首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of new observations showing fine structures consisting of narrowband fiber bursts as substructures of large-scale zebra-pattern stripes is carried out. We study four events using spectral observations taken with a newly built spectrometer located at the Huairou station, China, in the frequency range of 1.1 – 2.0 GHz with extremely high frequency and time resolutions (5 MHz and 1.25 ms). All the radio events were analyzed by using the available satellite data (SOHO LASCO, EIT, and MDI, TRACE, and RHESSI). Small-scale fibers always drift to lower frequencies. They may belong to a family of ropelike fibers and can also be regarded as fine structures of type III bursts and broadband pulsations. The radio emission was moderately or strongly polarized in the ordinary wave mode. In three main events fiber structure appeared as a forerunner of the entire event. All four events were small decimeter bursts. We assume that for small-scale fiber bursts the usual mechanism of coalescence of whistler waves with plasma waves can be applied, and the large-scale zebra pattern can be explained in the conventional double plasma resonance (DPR) model. The appearance of an uncommon fine structure is connected with the following special features of the plasma wave excitation in the radio source: Both whistler and plasma wave instabilities are too weak at the very beginning of the events (i.e., the continuum was absent), and the fine structure is almost invisible. Then, whistlers generated directly at DPR levels “highlight” the radio emission only from these levels owing to their interaction with plasma waves.  相似文献   

2.
This review covers the most recent experimental results and theoretical research on zebra patterns(ZPs)in solar radio bursts.The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years.All new properties are considered in light of both what was known earlier and new theoretical models.Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves"highlight"the levels of double plasma resonance(DPR).A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type Ⅲ-like bursts.The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts.The additional injection of fast particles filled the loss-cone(breaking the loss-cone distribution),and the generation of the continuum was quenched at these moments.The maximum absorptive effect occurs at the DPR levels.The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source.Thus,the DPR model helps to understand several aspects of unusual elements of ZPs.However,the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field.Three new theories of ZPs are examined.The formation of eigenmodes of transparency and opacity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism.Two other models(nonlinear periodic space-charge waves and scattering of fast protons on ion-sound harmonics)could happen in large radio bursts.  相似文献   

3.
Fiber – or intermediate drift – bursts are a continuum fine structure in some complex solar radio events. We present the analysis of such bursts in the X17 flare on 28 Oct. 2003. Based on the whistler wave model of fiber bursts we derive the 3D magnetic field structures that carry the radio sources in different stages of the event and obtain insight into the energy release evolution in the main flare phase, the related paths of nonthermal particle propagation in the corona, and the involved magnetic field structures. Additionally, we test the whistler wave model of fiber bursts for the meter and the decimeter wave range. Radio spectral data (Astrophysikalisches Institut Potsdam, Astronomical Observatory Ond?ejov) show a continuum with fibers for ≈?6 min during the main flare phase. Radio imaging data (Nançay Radio Heliograph) yield source centroid positions of the fibers at three frequencies in the spectrometer band. We compare the radio positions with the potential coronal magnetic field extrapolated from SOHO/MDI data. Given the detected source site configuration and evolution, and the change of the fiber burst frequency range with time, we can also extract those coronal flux tubes where the high-frequency fiber bursts are situated even without decimeter imaging data. To this aim we use a kinetic simulation of whistler wave growth in sample flux tubes modeled by selected potential field lines and a barometric density model. The whistler wave model of fiber bursts accurately explains the observations on 28 Oct. 2003. A laterally extended system of low coronal loops is found to guide the whistler waves. It connects several neighboring active regions including the flaring AR 10486. For varying source sites the fiber bursts are emitted at the fundamental mode of the plasma frequency over the whole range (1200?–?300 MHz). The present event can be understood without assuming two different generation mechanisms for meter and decimeter wave fiber bursts. It gives new insight into particle acceleration and propagation in the low flare and post-CME corona.  相似文献   

4.
A modification of the presently existing intermediate drift burst model by Kuijpers (1975) and Bernold (1983) is suggested. It is shown that whistler solitons cannot be responsible for intermediate drift bursts. Here, they are interpreted as the radio signature of localized formstable whistler wave packets propagating along the magnetic field in a coronal loop. In the frame of this modified model, the magnetic field strengths derived from fiber burst data agree with previous estimates by Dulk and McLean (1978).  相似文献   

