首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
北山古生代火山岩尤其是石炭纪-二叠纪火山岩的形成环境及成因备受学者关注且长期以来存在争议。本文收集了近年来发表的关于北山石炭纪-二叠纪火山岩研究的地球化学数据,岩石地球化学特征显示北山石炭纪玄武岩主要为安山玄武岩,属拉斑系列,二叠纪火山岩主要为安山玄武岩和亚碱性玄武岩,落入拉斑系列及过渡区;石炭纪玄武岩和二叠纪玄武岩均具有LREE富集的球粒陨石标准化稀土元素配分模式,轻重稀土元素分馏程度均较低。在微量元素蛛网图上,石炭纪-二叠纪遭受地壳混染的玄武岩呈现出明显的Nb-Ta亏损和微弱的Ti亏损特征,而未遭受地壳混染作用的绝大多数石炭纪-二叠纪玄武岩主要呈现出与OIB相似的"隆起"状不相容元素标准化配分模式。岩石成因分析认为,石炭纪-二叠纪玄武质岩浆可能主要来源于地幔柱,部分石炭纪-二叠纪玄武岩在形成演化过程中遭受了明显的大陆地壳混染作用,导致其出现十分相似于岛弧或活动大陆边缘的地球化学特征。结合区域构造演化分析及构造环境判别,认为石炭纪-二叠纪玄武岩均形成于大陆板内环境。  相似文献   

2.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

3.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

4.
李继磊  钱青  高俊  苏文  张喜  刘新  江拓 《岩石学报》2010,26(10):2913-2924
西天山昭苏东南部阿登套地区大哈拉军山组火山岩主要由玄武质安山岩组成,具有富集大离子亲石元素、亏损高场强元素(如Nb、Ta、Ti)、稀土元素高度分馏的特征。这些玄武安山岩被一些钾长花岗岩和花岗斑岩脉体侵入。钾长花岗岩脉为准铝质,含有较高的Na2O+K2O、轻稀土元素、Zr、Nb、Y含量和较高的FeOT/MgO及Ga/Al比值。两类花岗岩均亏损Ba、Sr、P、Ti和Eu。钾长花岗岩和花岗斑岩给出的Laser-ICPMS锆石U-Pb年龄分别为354.2±2.3Ma和339.5±2.3Ma,表明其围岩即大哈拉军山组火山岩的形成时代不晚于早石炭世早期。综合野外地质观察、区域地质构造以及上述岩石的地球化学特征和时代,我们认为西天山昭苏南部大哈拉军山组火山岩及侵入其中的早石炭世A型花岗岩脉可能形成于活动陆缘弧后拉张环境。  相似文献   

5.
西天山乌孙山地区大哈拉军山组由玄武岩、安山岩、英安岩、流纹岩及相应的火山碎屑岩组成,安山岩和流纹岩分布最广。LA-ICP-MS锆石U-Pb定年结果表明,火山活动喷发的安山岩与安山质晶屑凝灰熔岩分别形成于353.9Ma±6.5Ma和356.3Ma±4.4Ma,属于早石炭世早期。通过区域对比,西天山大哈拉军山组的火山岩浆作用显示从伊犁中天山板块南北缘向伊犁盆地内部逐渐变年轻的特点,且火山岩喷发时代差别不大(约40Ma)。岩石地球化学研究表明,火山岩属钙碱性系列,富集轻稀土元素,相对亏损重稀土元素。中性火山岩富集大离子亲石元素(如Cs、Rb、Th、U),而相对亏损高场强元素,具有明显的Nb、Ta、Ti负异常,显示出岛弧火山岩的特征;酸性火山岩相对富集Rb、Th、U、Ta等元素,具有明显的Ba、Sr、P、Eu、Ti等元素的负异常。综合伊犁-中天山板块南缘的构造演化特征,认为大哈拉军山组形成于活动大陆边缘环境,产在板块俯冲-碰撞的最后阶段。  相似文献   

