated into isotopically lighter and heavier fractions, which presumably were implanted to different depths in the spherules. The abundance of the isotopically heavy solar argon is too great to explain as a minor constituent of the solar particle flux, such as the suprathermal tail of the solar wind. The fact that the spherules have been individually dated allows us to look for possible variations in the solar wind as a function of time, over the history of the Solar System. However, the isotopic composition and fluence of solar argon preserved in the lunar spherules appear to be independent of formation age. We believe that most of the spherules are saturated with solar argon, having reached a condition in which implantation by the solar wind is offset by losses from solar-wind sputtering and diffusion.  相似文献   

17.
Abundances and isotopic compositions of Ne (in bulk samples only), Ar, Kr, and Xe have been investigated in 6 monomict, 3 polymict, and the diamond-free ureilite ALH78019 and their acid-resistant, C-rich residues. Isotopic ratios of Kr and Xe are very uniform and agree with data for ureilites from the literature. The measured ratio 38Ar/36Ar showed large variations due to an experimental artifact. This is shown to be connected to the pressure dependence of the instrumental mass discrimination, which for ureilites with their low abundance of 40Ar is different from that of the usual air standard. This observation necessitates a reassessment for the recently reported 36Ar excesses due to possible decay of extinct 36Cl in the Efremovka meteorite.Trapped 22Ne in the range of (1.4-2.5) × 10−8 cc STP/g is present in bulk ureilites. A Ne three-isotope plot for polymict ureilites indicates the presence of solar Ne. 21Ne-based cosmic ray exposure ages for the 10 ureilites studied range from 0.1 Ma (for ALH78019) to 46.8 Ma (for EET83309)All ureilites may have started with nearly the same initial elemental ratio (132Xe/36Ar)0, established in the nebula during gas trapping into their carbon carrier phases (diamond, amorphous C) by ion implantation. Whereas diamonds are highly retentive, amorphous C has suffered gas loss due to parent body metamorphism. The correlation of the elemental ratios 132Xe/36Ar and 84Kr/36Ar along the mass fractionation line could be understood as a two-component mixture of the unaffected diamond gases and the fractionated (to varying degrees) gases from amorphous C. In this view, the initial ratio (132Xe/36Ar)0 is a measure of the plasma temperature in the nebula at the formation location of the carbon phases. Its lack of correlation with Δ17O (a signature of the silicate formation location) indicates that carbon phases and silicates formed independently in the nebula, and not from a carbon-rich magmaThe elemental ratios 132Xe/36Ar and 84Kr/36Ar in carbon-rich acid residues show a decreasing trend with depth (inferred from carbon consumption during combustion), which can be interpreted as a consequence of the ion implantation mechanism of gas trapping that leads to greater depth of implantation for lighter mass ionThe similarity between trapped gases in phase Q in primitive chondrites and the C phases in ureilites—for both elemental and isotopic compositions—strongly suggests that phase Q might also have received its noble gases by ion implantation from the nebula. The slight differences in the elemental ratios can be explained by a plasma temperature at the location of phase Q gas loading that was about 2000 K lower than for ureilite C phases. This inference is also consistent with the finding that the trapped ratio 129Xe/132Xe (1.042 ± 0.002) in phase Q is slightly higher, compared to that of ureilite C phases (1.035 ± 0.002), as a consequence of in situ decay of 129I, and becomes observable due to higher value of I/Xe in phase Q as a result of ion implantation at about 2000 K lower plasma temperature.  相似文献   

18.
月球极度亏损挥发分,但是月壤中赋存有大量的稀有气体,主要来源于太阳风注入、宇宙射线作用和放射性同位素衰变等过程。月岩和月壤样品的稀有气体研究,不仅是获取月球表面形成和演化历史、近地空间小行星撞击历史等的重要内容,更是解译40亿年以来太阳风演化的惟一可行途径。本文主要介绍月岩和月壤中的太阳风记录、宇宙射线暴露年龄、Ar-Ar定年以及稀有气体测试技术等方面研究的进展。  相似文献   

19.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号