首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A series of faulted inland basins were developed in the central Qinghai-Tibet Plateau, among which the Co Ngoin Basin containing thick lacustrine sediments is located in the peripheral area of the Indian monsoon. In this paper, we present the weathering history and paleoclimatic changes in the last 2.8 Ma based on studies of high-resolution temporal distributions of Sr, Rb and Zr concentrations, Rb/Sr and Zr/Rb ratios and δ ^13C and TOC for the Co Ngoin sediments, in combination with the sediment properties, grain size distribution and clay mineralogy. The sedimentary records indicate three environmental stages in the last 2.8Ma. At the core depth of 197-170m (about 2.8-2.5Ma), low-intensity chemical weathering in the Co Ngoin catchment was experienced under warm-dry to cool-wet climate conditions with relatively low Sr concentration and high Rb/Sr and Zr/Rb ratios. The sudden occurrence of both subalpine coniferous forest and coarses and and gravel sediments in the Co Ngoin core reflects a strong tectonic uplift. The high Sr concentrations and low Rb/Sr and Zr/Rb ratios reflect a relatively strong chemical weathering between 2.5Ma and 0.8Ma (at the core depth of 170-38.5m) under a temperate/cool and wet climate, characterized by mud and silt with fine sand, probably indicating a stable process of denudation and planation of the plateau. Above the depth of 38.5m (about 0.8-0Ma), the coarsening of sediments indicates a strong tectonic uplift and a relatively low intensity of chemical weathering as supported by the record of sediments having relatively low Sr concentrations and high Rb/Sr and Zr/Rb ratios. Since then, the plateau has taken the shape of the modern topographic pattern above 4000m a.s.l.  相似文献   

2.
Increasing interest in global climate change has led to attempts to understand and quantify the relationship between chemical weathering processes and environmental conditions, especially climate. This interest necessitates the identification of new climate proxies for the reconstruction of two important Earth surface processes: physical erosion and chemical weathering. In this study, an AMS 14C‐dated 2.8‐m‐long sediment core, GH09B1, from Lake Gonghai in north‐central China was subjected to detailed geochemical analyses to evaluate the intensity of chemical weathering conditions in the catchment. Multivariate statistical analysis of major and trace elemental data of 139 subsamples revealed that the first principal component axis PCA1 explained ~53% of the variance in the assemblage of elements/oxides with significant positive correlations between PCA1 scores and the separation of mobile and soluble elements/oxides from the immobile and resistant elements/oxides, which is thus able to indicate the chemical weathering in the catchment. These results are supported by the down‐core trends of other major and trace elemental ratios of chemical weathering intensity as well as by pollen data from the same core. Variations in PCA1, chemical index of alteration (CIA), Rb/Sr ratio and other oxides ratios indicate stronger chemical weathering due to a wet climate during the Medieval Warm Period (MWP). However, the MWP was interrupted by an interval of relatively weaker chemical weathering conditions from AD 940–1070. Weak chemical weathering under a dry climate occurred during the Little Ice Age (LIA), and increased chemical weathering intensity during the Current Warm Period (CWP). Our proxy records of chemical weathering over the last millennium correlate well with the available proxy records of precipitation from Gonghai Lake as well as with the speleothem oxygen isotope record from Wanxiang Cave, but do not show a significant correlation with the temperature record in N China, suggesting that the chemical weathering intensity in the study area was mainly controlled by the amount of rainfall rather than by temperature. We conclude that high resolution lacustrine sediment geochemical parameters can be used as reliable proxies for climate variations at centennial‐decadal time scales.  相似文献   