6.
赵军  张作衡  张贺  刘敏  洪为  蒋宗胜 《地质学报》2013,87(4):525-541
新疆阿吾拉勒山西段是伊犁石炭-二叠纪裂谷的重要组成部分,本文对该区下二叠统典型的双峰式玄武岩-流纹岩组合进行了系统的岩相学和岩石地球化学研究。岩石整体高Na2O、高Al2O3、低TiO2、富碱。玄武岩富集大离子亲石元素Ba、K、LREE和P,亏损高场强元素Th、U、Ta、Nb。粗面斑岩和流纹斑岩富集大离子亲石元素Rb、K、LREE、高场强元素Th、Zr、Hf,亏损Ta、Nb、Sr、Ti和P。玄武安山玢岩的蛛网图与粗面斑岩和流纹斑岩较为一致,但少量元素的特征与玄武岩相似。玄武岩浆来源于弱亏损地幔,并受到了下地壳物质的混染,而玄武安山玢岩、粗面斑岩和流纹斑岩则可能来源于地壳物质的部分熔融。双峰式火山岩的形成可能与上地幔玄武岩浆的底侵作用有关。裂谷演化导致的陆相火山活动持续到早二叠世晚期达到顶峰,中二叠世以后,构造环境由拉伸转为挤压,裂谷演化趋于终止。该区石炭纪末-早二叠世的裂谷活动与整个天山地区晚古生代的构造演化背景具有一致性。  相似文献   

7.
Well Drilling shows that the volcanic rocks from the Carboniferous Batamayineishan Formation in the Eastern Junggar basin are mainly composed of volcaniclastic rocks (av. 52%) and volcanic lavas (32%), with a small amount of volcanic pyroclastic lavas (av. 11%). The volcanic lavas are basalt‐basaltic andesite‐andesite‐dacite assemblage. The LA‐ICP‐MS zircon U‐Pb dating of the andesite and the dacite yielded 325~321 Ma and 310 Ma ages, respectively, which is of high agreement with the published age (300 Ma) of basalts from this Formation, it is implied that an important volcanic activity occurred in Junggar basin in the late Carboniferous. The lavas have low TiO2 and high Na2O, indicating a calc‐alkaline series. Geochemical data show that they are characterized by LREE‐enriched patterns with slightly negative Eu anomalies. The rocks have high large ion lithophile element (LILE), and low high field strength element (HFSE) concentrations, with strong negative Nb, Ta and Ti anomalies. From basic through intermediate to felsic, the depletions in Sr, Ti and P of the studied volcanic rocks increase gradually. These geochemical characteristics indicate that the volcanic rocks are magmatic evolution products attributed to partial melting of mantle‐derived spinelle lherzolite related to oceanic subduction in an island‐arc setting. In combination with the LA‐ICP‐MS zircon U‐Pb dating, it is inferred that subduction of the Junggar Ocean in eastern Junggar basin lasted to the Late Carboniferous. Consequently, the final closure of the Junggar Ocean occurred most likely after 310 Ma.  相似文献   

8.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

9.
西天山乌孙山地区大哈拉军山组由玄武岩、安山岩、英安岩、流纹岩及相应的火山碎屑岩组成,安山岩和流纹岩分布最广。LA—IcP—Ms锆石U-Pb定年结果表明,火山活动喷发的安山岩与安山质晶屑凝灰熔岩分别形成于353.9Ma_6.5Ma和3563Ma±4.4Ma.属于早石炭世早期。通过区域对比,西天山大哈拉军山组的火山岩浆作用显示从伊犁中天山板块南北缘向伊犁盆地内部逐渐变年轻的特点,且火山岩喷发时代差别不大(约40Ma)。岩石地球化学研究表明,火山岩属钙碱性系列,富集轻稀土元素,相对亏损重稀土元素。中性火山岩富集大离子亲石元素(如Cs、Rb、Th、U),而相对亏损高场强元素,具有明显的Nb、Ta、Ti负异常,显示出岛弧火山岩的特征;酸性火山岩相对富集Rb、Th、u、Ta等元素,具有明显的Ba、sr、P、Eu、Ti等元素的负异常。综合伊犁一中天山板块南缘的构造演化特征,认为大哈拉军山组形成于活动大陆边缘环境,产在板块俯冲一碰撞的最后阶段。  相似文献   

