首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Lithos》2007,93(1-2):149-174
Strong compositional variations are observed in the late-Miocene to Quaternary volcanic rocks of the eastern Trans-Mexican Volcanic Belt. Geochemical and isotopic analyses of samples well constrained in age indicate an abrupt change in magma composition in the late-Miocene (∼ 7.5 Ma), when calc-alkaline, subduction-related magmatism was replaced by mafic, alkaline, OIB-like volcanism. Afterwards, volcanism migrated toward the trench and the erupted lavas showed increasing contributions of subduction components reflected in higher Th/Nb, La/Sm(n), Ba/Nb, and Ba/Th ratios. Lavas from volcanic fields located closer to the trench show clearer, although strongly variable, arc signatures as well as evidence of subducted sediment contributions. Farther from the trench, only lavas emplaced in late-Pliocene time appear to be slightly modified by subduction components, whereas the youngest Quaternary lavas can be regarded as intraplate lavas modified by crustal assimilation.The sudden change in magma composition in the late-Miocene is related to detachment of the subducting slab, which allowed the infiltration of enriched asthenospheric mantle into the mantle wedge. After detachment, the subducting plate started to increase its dip because of the loss of slab pull. This caused (1) the migration of the arc toward the trench, (2) convection of enriched asthenosphere into the mantle wedge, and (3) an increasing contribution of slab components to the melts, in a process that resulted in a highly heterogeneous source mantle. The variable contribution of subduction-related components to the magmas is controlled by the heterogeneous character of the source, the depth of the subducting plate, and the previous magmatic history of the areas.  相似文献   

2.
Subduction erosion, which occurs at all convergent plate boundaries associated with magmatic arcs formed on crystalline forearc basement, is an important process for chemical recycling, responsible globally for the transport of ~1.7 Armstrong Units (1 AU = 1 km3/yr) of continental crust back into the mantle. Along the central Andean convergent plate margin, where there is very little terrigenous sediment being supplied to the trench as a result of the arid conditions, the occurrence of mantle-derived olivine basalts with distinctive crustal isotopic characteristics (87Sr/86Sr ≥ 0.7050; εNd ≤ −2; εHf ≤ +2) correlates spatially and/or temporally with regions and/or episodes of high rates of subduction erosion, and a strong case can be made for the formation of these basalts to be due to incorporation into the subarc mantle wedge of tectonically eroded and subducted forearc continental crust. In other convergent plate boundary magmatic arcs, such as the South Sandwich and Aleutian Islands intra-oceanic arcs and the Central American and Trans-Mexican continental margin volcanic arcs, similar correlations have been demonstrated between regions and/or episodes of relatively rapid subduction erosion and the genesis of mafic arc magmas containing enhanced proportions of tectonically eroded and subducted crustal components that are chemically distinct from pelagic and/or terrigenous trench sediments. It has also been suggested that larger amounts of melts derived from tectonically eroded and subducted continental crust, rising as diapirs of buoyant low density subduction mélanges, react with mantle peridotite to form pyroxenite metasomatites that than melt to form andesites. The process of subduction erosion and mantle source region contamination with crustal components, which is supported by both isotopic and U-Pb zircon age data implying a fast and efficient connectivity between subduction inputs and magmatic outputs, is a powerful alternative to intra-crustal assimilation in the generation of andesites, and it negates the need for large amounts of mafic cumulates to form within and then be delaminated from the lower crust, as required by the basalt-input model of continental crustal growth. However, overall, some significant amount of subducted crust and sediment is neither underplated below the forearc wedge nor incorporated into convergent plate boundary arc magmas, but instead transported deeper into the mantle where it plays a role in the formation of isotopically enriched mantle reservoirs. To ignore or underestimate the significance of the recycling of tectonically eroded and subducted continental crust in the genesis of convergent plate boundary arc magmas, including andesites, and for the evolution of both the continental crust and mantle, is to be on the wrong side of history in the understanding of these topics.  相似文献   

