首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Muzaffarnagar is an economically rich district situated in the most fertile plains of two great rivers Ganga and Yamuna in the Indo-gangetic plains, with agricultural land irrigated by both surface water as well as groundwater. An investigation has been carried out to understand the hydrochemistry of the groundwater and its suitability for irrigation uses. Groundwater in the study area is neutral to moderately alkaline in nature. Chemistry of groundwater suggests that alkaline earths (Ca + Mg) significantly exceed the alkalis (Na + K) and weak acids exceed the strong acids (Cl + SO4), suggesting the dominance of carbonate weathering followed by silicate weathering. Majority of the groundwater samples (62%) posses Ca–Mg–HCO3 type of hydrochemical species, followed by Ca–Na–Mg–HCO3, Na–Ca–Mg–HCO3, Ca–Mg–Na–HCO3–Cl and Na–Ca–HCO3–SO4 types. A positive high correlation (r 2 = 0.928) between Na and Cl suggests that the salinity of groundwater is due to intermixing of two or more groundwater bodies with different hydrochemical compositions. Barring a few locations, most of the groundwater samples are suitable for irrigation uses. Chemical fertilizers, sugar factories and anthropogenic activities are contributing to the sulphate and chloride concentrations in the groundwater of the study area. Overexploitation of aquifers induced multi componential mixing of groundwater with agricultural return flow waters is responsible for generating groundwater of various compositions in its lateral extent.  相似文献   

2.
An attempt has been made to study the groundwater geochemistry in part of the NOIDA metropolitan city and assessing the hydrogeochemical processes controlling the water composition and its suitability for drinking and irrigation uses. The analytical results show that Na and Ca are the major cations and HCO3 and Cl are the major anions in this water. The higher ratios of Na+K/TZ+ (0.2–0.7), Ca+Mg/HCO3 (0.8–6.1); good correlation between Ca-Mg (0.75), Ca-Na (0.77), Mg-Na (0.96); low ratio of Ca+Mg/Na+K (1.6), Ca/Na (1.03), Mg/Na (0.64), HCO3/Na (1.05) along with negative correlation of HCO3 with Ca and Mg signify silicate weathering with limited contribution from carbonate dissolution. The hydro-geochemical study of the area reveals that many parameters are exceeding the desirable limits and quality of the potable water has deteriorated to a large extent at many sites. High concentrations of TDS, Na, Cl, SO4, Fe, Mn, Pb and Ni indicate anthropogenic impact on groundwater quality and demand regional water quality investigation and integrated water management strategy. SAR, %Na, PI and Mg-hazard values show that water is of good to permissible quality and can be used for irrigation. However, higher salinity and boron concentration restrict its suitability for irrigation uses at many sites.  相似文献   

3.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

4.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

5.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

6.
A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of $ {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} $ . Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.  相似文献   

7.
 Slovakia has many areas rich in thermal waters one of which is the Hornonitrianska kotlina depression. At four localities three types of waters are found. The first belongs to the Ca–Mg–HCO3 type with T.D.S. 0.7 g/l, the second to the Ca–Mg–SO4 type with T.D.S. 1.37–2.01 g/l and the third to the Ca–Mg–SO4–HCO3 type with T.D.S. 0.97 g/l. Discharge at individual localities varies up to 30 l/s and temperatures of water reach 32.5–66.6  °C. The waters are predominantly used for healing, rehabilitation purposes, recreation and heating. Received: 8 March 1999 · Accepted: 7 June 1999  相似文献   

8.
In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na?+?K over Ca?+?Mg. HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area.  相似文献   