5.
The plasma mechanism of radio emission generation in an inhomogeneous medium is investigated. In the model under study, the electron beam with loss-cone distribution generates upper-hybrid waves that, in turn, are transformed into radio emission. It is shown that the influence of the plasma density inhomogeneity limits the plasma waves’ intensity considerably due to variation in their wave vector. The results are used to interpret the intermediate drift (IMD) bursts. A model is proposed in which these bursts are reflections of propagating small-scale (with amplitudes of about 1% and sizes of hundreds of kilometers) magnetohydrodynamic (MHD) disturbances of magnetic tubes. It is shown that this model allows us to explain the spectral parameters of the bursts in question. At present, the lack of precise and independent data about the magnetic field does not allow us to decide definitively between the existing models (whistler or MHD waves) of the IMD bursts; nevertheless, if the proposed model is correct, it can be used to determine the characteristics of the coronal MHD waves.  相似文献   

6.
Jan Kuijpers 《Solar physics》1975,44(1):173-193
The possible generation of intermediate drift bursts in type IV dm continua through coupling between whistler waves, traveling along the magnetic field, and Langmuir waves, excited by a loss-cone instability in the source region, is elaborated. We investigate the generation, propagation and coupling of whistlers. It is shown that the superposition of an isotropic background plasma of 106K and a loss-cone distribution of fast electrons is unstable for whistler waves if the loss-cone aperture 2α is sufficiently large (sec α?4); a typical value of the excited frequencies is 0.1 ω ce (ω ce is the angular electron cyclotron frequency). The whistlers can travel upwards through the source region of the continuum along the magnetic field direction with velocities of 21.5–28 v A (v A is the Alfvén velocity). Coupling of the whistlers with Langmuir waves into escaping electromagnetic waves can lead to the observed intermediate drift bursts, if the Langmuir waves have phase velocities around the velocity of light. In our model the instantaneous bandwith of the fibers corresponds to a frequency of 0.1–0.5 ω ce and leads to estimates of the magnetic field strength in the source region. These estimates are in good agreement with those derived from the observed drift rate, corresponding to 21.5–28 v A, if we use a simple hydrostatic density model.  相似文献   

7.
On April 21, 2002, a broadband solar radio burst was observed at about 01:00 – 03:00 UT with the digital spectrometers of National Astronomical Observatories of China (NAOC). Also many fiber bursts superposed on the continuum bursts were detected in the frequency range of 2.6 – 3.8 GHz during the time interval. After data processing, some parameters of the fibers such as frequency drift rate, duration, bandwidth, and relative bandwidth were determined. The mean value of the frequency drift was in the range of 42.3 – 87.4 MHz s−1 (negative). A theoretical interpretation for the fibers was presented based upon a model of the velocity of Alfvén solitons. In this model, the source of the fiber emission was considered as the ducting of the solitons within the magnetic-mirror loop. Then the magnetic field strength of the fiber source was estimated to be about 130 ≤ B0 ≤ 270 G. Also a comparison of the magnetic field estimation was made with another model of whistler group velocity.  相似文献   

8.
The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows one to obtain unique information about the primary energy release mechanisms in solar flares. The SSRT (Siberian Solar Radio Telescope) spatially resolved images and its high spectral and temporal resolution allow for direct determination not only of the source positions but also of the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when SSRT is observing the flare region in two high-order fringes near 5.7?GHz; thus, two 1D brightness distributions are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14?April 2002 is presented. Using multiwavelength radio observations recorded by the SSRT, the Huairou Solar Broadband Radio Spectrometer (SBRS), the Nobeyama Radio Polarimeters (NoRP), and the Radio Solar Telescope Network (RSTN), we study an event with series of several tens of drifting microwave pulses with drift rates in the range from ?7 to 13?GHz?s?1. The sources of the fast-drifting bursts were located near the top of a flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch anisotropy of the emitting electrons.  相似文献   

9.
太阳射电微波爆发及其精细结构研究进展   总被引:1,自引:0,他引:1  
太阳射电微波爆发携带着爆发源区的物理环境及辐射机制等诸多重要信息。其辐射频段较高,通常来自低日冕磁重联区,尤其是微波爆发的精细结构,持续时间短、变化快、结构复杂,可以反映重联过程复杂的磁场结构、高能粒子运动等许多特征。综述了太阳微波射电爆发分类研究的3个主要阶段,介绍了每一阶段的重要爆发类型、物理机制研究及相应的观测设备,讨论了进一步研究的方向。  相似文献   