3.
The Pb and Sr isotope ratios of Plio-Pleistocene volcanic rocks from the Aleutian volcanic arc are used as tracers of the lithospheric subduction process at the converging Pacific and Bering plates. Aleutian arc lavas do not have the same Pb isotopic compositions as volcanic rocks of the subducted Pacific ocean crust or the nearby Pribilof Islands, but appear to contain an ‘old continental crustal component’ with high 207Pb/204Pb ratio, as has been found in some other volcanic arcs.87Sr/86Sr ratios in the Aleutian volcanic arc rocks average 0.70322, slightly higher than fresh volcanic rocks from normal ridge segments, but within the range of values from ‘Icelandic’ ridge segments, oceanic islands and the Pribolof Islands. The Pb and Sr isotopic compositions of Aleutian lavas show a positive correlation and the range of values does not change for volcanoes distributed along strike in the arc, even though the crustal type in the hanging wall of the Benioff zone changes from oceanic in the west to continental in the east. Since the basement of the continental arc segment is older than the basement of the oceanic segment, and probably has a different isotopic character, the constancy of isotopic ratios along the arc argues against contamination by wall rocks of the type exposed in the arc.A sufficient explanation for the isotopic data is the mixture of several per cent of continent-derived sediment with melt derived from the underthrust oceanic crust and overlying mantle. This small amount of contaminant is difficult to document by geophysical observations. Such a model implies extensive recycling of Ba, Pb, K and Rb through volcanism at convergent plate margins like the Aleutians.  相似文献   

4.
Mafic volcanic rocks that occur within the sedimentary pile of the Hindoli Group were analyzed for major and trace elements (including REE) to establish tectonic setting of volcanism during the early Proterozoic history of the North Indian Craton. The mafic volcanics are sub-alkaline showing compositional variation from picrobasalt to basalt. They are LREE enriched with (La/Yb)N ratio ranging from 4.67?C6.19 (avg.5.27) and exhibit slightly concave REE patterns relative to chondrite. The multi-element patterns of these mafic volcanic rocks display relative enrichment in Th and LREE and negative anomalies of Nb and P. These geochemical characteristics are consistent with a subduction related origin. Various variation diagrams, involving immobile trace elements, distinguish the Hindoli lavas as arc basalt. However, their Ti and Nb contents are higher than those of subduction related magmas. Probably the wedge melting, along with mixing of rising asthenosphere might have produced these characteristics. It is suggested that the Hindoli basin originated by rifting of island- arc lithosphere, caused by rising plume in an extensional back arc region. Based on the results of the present geochemical study, it is proposed that in the early Proterozoic the Mewar block had an active-type continental margin on its present eastern side. The continental magmatic arcs and intra-arc basins developed on this margin were subsequently incorporated into the Mewar protocontinent. Possibly, the plate carrying the Bundelkhand block subducted beneath the eastern margin of the Mewar block, resulting in the final amalgamation of the two blocks along Great Boundary Fault zone or Banas Dislocation Zone. The arc related volcanism of north Indian shield at about 1850?C1832 Ma, appears to represent the global subduction event, which resulted in the amalgamation and formation of Columbia supercontinent.  相似文献   

5.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

6.
Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.  相似文献   

7.
Basic volcanic rocks from Tafresh, west Kashan, and west Nain volcanic successions in the central part of Urumieh-Dokhtar Magmatic Assemblage (UDMA) of Iran yield K–Ar ages ranging from 26.8 to 18.2 Ma. These ages indicate significant Late Oligocene–Early Miocene basic volcanism in the UDMA. These ages, combined with K–Ar ages of 26.0 and 14.1 Ma, respectively, for associated low-silica and high-silica adakites, help constrain reconstructions of the UDMA geodynamic evolution. Late Oligocene–Early Miocene slab roll-back associated with an asthenospheric mantle influx are suggested as the major processes responsible for concurrent volcanism showing Nb–Ta-depleted, Nb–Ta-enriched and low-silica adakite signatures. Slab roll-back, the likely consequence of a decrease in subduction velocity, led to partial melting of the subducted slab and produced Early–Middle Miocene high-silica (dacitic) adakites. Oligocene to Miocene volcanic rocks do not conform to the Oligocene continental collisional model for the UDMA, rather they suggest a decrease in the subduction rate that prompted the asthenospheric mantle influx.  相似文献   