10.
The Eastern Junggar terrane of the Central Asian Orogenic Belt includes a Late Paleozoic assemblage of volcanic rocks of mixed oceanic and arc affinity, located in a structurally complex belt between the Siberian plate, the Kazakhstan block, and the Tianshan Range. The early history of these rocks is not well constrained, but the Junggar terrane was part of a Cordilleran-style accreted arc assemblage by the Late Carboniferous. Late Paleozoic volcanic rocks of the northern part of the east Junggar terrane are divided, from base to top, into the Early Devonian Tuoranggekuduke Formation (Fm.), Middle Devonian Beitashan Fm., Middle Devonian Yundukala Fm., Late Devonian Jiangzierkuduke Fm., Early Carboniferous Nanmingshui Fm. and Late Carboniferous Batamayineishan Fm. We present major element, trace element and Sr–Nd isotopic analyses of 64 (ultra)mafic to intermediate volcanic rock samples of these formations. All Devonian volcanic rocks exhibit remarkably negative Nb, Ta and Ti anomalies on the primitive mantle-normalized trace element diagrams, and are enriched in more highly incompatible elements relative to moderately incompatible ones. Furthermore, they have subchondritic Nb/Ta ratios, and their Zr/Nb and Sm/Nd ratios resemble those of MORBs, characteristics of arc-related volcanic rocks. The Early Devonian Tuoranggekuduke Fm., Middle Devonian Beitashan Fm., and Middle Devonian Yundukala Fm. are characterized by tholeiitic and calc-alkaline affinities. In contrast, the Late Devonian Jiangzierkuduke Fm. contains a large amount of tuff and sandstone, and its volcanic rocks have dominantly calc-alkaline affinities. We therefore propose that the Jiangzierkuduke Fm. formed in a mature island arc setting, and other Devonian Fms. formed in an immature island arc setting. The basalts from the Nanmingshui Fm. have geochemical signatures between N-MORB and island arcs, indicating that they formed in a back-arc setting. In contrast, the volcanic rocks from the Batamayineishan Fm. display geochemical characteristics of continental intraplate volcanic rocks formed in an extensional setting after collision. Thus, we propose a model that involves a volcanic arc formed by northward subduction of the ancient Junggar ocean and amalgamation of different terranes during the Late Paleozoic to interpret the formation of the Late Paleozoic volcanic rocks in the Eastern Junggar terrane, and the Altai and Junggar terranes fully amalgamated into a Cordilleran-type orogen during the end of Early Carboniferous to the Middle–Late Carboniferous.  相似文献   

11.
The Tianshan Carboniferous–Permian rift-related volcanism in northwestern China represents a newly recognized large igneous province extending over at least 1.5 × 106 km2. The volcanic successions comprise thick piles of basaltic lavas and subordinate intermediate and silicic lavas and pyroclastics, and are interpreted to result from a mantle plume head with component of εNd(t) ≈ +5, 87Sr/86Sr(t) ≈ 0.704 and La/Nb ≈ 0.9. On the basis of petrogeochemical data, the Carboniferous basic lavas can be generally incorporated into low-Ti/Y (LT, Ti/Y < 500) magma type that can be further divided into three subtypes: LT1, LT2 and LT3. The chemical evolution of the LT1, LT2 (in central Tianshan) and LT3 (in western Tianshan and Jungar) lavas is controlled by an olivine (ol) + clinopyroxene (cpx) fractionation, but gabbroic fractionation accounts for the chemical variation of the LT3 lavas from eastern Tianshan. Elemental and isotopic data suggest that the chemical variation of Tianshan Carboniferous basic lavas cannot be explained by crystallization from a common parental magma.The Sr–Nd isotopic variation of the crustally contaminated LT3 lavas is related to the nature of lithosphere through which the plume-derived melts have erupted. The involvement of an older (Precambrian) lithosphere led the LT3 lavas in western Tianshan to have lower to negative εNd(t) (−1.2 to +6.1) and variable 87Sr/86Sr(t) (0.7036–0.7061), whereas the LT3 lavas from eastern Tianshan and Jungar are characterized by high εNd(t) (+4.2 to +9.7) and low 87Sr/86Sr(t) (0.7035–0.7044), that are related to the contamination of upper crust containing early Paleozoic and Devonian arc-basin volcanic rocks and/or to a pre-Carboniferous subduction enrichment of the lithospheric mantle source region. The observed geochemical variations in the Tianshan data are consistent with an AFC process.The Tianshan Carboniferous rift-related volcanic rocks display a spatial petrogeochemical variation in which predominantly uncontaminated LT1 and less-contaminated LT2 tholeiitic lavas erupted in central Tianshan rift and predominantly the strongly contaminated LT3 tholeiites erupted in the circumjacent regions of the central Tianshan rift. The LT1 and LT2 lavas were generated by a higher degree (10–30%) of partial melting in the garnet stability field of the mantle plume compared to the LT3 lavas. The lower degree (<10%) of partial melting in the spinel–garnet transition zone of the mantle plume, as is characteristic of the LT3 lavas, may be the result of a relatively lower geotherm.  相似文献   