10.
The Io flux tube (IFT), along which Io interacts with the Jovian magnetosphere, is the place of plasma acceleration processes resulting in auroral like emissions, in UV, IR and Radio emissions in the decameter range. At Earth, the study of the acceleration processes is mainly made by in situ measurements. Acceleration processes at Jupiter were first deduced from the observation of a particular kind of decameter radio emissions from the IFT: the short (S-)bursts. These radio bursts present a negative drift in the time-frequency domain, which is related to the motion of the energetic electrons which produce them. The measure of their drift thus permits the kinetic energy of the electrons to be obtained, as well as its variations along the IFT which have been interpreted as electric potential jumps. Using an enhanced S-burst detection and drift measurement method, more than 1 h of quasi-continuous decametric emissions recorded at the Kharkov UTR-2 radiotelescope have been analyzed. We observe the evolution of the electron kinetic energy with the longitude of Io with a resolution of , and detect the presence of acceleration structures with characteristics being consistent with electric potential jumps of few hundred volts, and moving along the IFT in the upward direction (toward Io) at the local sound velocity.  相似文献   

11.
Slow drift (Type II) radio bursts from the sun are believed to be caused by a primary disturbance moving outward through the solar atmosphere with a velocity of about 1000 km/sec. Analysis of the 2 years, 1956 October 1 through 1958 September 30, over the sunspot maximum shows that 45 per cent of these bursts are associated with the subsequent occurrence of terrestrial auroræ and magnetic storms. The mean delay between the radio bursts and the terrestrial disturbances is 33 hr, which is in good accord with the velocity for the disturbing source as deduced from the radio data. Investigation of the properties of the individual slow drift bursts and their association with other solar radio and optical phenomena reveals no completely conclusive criteria to explain why only 45 per cent of the bursts are geomagnetically important. The geomagnetic effects are enhanced, however, if the bursts occur near the equinoxes and if they are accompanied by a flare o'f importance 2 or 3, or by continuum (Type IV) radiation.

In the reverse association, with radio data available for an average 14 hr daily, it is shown that at least 60 per cent of magnetic storms are preceded, within 4 days, by a slow drift burst.  相似文献   


12.
A new kind of radio burst is described and identified as quasi-fiber burst according to some striking similarities with fiber bursts. Its interpretation is discussed in terms of Kuijpers' whistler model and an explanation for a broken variety of. the observed burst is given. The derived magnetic field strength in the source is 4 G at a plasma level of 300 MHz.  相似文献   

13.
Recent observations demonstrate that some type II radio bursts (a) occur below the top of coronal white light loops in the early stages and (b) travel faster than white light transients when both data sources are recorded concurrently. These characteristics are examined with numerical simulations of a coronal transient in combination with the suggestion by Holman and Pesses (1983) that shock drift acceleration may be the originating mechanism for type II emission. The simulated angular relation between the transient shock normal and the upstream magnetic field, along with requirements on this orientation in order that shock drift be effective, lead naturally to the observed spatial relationship (in the lower corona) and relative velocities of white-light transients and type II bursts. The large type II velocities do not directly correspond to either material or shock motion, but are due to the production of emission at different locations along the shock surface. In addition, the model coincides with the hypothesis that the shocks generating the coronal type II emission also produce interplanetary SA (shock-accelerated) events.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30?–?80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.  相似文献   

15.
The evolution of an X2.7 solar flare, that occurred in a complex β γ δ magnetic configuration region on 3 November 2003 is discussed by utilizing a multi-wavelength data set. The very first signature of pre-flare coronal activity is observed in radio wavelengths as a type III burst that occurred several minutes prior to the flare signature in Hα. This type III burst is followed by the appearance of a loop-top source in hard X-ray (HXR) images obtained from RHESSI. During the main phase of the event, Hα images observed from ARIES solar tower telescope, Nainital, reveal well-defined footpoint (FP) and loop-top (LT) sources. As the flare evolves, the LT source moves upward and the separation between the two FP sources increases. The co-alignment of Hα with HXR images shows spatial correlation between Hα and HXR footpoints, whereas the rising LT source in HXR is always located above the LT source seen in Hα. The evolution of LT and FP sources is consistent with the reconnection models of solar flares. The EUV images at 195 Å taken by SOHO/EIT reveal intense emission on the disk at the flaring region during the impulsive phase. Further, slow-drifting type IV bursts, observed at low coronal heights at two time intervals along the flare period, indicate rising plasmoids or loop systems. The intense type II radio burst at a time in between these type IV bursts, but at a relatively greater height, indicates the onset of CME and its associated coronal shock wave. The study supports the standard CSHKP model of flares, which is consistent with nearly all eruptive flare models. More importantly, the results also contain evidence for breakout reconnection before the flare phase.  相似文献   