8.
The Pushtashan suprasubduction zone assemblage of volcanic rocks, gabbros, norites and peridotites occurs in the Zagros suture zone, Kurdistan region, northeastern Iraq. Volcanic rocks are dominant in the assemblage and consist mainly of basalt and basaltic andesite flows with interlayered red shale and limestone horizons. Earlier lavas tend to be MORB-like, whereas later lavas display island arc tholeiite to boninitic geochemical characteristics. Tholeiitic gabbros intrude the norites and display fractionation trends typical of crystallisation under low-pressure conditions, whereas the norites display calc-alkaline traits, suggesting their source included mantle metasomatised by fluids released from subducted oceanic crust. Enrichment of Rb, Ba, Sr, Th and the presence of negative Nb anomalies indicate generation in a suprasubduction zone setting. Trondhjemite and granodiorite intrusions are present in the volcanic rocks, gabbros and norites. SHRIMP U-Pb dating of magmatic zircons from a granodiorite yields a mean~(206)Pb/~(238)U age of 96.0 ±2.0 Ma(Cenomanian). The initial ε_(Hf) value for the zircons show a narrow range from +12.8 to+15.6, with a weighted mean of + 13.90±0.96. This initial value is within error of model depleted mantle at 96 Ma or slightly below that, in the field of arc rocks with minimal contamination by older continental crust. The compositional bimodality of the Pushtashan suprasubduction sequence suggests seafloor spreading during the initiation of subduction, with a lava stratigraphy from earlyerupted MORB transitioning into calc-alkaline lavas and finally by 96 Ma intrusion of granodioritic and trondhjemitic bodies with juvenile crustal isotopic signatures. The results confirm another Cretaceous arc remnant preserved as an allochthon within the Iraqi segment of the Cenozoic Zagros suture zone. Implications for the closure of Neo-Tethys are discussed.  相似文献   

9.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

10.
The sector of the northern Antarctic Peninsula between the Tula and Shackleton Fracture Zones provides evidence for the subduction of south-east Pacific oceanic crust under Antarctic continental crust during Late Mesozoic through Miocene times. The pre-subduction depositional history of this sector includes the formation of a marine siliciclastic turbidite wedge (?Permian-Triassic) deposited in a marginal basin setting. It was folded and thrust retroarc before the Middle Jurassic to form the Trinity accretion foldbelt, which extended for several hundred kilometres along the Pacific margin of Gondwanaland. The foldbelt was deeply eroded and levelled under subaerial conditions, then unconformably covered either by Middle-Upper Jurassic alluvial to lacustrine deposits (in the north) or by Early Cretaceous basic lavas (in the south). The subduction-related magmatism, in the form of acidic effusions and intrusions, began in the northern Antarctic Peninsula during Middle Jurassic times and continued as predominantly basic lavas and agglomerates intruded by basic, intermediate and acidic plutons, and by a succession of dykes, during the Early to Late Cretaceous. Thus the inner magmatic are of the northern Antarctic Peninsula (northern Graham Land-Trinity Peninsula) was formed. An outward (north-westerly) migration of centres of magmatic activity with time (Cretaceous-Tertiary) towards the subduction trench, coupled with a northeastward shift of these centres along the Arc's length due to the counterclockwise rotation of Antarctica, produced the outer magmatic arc of the South Shetland Islands. Slight folding of Late Mesozoic and Tertiary magmatic suites occurred at several stages of subduction. Stronger folding and retroarc thrusting appeared locally as a result of the collision of the Aluk Ridge-Antarctic Peninsula during the Mid-Miocene. The latest plate tectonic event was the opening of the Bransfield Rift (Oligocene-Recent) as a spreading back-arc basin, associated with terrestrial and submarine volcanic activity.  相似文献   