3.
From temporal variation in δ18O in Globigerinoides ruber and G. sacculifer and geochemical indices of weathering/erosion (chemical index of alteration, Al and Ti), we infer rapid southwest monsoon (SWM) deterioration with dwindling fluvial and detrital fluxes at ca. 450–650, 1000 and 1800–2200 cal. a BP during the late Holocene. We have evaluated the role of solar influx (reconstructed) and high‐latitude climate variability (archived in GRIP and GISP‐2 cores) on SWM precipitation. Broadly, our δ18O climate reconstruction is concordant with GRIP and GISP‐2, and supports a teleconnection through atmospheric connection between the SWM and the North Atlantic climate – albeit temporal extents of the Little Ice Age and Medieval Warm Period from high latitude are not entirely coeval. Moreover, there is a humid climate and enhanced precipitation during the terminal stages of the Little Ice Age. The medieval warming (ca. AD 800–1300) is not synchronous either, and is punctuated by an arid event centred at 1000 a BP. Although the delineation of the specific influence of solar influx on SWM precipitation is elusive, we surmise that SWM precipitation is a complex phenomenon and local orography along southwestern India may have a role on the entrapment of moisture from the southwest trade winds, when these hit land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Jiang, S., Liu, X., Sun, J., Yuan, L., Sun, L. & Wang, Y. 2011: A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard. Boreas, Vol. 40, pp. 468–480. 10.1111/j.1502‐3885.2010.00198.x. ISSN 0300‐9483 The Arctic constitutes a unique and important environment with a significant role in the dynamics and evolution of the earth system. Arctic lake sediments, which accumulate slowly over time, contain abundant information about the biological communities that lived within the water body, as well as in the surrounding catchment. In this study, we collected a sediment core from Ny‐Ålesund, Svalbard, performed multi‐proxy analyses on sediment pigments, mineral magnetic susceptibility, various sediment quality (i. e. organic matter content, CaCO3 content, carbon and nitrogen isotope), and diatom composition, and reconstructed the history of ecosystem responses to environmental variations, especially regarding aquatic productivity and lake catchment surface processes. Ny‐Ålesund has undergone distinct ecological and climatic changes. During the Little Ice Age, the cold climate was unfavourable for the growth of lake algae, and therefore the lake primary productivity declined. After about AD 1890 and during the 20th century, the warming climate and reduced ice cover led to rapid lithological change and growth of lake algae, enhanced lake primary productivity, and increased input of nutrients derived from increased chemical weathering into the lake. The lake ecosystem on Ny‐Ålesund has had rapid responses to climatic and environmental changes in the Arctic.  相似文献   

5.
Investigation of chemical and physical weathering of bedrock and alluvial sediment in the Anza Borrego Desert, California, sheds light on weathering processes in hot‐arid systems and clarifies interpretations of climate from alluvial sediment. All of the alluvial sediment in the study area emanates from Cretaceous tonalite of the Peninsular Range, enabling exploration of the effects of external variables – climate, transport distance and tectonics – on the physical and chemical properties of the sediment. Chemical weathering in this area is dominated by plagioclase alteration observed in both bedrock outcrops and sediment, evinced most clearly by changes in the Eu anomaly. Biotite chemical weathering, manifested by interlayer K+ loss, is not evident in bedrock, but clearly observed in the sediment. Despite the weak intensity of chemical weathering (Chemical Index of Alteration = 56 to 62), fine‐grained (<63 μm) sediment displays a clear weathering trend in A–CN–K space and contains up to 25% clay minerals. Physical abrasion and grain‐size reduction in biotite during transport predominates in the sediment, whereas physical (insolation) weathering affecting bedrock is inferred from estimates of differential thermal expansion of mineral phases in response to extreme temperature changes in the study area. Chemical alteration and Brunauer–Emmett–Teller surface area both increase within the active Elsinore fault zone at the distal end of the depositional transect, reflecting tectonic‐induced fracturing and associated accelerated weathering. Extensive fracturing, together with a more humid Pleistocene climate, probably facilitated in situ bedrock weathering, preceding arid alluvial deposition in the Holocene. This study demonstrates that both climate and tectonic processes can affect chemical and physical weathering, resulting in alteration of plagioclase, leaching of K+ from biotite in the sediment and formation of clay minerals, even in hot, arid systems.  相似文献   

6.
We investigated the geochemical characteristics of major, trace and rare earth elements and Sr–Nd isotope patterns of bed sediments from the headwaters and upper reaches of the six large rivers draining the Tibetan Plateau (the Jinsha River—Yangtze, Lancang River—Mekong, Nujiang River—Salween, Huang He—Yellow, Indus, and Yarlung Tsangpo—Brahmaputra). By using Ca/Al versus Mg/Al, La/Sc versus Co/Th, and 87Sr/86Sr versus εNd (0) binary differentiation diagrams of provenance, some typical contributors to the different catchment sediments can be identified. In the Three-River (the Jinsha, Lancang, and Nujiang Rivers) tectonomagmatic belt, acidic–intermediate-acidic volcanic rocks are very important provenance of sediments. Carbonate rocks and Permian Emeishan basalts are dominant in the Jinsha River. The Yellow River sediments have similar geochemical characteristics with loess in catchments. The Indus and Yarlung Tsangpo Rivers sediments are mainly from ultra-K volcanic rocks and Cenozoic granitoids widely distributed in the Indus–Yarlung suture. The intensity of chemical weathering in these river catchments is evaluated by calculating the chemical indices of alteration (CIA) of sediments and comparing them with bedrocks. The CIA values of the six river sediments are from 46.5 to 69.6, closing to those of bedrocks in the corresponding catchment, which indicates relatively weak chemical weathering intensity. Lithology, climate, and topography affect the chemical weathering intensity in these river catchments.  相似文献   