12.
An integrated study on petrology and geochemistry has been carried out on the Late Carboniferous I-type felsic volcanics of the Liushugou Formation in the Bogda belt to constrain the late Paleozoic tectonic evolution of the Bogda belt. The felsic volcanics were dated to be 315 to 319 Ma and are composed of trachy-andesite–trachyte ignimbrites and rhyolite lavas. They are in conformable contact with high-Al basalt. The eruption of the felsic volcanics and high-Al basalt is not bimodal volcanism, but is related to bimodal magma (basaltic and rhyolitic magmas). MELTS modeling and comparison with previous basaltic melting experiments indicate that the felsic volcanics are likely produced by partial melting of hydrated mafic crust rather than fractional crystallization of high-Al basalt. It is also supported by relatively large amounts of felsic volcanics to high-Al basalts and remarkably different incompatible element ratios (e.g., Th/Zr, Nb/Zr and U/Zr) of the rocks. The Bogda felsic volcanics have positive εNd(t) values (6.2–7.4), low Pb isotopes and low zircon saturation temperatures, consistent with a derivation from a juvenile crust in an arc setting. The intermediate ignimbrites display melting–mingling textures and abundant feldspar aggregates and have various δEu ratios, indicating that magma mingling and feldspar fractionation processes may have played an important role in the genesis of the ignimbrites. In contrast, the Early Permian felsic rocks in this region are of post-collisional A-type. We therefore propose that the Bogda belt was an island arc in the Late Carboniferous and then switched to a post-collisional setting in the Early Permian due to the arc–arc collision at the end of the Late Carboniferous.  相似文献   

13.
西天山东段的查岗诺尔铁矿和智博铁矿赋存于以玄武岩、玄武安山岩、粗面岩以及安山质凝灰岩为主的晚石炭世火山岩中, 对火山岩的形成时代以及构造地质背景的研究是重建成矿过程的关键。本文通过对两个矿区的火山岩进行岩石地球化学和LA-ICP-MS锆石U-Pb测年分析来探讨火山岩形成的构造环境与时代。地球化学分析表明大多数火山岩化学成分从钙碱性、高钾钙碱性变化到钾玄岩系列,富集轻稀土元素(LREE)和大离子亲石元素(LILE; 如Rb、Th、K),重稀土元素(HREE)配分平坦,同时具有Nb、Ta、Ti的强烈亏损,类似于岛弧火山岩的地球化学特征。大多数玄武质火山岩在构造环境判别图中位于火山弧环境。LA-ICP-MS锆石U-Pb测年显示流纹岩和英安岩的206Pb/238U加权平均年龄分别为301.8±0.9Ma和300.3±1.1Ma。此外,对两件闪长岩样品测年获得206Pb/238U加权平均年龄介于303.8~305Ma之间。火山岩与闪长岩样品具有类似的地球化学特征以及形成时代,表明它们可能来源于同一母岩浆,形成于相同的构造背景下。结合区域地质资料,本文认为矿区内出露的高钾钙碱性到钾玄岩系列火山岩可能属于俯冲过程末期阶段大陆岛弧岩浆作用的产物。  相似文献   