11.
东准噶尔一直以来都是研究新疆北部古生代洋陆格局和构造演化热点地区之一.前人对东准噶尔南缘火山岩的研究较为薄弱, 关注点多在石炭纪火山岩源区及构造属性上, 对泥盆纪火山岩构造背景和岩浆演化过程缺乏认识.对卡拉麦里蛇绿岩北侧的泥盆系北塔山组和乌鲁巴斯套组火山岩的岩石学、地球化学和年代学特征进行了详细研究, 结果表明:卡拉麦里北塔山组火山岩形成于早泥盆世晚期-中泥盆世早期(404 Ma), 具中-高钾、中钛、中铁和低铝的特征, 微量元素显示其富集LREE、LILE和亏损Nb、Ta, 推测其形成于洋壳俯冲的陆缘弧环境, 源区为受过俯冲沉积物熔体和流体交代的亏损地幔楔; 而莫钦乌拉中泥盆统乌鲁巴斯套组火山岩具贫碱、低钾、低钛、高铝等特征, 显示为典型的岛弧火山岩特征, 同位素和微量元素特征显示其来源于俯冲消减板片流体交代的亏损地幔楔.综合两套火山岩的差异特征和区域地质背景, 推测中泥盆纪卡拉麦里洋北向俯冲经历了由陆缘弧到岛弧的转变过程.   相似文献   

12.
A selected suite of fresh volcanic rocks from the New Britain island arc has been analyzed for 143Nd/144Nd, 87Sr/86Sr, major and trace elements to investigate relationships between isotopes, trace elements and petrology, and depth to the underlying Benioff zone. From these relationships inferences about magma generation are made utilizing Nd and Sr isotope systematics in possible source materials. Lavas ranging in composition from basalt to rhyolite show minimal variation of 143Nd/144Nd. Small variations in 87Sr/86Sr do not correlate with depth to the Benioff zone, but are related to magma type. Nd-Sr isotopes suggest that island arc lavas in general are derived from a mixture of suboceanic mantle and hydrothermally altered mid-ocean ridge-type basalt, but the New Britain magma source appears homogeneous with little indication of either the involvement of oceanic crust or mantle inhomogeneity. Trace element patterns in New Britain lavas are not consistent with Nd isotope data for currently accepted petrologic and trace element models of magma genesis. Mafic lavas from New Britain and other island arcs have anomalously high Sr/Nd, possibly due to components derived from subducted oceanic crust.  相似文献   

13.
The Carboniferous–Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up an important phanerozoic large igneous province in the word, which can be further divided into two sub-provinces: Tianshan and Tarim. The Early Permian volcanic rocks have been considered to be the products of an intraplate volcanism by most researchers. However, there is still strong controversy about the nature and geological setting of the Carboniferous volcanic rocks. The regional angular unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360–351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our studies reveal that although contamination by continental crust or lithosphere can impart subduction-like signature (e.g., low Nb, low Ta and low Ti) and lead to misidentification of contaminated Carboniferous basaltic lavas from the Chinese Tianshan and its neighboring areas as arc related, there are still some essential differences between the Carboniferous basaltic lavas and arc related ones; such as: uncontaminated Carboniferous basaltic lavas have higher Nb concentrations (9–22 ppm), Nb/La > 1, “hump-shaped” OIB-like trace element patterns and moderate positive ɛNd values that distinguish them from the arc related ones; whereas, the contaminated Carboniferous basaltic lavas are characterized by pronounced negative Nb, Ta and Ti anomalies, but, their concentrations of incompatible trace elements are conspicuously higher than those of subduction-zone basalts that also distinguishes them from the arc related ones. Our summation suggests that the Carboniferous volcanic successions did indeed erupt in an intracontinental rift setting and their generation is likely confined to mantle plume.  相似文献   