9.
Analyses of 72 samples from Upper Panjhara basin in the northern part of Deccan Plateau, India, indicate that geochemical incongruity of groundwater is largely a function of mineral composition of the basaltic lithology. Higher proportion of alkaline earth elements to total cations and HCO3>Cl + SO4 reflect weathering of primary silicates as chief source of ions. Inputs of Cl, SO4, and NO3 are related to rainfall and localized anthropogenic factors. Groundwater from recharge area representing Ca + Mg–HCO3 type progressively evolves to Ca + Na–HCO3 and Na–Ca–HCO3 class along flow direction replicates the role of cation exchange and precipitation processes. While the post-monsoon chemistry is controlled by silicate mineral dissolution + cation exchange reactions, pre-monsoon variability is attributable chiefly to precipitation reactions + anthropogenic factors. Positive correlations between Mg vs HCO3 and Ca + Mg vs HCO3 supports selective dissolution of olivine and pyroxene as dominant process in post-monsoon followed by dissolution of plagioclase feldspar and secondary carbonates. The pre-monsoon data however, points toward the dissolution of plagioclase and precipitation of CaCO3 supported by improved correlation coefficients between Na + Ca vs HCO3 and negative correlation of Ca vs HCO3, respectively. It is proposed that the eccentricity in the composition of groundwater from the Panjhara basin is a function of selective dissolution of olivine > pyroxene followed by plagioclase feldspar. The data suggest siallitization (L < R and R k) as dominant mechanism of chemical weathering of basalts, stimulating monosiallitic (kaolinite) and bisiallitic (montmorillonite) products. The chemical denudation rates for Panjhara basin worked out separately for the ground and surface water component range from 6.98 to 36.65 tons/km2/yr, respectively. The values of the CO2 consumption rates range between 0.18 × 106 mol//km2/yr (groundwater) and 0.9 × 106 mol/km2/yr (surface water), which indicates that the groundwater forms a considerable fraction of CO2 consumption, an inference, that is, not taken into contemplation in most of the studies.  相似文献   

10.
The chemical characteristics of surface, groundwater and mine water of the upper catchment of the Damodar River basin were studied to evaluate the major ion chemistry, geochemical processes controlling water composition and suitability of water for domestic, industrial and irrigation uses. Water samples from ponds, lakes, rivers, reservoirs and groundwater were collected and analysed for pH, EC, TDS, F, Cl, HCO3, SO4, NO3, Ca, Mg, Na and K. In general, Ca, Na, Mg, HCO3 and Cl dominate, except in samples from mining areas which have higher concentration of SO4. Water chemistry of the area reflects continental weathering, aided by mining and other anthropogenic impacts. Limiting groundwater use for domestic purposes are contents of TDS, F, Cl, SO4, NO3 and TH that exceed the desirable limits in water collected from mining and urban areas. The calculated values of SAR, RSC and %Na indicate good to permissible use of water for irrigation. High salinity, %Na, Mg-hazard and RSC values at some sites limit use for agricultural purposes.  相似文献   

11.
Eighty-seven groundwater samples have been collected from a mountainous region (Alvand, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Most water quality parameters are within World Health Organization acceptable limits set for drinking water. The least mineralized water is found closest to the main recharge zones and the salinity of water increased towards the north of the basin. The most prevalent water type is Ca–HCO3 followed by water types Ca–NO3, Ca–Cl, Ca–SO4 and Mg–HCO3. The Ca–NO3 water type is associated with high nitrate pollution. Agricultural and industrial activities were associated with elevated level of NO3. Mineral dissolution/weathering of evaporites dominates the major element hydrochemistry of the area. Chemical properties of groundwater in Alvand region are controlled both by natural geochemical processes and anthropogenic activities.  相似文献   

12.
The Imphal valley is an intramontane basin confined within an anticlinorium of several anticlines and synclines in the Disang Group of rocks of Tertiary age. This valley of more than 2 million people is occupied by fluvio-lacustrine deposits of Quaternary age and is located in the central part of the Indo-Myanmar range of Northeast India. The hydrogeochemical parameters of temperature, pH, ORP, TDS, Na, Cl, Br, Ba, B, Sr, Li, δ18O, HCO3, K, Mg, Ca, NO3, PO4, SO4 in 173 samples using ion-chromatograph, ICP (AES), ICP (OES), ICP (MS) and 37 dugwells were studied to understand the occurrence and origin of salinization process for the first time. The order of abundance of ions is identified as HCO3 > Na > Cl > Ca > Mg > K > NO3 > PO4 > Sr > Br > B>Ba > Li > SO4. Five hydrochemical facies (Na–Cl, Ca–Mg–HCO3, Na–HCO3, Ca–Mg–HCO3–Cl and Ca–Mg–Cl) represent the types of waters. The saline-dominated water types (Na–Cl and Na–HCO3) represent piedmont and the rest of the facies represent alluvial plain and flood plain groundwaters. Durov’s diagram reveales initial and intermediate stages of groundwater evolution. Isotope δ18O, Gibbs diagram and ions scatter plots suggest evaporation and crystallization processes leading to halite encrustation in the Disang shales. Negative Eh, low NO3 and the absence of SO4 indicates reduced condition coupled with rich dissolve organic matters leading to elevation of salts in soils around piedmont where the rock type is exclusively of the Disang shales. Trilinear plot, correlation matrix and water table flow analysis suggest salinization of groundwater originates in piedmont groundwater and disseminates towards alluvial plain and flood plain along the flow path.  相似文献   