14.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

15.
本文对华北板块北缘东段大河深组、关门咀子组火山岩进行了锆石LA-ICP-MSU-Pb定年和岩石地球化学研究以便制约该区的区域构造演化。大河深组和关门咀子组火山岩中的锆石均呈自形-半自形晶,具有清晰的岩浆振荡生长环带和条痕状吸收(玄武安山岩)的特点,其Th/U比值高达0.31~1.56,表明其岩浆成因。测年结果表明,桦甸大河深组流纹岩形成于早二叠世(279±3Ma~293±2Ma),珲春和图们关门咀子组玄武安山岩和玄武岩分别形成于早二叠世(275±7Ma)和晚二叠世(250±5Ma)。大河深组火山岩SiO2含量介于64.9%~75.4%,Mg#值介于0.21~0.57,属于中钾-高钾钙碱性系列,明显富集轻稀土元素(LREEs)和大离子亲石元素(LILEs)、亏损高场强元素(HFSEs,如Nb、Ta、Ti)以及P元素,类似活动大陆边缘火山岩;其锆石的εHf(t)值为+0.9~+10.37,Hf同位素二阶段模式年龄值为785~1240Ma,表明它们均起源于中-新元古代新增生玄武质下地壳的部分熔融。珲春早二叠世关门咀子组属于中钾钙碱性系列;贫硅(53.4%~53.7%)和HFSEs,富铝(16.4%~16.8%)和LILEs,具有较低的稀土元素总量,以及较平坦的稀土配分型式,显示出岛弧火山岩的地球化学属性;该组火山岩的原始岩浆应起源于受俯冲板片脱水熔融交代的亏损地幔楔。图们晚二叠世关门咀子组玄武岩SiO2含量为48.7%~49.6%,Mg#值高达0.64~0.72,相对富集LREEs和LILEs,亏损HREEs和HFSEs,具有火山弧玄武岩的地球化学属性,同时其εNd(t)=+6.01,暗示其原始岩浆起源于亏损的岩石圈地幔。综上所述,我们认为早二叠世至晚二叠世期间,华北板块北缘东段(吉林中部地区)和兴凯地块西南缘均处于古亚洲洋的俯冲作用下。  相似文献   

16.
在东准噶尔卡拉麦里地区的五彩湾一带出露一套具磨拉石特征的火山沉积建造, 下部为具磨拉石特征的砾岩、砂岩, 上部为一套中基性的火山熔岩夹中酸性的火山凝灰岩.1:20万卡拉麦里山幅将其归入下石炭统松喀尔苏组.通过1:5万地质调查研究发现, 该火山沉积建造底部以一套粗砾岩高角度不整合于下-中泥盆统卡拉麦里组之上, 含晚泥盆世植物化石Prelepidodendron sp.(先鳞木), 中上部火山岩LA-ICP-MS锆石U-Pb年龄为346.8±3.3 Ma, 且被年龄为341.1±4.0 Ma~340.9±5.1 Ma后碰撞花岗岩侵入, 表明其形成时代为晚泥盆世-早石炭世, 时代上对应于北准噶尔地层分区的上泥盆统克安库都克组.该套地层中上部的火山岩的岩石组合为玄武岩、玄武安山岩、夹少量的流纹质凝灰岩, 岩石化学特征上属钙碱性-高钾钙碱性系列, (La/Yb)N=2.97~6.66, Nb、Ta亏损, 部分样品Zr、Ti弱显亏损, Nb/U、Ce/Pb比值分别为7.43~20.88、3.17~12.45.地球化学特征表明其兼具板内火山岩和弧火山岩的某些特点, 形成于后碰撞伸展环境, 是卡拉麦里洋盆于晚泥盆世之前闭合后后碰撞岩浆活动的产物.这一研究成果对广为关注的卡拉麦里洋盆的闭合时间进行了很好的限定.   相似文献   

17.
林靓  钱青  王艳玲  高俊  江拓  刘新 《岩石学报》2015,31(6):1749-1760
西天山昭苏北部侵入于大哈拉军山组火山岩层上部的辉长岩体具有富集大离子亲石元素(Rb、Sr、Ba)、亏损高场强元素(Nb、Ta)、轻重稀土分馏等地球化学特征,与火山岩围岩具有相似的不相容元素和Sr-Nd同位素特征,其母岩浆可能由俯冲流体交代的富集岩石圈地幔部分熔融形成,晚石炭世之前南天山洋盆向伊犁-中天山板块之下的俯冲可能导致了岩石圈的富集作用。利用不相容元素进行地球化学模拟计算,结果表明辉长岩成分由50%~80%的堆晶矿物(单斜辉石、斜长石)与50%~20%的玄武质熔浆组成。辉长岩体的Cameca锆石U-Pb年龄为311.3±2.3Ma,与伊犁-中天山板块晚石炭世伊什基里克组火山岩的时代大致相当,略晚于西天山榴辉岩的峰期变质时间。辉长岩的时代进一步限定该地区大哈拉军山组火山活动应在早石炭世晚期结束,下石炭统阿克沙克组沉积岩应形成于320~311Ma之间。与辉长岩同时期的岩浆岩在伊犁-中天山板块广泛分布,形成于俯冲结束之后挤压环境向拉张环境过度的构造环境。  相似文献   