14.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

15.
One of the major processes in the formation and deformation of continental lithosphere is the process of arc volcanism. The plate-tectonic theory predicts that a continuous chain of arc volcanoes lies parallel to any continuous subduction zone. However, the map pattern of active volcanoes shows at least 24 areas where there are major spatial gaps in the volcanic chains (> 200 km). A significant proportion (~ 30%) of oceanic crust is subducted at these gaps. All but three of these gaps coincide with the collision or subduction of a large aseismic plateau or ridge.The idea that the collision of such features may have a major tectonic impact on the arc lithosphere, including cessation of volcanism, is not new. However, it is not clear how the collision or subduction of an oceanic plateau perturbs the system to the extent of inhibiting arc volcanism. Three main factors necessary for arc volcanism are (1) source materials for the volcanics—either volatiles or melt from the subducting slab and/or melt from the overlying asthenospheric wedge, (2) a heat source, either for the dehydration or the melting of the slab, or the melting within the asthenosphere and (3) a favorable state of stress in the overlying lithosphere. The absence of any one of these features may cause a volcanic gap to form.There are several ways in which the collision or subduction of an oceanic plateau may affect arc volcanism. The clearest and most common cases considered are those where the feature completely resists subduction, causing local plate boundaries to reorganize. This includes the formation of new plate-bounding transform faults or a flip in subduction polarity. In these cases, subduction has slowed down or stopped and the lack of source material has created a volcanic gap.There are a few cases, most notably in Peru, Chile, and the Nankai trough, where the dip of subduction is so shallow that effectively no asthenospheric wedge exists to produce source material for volcanism. The shallow dip of the slab may be a buoyant effect of the plateau imbedded in the oceanic lithosphere.The cases which are the most enigmatic are those where subduction is continuous, the oceanic plateau is subducted along with the slab, and the dip of the slab is clearly steep enough to allow arc volcanism; yet a volcanic gap exists. In these areas, the subducted plateau may have a fundamental effect on the physical process of arc volcanism itself. The presence of a large topographic feature on the subducting plate may affect the stress state in the are by increasing the amount of decoupling between the two plates. Alternatively, the subduction of the plateau may change the chemical processes at depth if either the water-rich top of the plateau with accompanying sediments are scraped off during subduction or if the ridge is compositionally different.  相似文献   

16.
西秦岭合作—美武地区郎木寺组火山岩主要以中性的安山质火山岩为主,其次为英安岩及英安质火山碎屑岩和酸性的流纹质火山岩,为一套高K、低Ti、准铝质的钙碱性系列火山岩,微量元素总体富集Rb、亏损Th、La、Nd,Nb,稀土总量不高,含量不稳定,变化范围较大,轻重稀土分馏较明显,Eu存在微弱的负异常。通过对岩石学、岩石地球化学分析,表明其形成于活动大陆边缘弧环境,岩浆来源于地幔楔或俯冲板块上升过程中产生的俯冲岩浆带,为合作—美武地区火山岩岩石成因及构造环境研究提供依据。  相似文献   

17.
《International Geology Review》2012,54(14):1684-1708
Volcanic rocks that make up Faial Island, Central Azores, consist of four volcano-stratigraphic units, with ages between 730 ka and the present. Lavas range from alkali basalts to trachyandesites and belong to the alkaline-sodic series. The oldest unit is the Ribeirinha Volcanic Complex, generally characterized by low MgO contents. The Cedros Volcanic Complex is composed of basalts to benmoreites with low MgO contents. The Almoxarife Formation represents fissure flows, containing MgO contents similar to to slightly higher than those of the underlying Cedros Volcanic Complex. The youngest unit, the Capelo Formation, consists of mafic rocks with MgO values higher than those of the other units. Bulk-rock major and trace element trends suggest that differentiation of the three earliest units were dominated by fractional crystallization of plagioclase ± clinopyroxene ± olivine ± titanomagnetite. Capelo bulk-rock compositions are the most primitive, and are related to a period when volcanic activity was fed by deep magmatic chambers, and melts ascended more rapidly. Comparison among geochemical patterns of the trace elements suggests a strong similarity between the lavas from Faial and Pico islands. Corvo Island volcanism contrasts with the geochemistry of Faial and Pico lavas, reflecting its strong K and Rb depletion, and Th, U, Ta, Nb, La, and Ce enrichment. Absence of the Daly gap in the Faial volcanics is attributed to early crystallization of Ti-Fe oxides. The probable source of the Faial magma coincides with the MORB-FOZO array, which implies the presence of ancient recycled oceanic crust in the mantle source. Ratios of incompatible trace elements suggest the similarity of Corvo volcanic rocks with magmas derived from HIMU sources, whereas the Faial and Pico volcanic rocks could have been produced from sources very close to EMII-type OIB.  相似文献   