13.
 An unconfined aquifer system suggests an open system in the study area. Hydrochemical evolution is related to the flow path of groundwater. The groundwaters are divided into two hydrochemical facies in the study area, 1) Ca–Mg–HCO3 and 2) Ca–Mg–SO4HCO3. Facies 1 has shallow (young) waters which dominate in recharge areas during rapid flow conditions, whereas facies 2 may show shallow and mixed waters which dominate intermediate or discharge areas during low flow conditions. Ionic concentrations, TDS, EC and water quality are related to groundwater residence time and groundwater types. The groundwaters in the plain are chemically potable and suitable for both domestic and agricultural purposes. Received: 20 May 1996 · Accepted: 30 July 1996  相似文献   

14.
The present work was carried out in Nalbari district of Assam (India) with an objective to assess the quality of groundwater and to check its suitability for drinking and irrigation purposes. Groundwater samples were collected from 50 different locations during pre- and post-monsoon seasons of 2016. Results of chemical analysis revealed that mean concentration of cations varied in the order Ca2+?>?Na+?>?Mg2+?>?K+, while for anions the order was HCO3 ??>?Cl??>?SO42??>?NO32??>?F? during both pre- and post-monsoon seasons. The suitability of groundwater samples for drinking purpose was assessed by comparing the results of physico-chemical analysis of groundwater with Indian Standards. Further, its suitability for irrigation purpose was assessed by evaluating several parameters like sodium adsorption ratio (SAR), sodium percentage (Na%), magnesium ratio, Kelly’s ratio and residual sodium carbonate (RSC). The SAR values obtained for all the samples were plotted against EC values in the US Salinity Laboratory diagram, and it was revealed that the most of the samples fall under water type C2-S1 indicating medium salinity and low SAR. Further, it was found that the majority of the samples belong to Ca–Mg–HCO3 hydrochemical facies followed by Ca–Mg–Cl–SO4, whereas only a few samples belong to Na–K–HCO3 hydrochemical facies.  相似文献   

15.
The Kali-Hindon is a watershed in the most productive central Ganga plain of India. The whole area is a fertile track with sugarcane being the principal crop. Systematic sampling was carried out to assess the source of dissolved ions, impact of sugar factories and the quality of groundwater. Thirty-six samples were collected covering an area of 395 km2. The quality of groundwater is suitable for irrigational purposes but is rich in SO4 which is not best for human consumption. Graphical treatment of major ion chemistry helps identify six chemical types of groundwater. All possible species such as Na–Cl, K–Cl, Na–HCO3, Na–SO4, Ca–HCO3, Mg–HCO3, Ca–SO4 and Mg–SO4 are likely to occur in the groundwater system. The most conspicuous change in chemistry of groundwater is relative enrichment of SO4. The interpretation of data reveals that SO4 has not been acquired through water–rock interaction. The source of SO4 is anthropogenic. Sugar factories alone are responsible for this potential environmental hazard.  相似文献   