18.
新疆东天山中北部的卡拉塔格地区广泛出露一套二叠纪陆相火山熔岩,本次对其采集的玄武岩和英安岩进行岩相学、锆石U-Pb定年、Lu-Hf同位素和岩石地球化学分析。年代学研究获得2个英安岩样品LA-ICP-MS锆石U-Pb加权平均年龄为(267.5±1.5)Ma和(296.7±1.7)Ma,代表了英安岩的结晶年龄为早二叠世。岩石地球化学数据显示:玄武岩为碱性系列,具有高Al2O3质量分数和Na2O/K2O值,低TFeO、Cr质量分数和Mg#值的特征;微量元素Yb标准化的Ta、La和Nb值指示该区玄武质岩浆起源于富集型地幔;低La/Ba值,(Th/Nb)N>1,Nb/La<1,表明岩浆在上升过程中受到了地壳岩石圈物质的混染;样品w(Zr)>100×10-6,Zr/Y>5,显示大陆板内玄武岩特征。英安岩为钙碱性系列,富硅铝,Rb、Ba、Th、U、Zr等元素质量分数较高,Ti、Nb、Ta、Sr、P等元素质量分数较低,明显不同于玄武岩元素分布特征,却与地壳元素分布相似;εHft) 值(5.4~14.7)为正,表明英安岩源区为新生地壳;w(Rb)-w(Y+Nb)构造环境判别图解表明其形成于大陆伸展环境。结合前人的研究成果,认为卡拉塔格早二叠世火山岩形成于板内伸展环境,为天山石炭纪—二叠纪大火成岩省裂谷火山作用的组成部分,限定了该区古亚洲洋闭合于早二叠世之前。  相似文献   

19.
The Carboniferous Early Permian rill-related volcanic successions.covering large areas in the Chinese Tianshan and its adjacent areas.make up a newly recognized important Phanerozoic large igneous province in the world.which can be further divided into two sub-provinces:Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks.the ages (360—351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramatic intrusion with age of—352 Ma and A-type granite with age of~358 Ma reveal that the final closure of the Paleo Asian Ocean might lake place in the Early Mississippian.Our summation shows that at least four criteria.being normally used to identify ancient asthenosphere upwelling(or mantle plumes),are met for this large igneous province:(1) surface uplift prior to magmatism:(2) being associated with continental ifting and breakup events:(3) chemical characteristics of asthenosphere(or plume) derived basalts;(4) close links to large-scale minerali/alion and the uncontaminaled basalts,being analogous to those of many "ore-bearing" large igneous provinces.display Sr-Nd isotopic variations between plume and EMI geochemical signatures.These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan—Tarim(central Asia) large igneous province.  相似文献   

20.
通过对新疆卡拉麦里姜巴斯套组火山岩野外地质特征、岩石学和高精度同位素年代学的研究,发现姜巴斯套组火山岩具典型双峰式组合,岩石类型包括玄武岩-酸性火山碎屑岩-玄武粗面安山岩;得到玄武粗面安山岩LA-ICP-MS锆石U-Pb年龄为(319.8±2)Ma(加权均方偏差值为3),表明姜巴斯套组火山岩形成于早石炭世谢尔普霍夫阶。对火山岩地球化学特征的研究表明,姜巴斯套组火山岩钙碱性系列、高钾钙碱性系列和钾玄岩系列岩石兼而有之,岩石的稀土元素配分曲线均为轻稀土元素富集型,无明显Eu异常,玄武岩和玄武粗面安山岩具有K正异常和Sr负异常,酸性火山碎屑岩表现出Nb、Ta和Ti显著亏损。总体来说,姜巴斯套组火山岩富集大离子亲石元素,相对亏损高场强元素。玄武岩和玄武粗面安山岩表现出大陆裂谷(大陆板内拉张区域)岩石特征;酸性火山碎屑岩表现出岛弧或者活动大陆边缘岩石属性。总之,姜巴斯套组火山岩形成于卡拉麦里洋盆闭合碰撞造山后的拉张伸展环境,卡拉麦里地区在早石炭世末期就进入了碰撞后的陆内伸展拉伸阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号