18.
We report elemental and Nd–Sr isotopic data for three types of Ordovician volcanic and gabbroic rocks from the Sharburti Mountains in the West Junggar (Xinjiang), Northwest China. Gabbros and Type I lavas occur in the Early Ordovician Hongguleleng ophiolite whereas Type II and III lavas are parts of the Middle Ordovician Bulukeqi Group. Gabbros and Type I lavas are tholeiites with a depleted light rare earth element (LREE) and mid-oceanic ridge basalt (MORB)-like signature with a crystallization sequence of plagioclase–clinopyroxene, suggesting formation at a mid-oceanic ridge. Type II lavas are Nb-enriched basalts (NEBs, Nb = 14–15 ppm), which have E-MORB-like REE patterns and Nb/Yb and Th/Yb ratios. They come from mantle metasomatized by slab melts. Type III lavas are further divided into two sub-types: (1) Type IIIa is tholeiitic to calc-alkaline basalts and andesites, with REE patterns that are flat or slightly LREE enriched, and with a negative Nb anomaly and Th/Yb enrichment, indicating that they were generated above a subduction zone; (2) Type IIIb is calc-alkaline basalts and andesites, which are strongly enriched in LREE with a marked negative Nb anomaly and Th/Yb enrichment, suggesting generation in a normal island-arc setting. The initial 87Sr/86Sr ratios of Type III lavas range from 0.70443 to 0.70532 and ?Ndt ranges from +1.5 to +4.5, suggesting that these melts were derived from mantle wedge significantly modified by subducted material (enriched mantle I (EMI)) above a subduction zone. Contemporary tholeiitic to calc-alkaline basalt–andesite and NEB association suggest that the NEBs erupted during development of the tholeiitic to calc-alkaline arc. We propose a model of intra-oceanic subduction influenced by ridge subduction for the Ordovician tectono-magmatic evolution of the northern West Junggar.  相似文献   

19.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

20.
张诗启  戚学祥  韦诚  陈松永 《地球科学》2018,43(4):1085-1109
拉萨地体北部出露大面积早白垩世岩浆岩,对它们的成因和形成机制的研究,有助于揭示拉萨地块白垩纪时期的岩浆作用过程及动力学背景.通过岩石学、地球化学和同位素地质学方法对拉萨地体北带永珠地区早白垩世中-酸性岩浆岩进行了研究.结果显示黑云母二长花岗岩、流纹岩和安山岩的锆石LA-ICP-MS U-Pb年龄分别为118±1.0 Ma、121±0.8 Ma和115±0.8 Ma,代表了其侵入和喷出时代.黑云母二长花岗岩、花岗斑岩和流纹岩为高钾钙碱性过铝质-强过铝质岩浆岩(A/CNK=1.01~1.35),亏损高场强元素Nb、P、Ti和大离子亲石元素Ba、Sr,富集大离子亲石元素Rb、K和放射性元素U、Th;稀土配分图显示LREE富集,HREE近平坦,Eu明显负异常,为形成于大陆边缘的岛弧岩浆岩特征.黑云母二长花岗岩和流纹岩的锆石Hf初始比值εHf(t)分别为-1.21~3.01和-0.68~5.35,对应的两阶段模式年龄分别为0.99~1.26 Ga和0.84~1.22 Ga,为壳幔混源岩浆.安山岩为高钾钙碱性,亏损Nb、Ta、P、Ti、U和Sr,富集Rb、K和Th,稀土配分图显示LREE富集,HREE近平坦,Eu轻微负异常,为形成于大陆边缘弧的岩浆岩.结合前人研究成果,分析认为永珠地区早白垩世岩浆岩形成于班公湖-怒江特提斯洋壳南向俯冲作用下的大陆边缘弧环境,由俯冲的班公湖-怒江中特提斯洋板片在深部脱水熔融,进而诱发上覆地幔楔部分熔融形成基性岩浆上涌,导致下地壳物质发生部分熔融形成酸性岩浆,它们在上升过程中按不同比例混合,形成中性和酸性岩浆侵入到地下或喷出地表,形成侵入岩和火山岩.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号