16.
Lack of proper reclamation strategy and indiscriminate mining of various economic resources, particularly coal from Permo-carboniferous Gondwana coalfields affects the groundwater quality of the concerned regions. Leaching from mine-tailings along with seasonal fluctuation of water table caused a significant change in groundwater geochemistry of Raniganj coalfield area. Gondwana sequences, developed in intracratonic rift basin, are characterized by numerous longitudinal and cross faults. This results in the formation of many small aquifer systems which may be interconnected laterally as well as vertically providing the conduit for homogenization of aquifers. Although the predominance of major cations (Ca>Na>Mg>K) and anions (HCO3>Cl>SO4>NO3) remain same irrespective of season, the dominance of Na and SO4 have significantly increased in post-monsoon season. The types of groundwater in pre-monsoon and postmonsoon seasons are CaMgCl and CaHCO3 respectively. Leaching of SO4 from surface sources (mine tailings) has increased TDS in post-monsoon. Base exchange (direct and reverse) reactions have taken place between aquifer materials and groundwater.  相似文献   

17.
On the south-eastern edge of Russia, the chemical composition of rainwater is controlled by sea salts, terrestrial material, as well as volcanic (Kuril islands volcanic area) and anthropogenic emissions, mostly in the southern part of the area. The predominant major ions of the Primorye, Sakhalin and the Kuril Islands rainwaters were respectively HCO3–SO42−, Ca–Na, and of Cl–Na. Concentration of trace elements changes within 1–2 orders of magnitude but some difference in the distribution of the elements between continental and island rainwater is found. The concentration of the chemical elements in the particulate fraction varies from < 10% to 90% of the total concentration (dissolved + particulate) with the following distribution: Tl, Na, Ca, Sr, Zn, Cd (< 10%)–Be, Th, Bi, Rb, U, K, Sc (10–20%)–Cu, Mn, Mg, Mo, Se, Ba, Ni, As, Ag, Cs, Co, Y, Ga, V (20–50%)–Sb, Pb, Ge, Cr, Fe, Al (50–90%).The concentration of elements of the particulate fraction of the rainwater usually is significantly different from concentrations in the crust, including both higher and lower concentrations. The terrestrial contribution to dissolved elements was evaluated and follows the decreasing order: Fe > K, Mg, Ca > Ba, Sr > Na (65–1%). Close order was found for total (dissolved and solid) concentrations. Sea salt contribution to dissolved element concentration in the rainwater decrease in the following order: Cl, Mg > K, SO4 > Ca > HCO3, Ba, Fe (78–0.1%). Calculation of anthropogenic and volcanic inputs for two ions (Cl and SO42−) shows that anthropogenic inputs for the Vladivostok and Yuzno-Sakhalinsk cities can be evaluated as 15–20% of Cl and up to 80–90% of SO42−. Volcanic components in the Kuril Islands, where anthropogenic inputs are absent, can reach up to 76% of SO42− and 36% of Cl.  相似文献   

18.
The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca–Mg–Na–HCO3–Cl–SO4 type I; facies 2: Na–Cl–HCO3 type II; facies 3: Na–Ca–Mg–Cl type III, facies 4: Ca–Na–Mg–Cl–HCO3 type IV and facies 5: Na–Mg–Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil degradation observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging. On the other hand, water erosion because of sea rise is assessed. Multi-dates satellite data from Landsat TM and ETM+ images dated 1983 and 2003 were used to detect the changes of shoreline during the last two decades. The obtained results showed that, the eroded areas were determined as 568.20 acre; meanwhile the accreted areas were detected as 494.61 acre during the 20-year period.  相似文献   

19.
 A strong geochemical gradient was observed in the thick overburden aquifer of the Asa drainage basin. Different types of groundwater occur at different (downslope) locations and groundwater table depths. The following sequence was noticed with increasing distance downslope or with increasing groundwater table depth: 1. Ca–Mg–HCO3 water at about 390-m groundwater table elevations or upslope locations. 2. Ca–Mg–HCO3–Cl water at middle-slope locations or groundwater table elevations of about 350 m above sea level; 3. Ca–Mg–SO4–Cl water at downslope locations or groundwater table elevations of about 300 m above sea level. In this basin, changes in the type of water are expected at about every 40–50 m depth from the surface. Statistical analysis via the determination of the correlation coefficient (r) and regression analysis shows that about 80–99% of the variation in groundwater chemistry is accounted for by the topography, using the model presented in this paper. The rate of change in the sequence will depend on the permeability of the aquifer, which determines the rate of groundwater flow and the residence time, and the nature of recharge. Received: 4 February 1997 · Accepted: 22 July 1997  相似文献   

20.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号