16.
We discuss the spectra and positions of the meter-decameter wavelength radio sources associated with the 5 September 1973 flare. We discuss the evolution of the size of the type II burst source and show that it fluctuates by a factor of 10, or larger. Consequently, the potential and kinetic energies associated with the shock are uncertain by the same factor. By comparing the positions of the type II and type III sources we conclude that while the shock wave associated with the type II was guided along high loops, the type III electrons were injected along open field lines which diverged within a short height in the corona. The characteristics of a particularly interesting type III burst with a low-frequency cut-off are discussed. We argue that nearby loops were not disrupted by the shock and that the energetic electrons produced during the event must have been injected at several sites and guided along open field lines at large distances from the flare to produce type III bursts.  相似文献   

17.
The microwave Zebra pattern structure is an intriguing fine structure on the dynamic spectra of solar type IV radio bursts. Up to now, there is no perfect physical model for the origin of the solar microwave Zebra pattern. Recently, Ledenev et al. (Sol. Phys. 233:129, 2006) put forward an interference mechanism to explain the features of microwave Zebra patterns in solar continuum events. This model needs a structure with a multitude of discrete narrow-band sources of small size. Based on the model of a current-carrying plasma loop and the theory of tearing-mode instability, we propose that the above structure does exist and may provide the main conditions for the interference mechanism. With this model, we may explain the frequency upper limit, the formation of the parallel and equidistant stripes, the superfine structure and intermediate frequency drift rate of the Zebra stripes. If this explanation is valid, the Zebra pattern structures can reveal some information of the motion and the inner structures of the coronal plasma loops.  相似文献   

18.
Karlický  Marian 《Solar physics》1998,179(2):421-430
For radio emission at the frequency corresponding to the second harmonic of the local plasma frequency, the optical thickness in the solar atmosphere is calculated. Three types of models are assumed: the model with radio emission from the narrow transition region, and models with radio emission from a cool and dense plasma filament embedded in hotter plasma at the transition region and in the corona. The optical thickness is computed by integration of the collisional (free–free) absorption along a radio-ray path radial in the solar atmosphere. In all models considered the optical thickness can be sufficiently low for appropriate parameters. For example, in the narrow (<100 km) transition region where the density scale height is much less than that of the pressure one, the optical thickness can be lower than 1. Furthermore, the optical thickness can be decreased if the radio emission is generated in the cool and dense plasma filament surrounded by hotter and thinner plasma. But the models differ in density scale heights and thus in distances between plasma emission levels. This difference is essential for the interpretation of high-frequency type III radio bursts.  相似文献   

19.
The twin STEREO and the Wind spacecraft make remote multipoint measurements of interplanetary radio sources of solar origin from widely separated vantage points. One year after launch, the angular separation between the STEREO spacecraft reached 45°, which was ideal for locating solar type III radio sources in the heliosphere by three-spacecraft triangulation measurements from STEREO and Wind. These triangulated source locations enable intrinsic properties of the radio source, such as its beaming characteristics, to be deduced. We present the first three-point measurements of the beaming characteristics for two solar type III radio bursts that were simultaneously observed by the three spacecraft in December of 2007 and in January of 2008. These analyses suggest that individual type III bursts exhibit a wide beaming pattern that is approximately beamed along the direction tangent to the Parker spiral magnetic field line at the source location.  相似文献   

20.
We present four Mpc-sized radio galaxies which consist of a pair of double-lobed radio sources, aligned along the same axis, and with a coinciding radio core. We call these peculiar radio sources 'double-double' radio galaxies (DDRGs) and propose a general definition of such sources: a 'double-double' radio galaxy consists of a pair of double radio sources with a common centre. Furthermore, the two lobes of the inner radio source must have a clearly extended, edge-brightened radio morphology. Adopting this definition, we find several other candidate DDRGs in the literature. We find that in all sources the smaller (inner) pair of radio lobes is less luminous than the larger (outer) pair, and that the ratio of 1.4-GHz flux density of these two pairs appears to be anticorrelated with the projected linear size of the inner source. Also, the outer radio structures are large, exceeding 700 kpc. We discuss possible formation scenarios of the DDRGs, and we conclude that an interruption of the jet-forming central activity is the most likely mechanism. For one of our sources (B 1834+620) we have been able observationally to constrain the length of time of the interruption to a few Myr. We discuss several scenarios for the cause of the interruption, and suggest multiple encounters between interacting galaxies as a possibility. Finally, we discuss whether such interruptions help the formation of extremely large radio sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号