7.
Jin, Z. D., Bickle, M. J., Chapman, H. J., Yu, J., An, Z., Wang, S. & Greaves, M. J. 2010: Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid‐Pleistocene Indian monsoon and catchment weathering. Boreas, 10.1111/j.1502‐3885.2010.00184.x. ISSN 0300‐9483 Lacustrine sediment serves as a valuable archive for tracing catchment weathering processes associated with past climatic and/or tectonic changes. High‐resolution records of fossil ostracod Mg/Ca, Sr/Ca and 87Sr/86Sr ratios from a lake sediment core from the central Tibetan Plateau reveal a temporal link between lake‐water chemistry and catchment weathering and distinct monsoonal oscillations over the early to mid‐Pleistocene. Between 2.01 and 0.95 Ma, lake‐water chemistry was dominated by a high proportion of carbonate weathering related to variations in the Indian monsoon, resulting in relatively low and constant ostracod 87Sr/86Sr but obvious fluctuations in Mg/Ca, Sr/Ca and δ18O. Across the mid‐Pleistocene transition (MPT), a significant increase in 87Sr/86Sr and frequently fluctuating ratios of ostracod Mg/Ca, Sr/Ca and δ18O are coincident with increases in both Chinese loess grain size and Arabian Sea lithogenic flux. This correlation indicates an increased glaciation and a strong monsoon seasonal contrast over the plateau. The increase in lake‐water 87Sr/86Sr across the MPT highlights a change in catchment weathering patterns, rather than one in climate‐enhanced weathering intensity, with an increased weathering of 87Sr‐rich minerals potentially induced by marked extensive glaciation and strong seasonality in the central plateau.  相似文献   

8.
Moraine sequences in front of seven relatively low‐altitude glaciers in the Breheimen region of central southern Norway are described and dated using a ‘multi‐proxy’ approach to moraine stratigraphy. Lichenometric dating, based on the Rhizocarpon subgenus, is used to construct a composite moraine chronology, which indicates eight phases of synchronous moraine formation: AD 1793–1799, 1807–1813, 1845–1852, 1859–1862, 1879–1885, 1897–1898, 1906–1908 and 1931–1933. Although the existence of a few cases of older moraines, possibly dating from earlier in the eighteenth or late in the seventeenth centuries cannot be ruled out by lichenometry, Schmidt hammer R‐values from boulders on outermost moraine ridges suggest an absence of Holocene moraines older than the Little Ice Age. Twenty‐three radiocarbon dates from buried soils and peat associated with outermost moraines at three glaciers—Tverreggibreen, Storegrovbreen and Greinbreen—also indicate that the ‘Little Ice Age’ glacier maximum was the Neoglacial maximum at most if not all glaciers. Several maximum age estimates for the Little Ice Age glacier maximum range between the fifteenth and seventeenth centuries, with the youngest from a buried soil being AD 1693. A pre‐Little Ice Age maximum cannot be ruled out at Greinbreen, however, where the age of buried peat suggests the outermost moraine dates from AD 981–1399 (at variance with the lichenometric evidence). Glaciofluvial stratigraphy at Tverreggibreen provides evidence for minor glacier advances about AD 655–963 and AD 1277–1396, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper provides the first radiometrically dated evidence of Holocene alluvial landform development in Upper Wharfedale, Yorkshire Dales. Four river terraces are identified. Terraces 1 and 2 are closely linked to Late Devensian and early Holocene environmental change, with gravel reworked from local glacial and periglacial sources prior to cementation by carbonate‐rich waters. U‐series dating of cement provides age estimates for cementation of between ca. 5.1–7.4 kyr BP for Terrace 1 and ca. 3.6–>8.0 kyr BP for Terrace 2. U‐series dating of tufas overlying Terraces 1 and 2 produced ages of ca. 4.2–4.5 kyr BP and ca. 2.1–2.2 kyr BP respectively, and provide upper age limits for terrace formation. Terrace 3 marks a change in sediment calibre, supply and sedimentation style, and 14C dating suggests that the principal source of fine‐grained material may be agricultural expansion in the Yorkshire Dales from ca. ad 600 (1350 cal. yr BP). Radiocarbon dates indicate that Terrace 4 was deposited from the eleventh century, with initiation of the contemporary floodplain between the fifteenth and seventeenth centuries ad. Both these lowest units contain sediments contaminated with heavy metals as a result of mining activities within the catchment. The evidence presented in this study is comparable to that of research undertaken in upland environments elsewhere in northern and western Britain, thereby adding to the corpus of information currently available for evaluating the fluvial geomorphological response to climate and vegetation change during the Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This paper addresses the surface and Holocene aeolian deposits in the southeastern Mu Us Desert, N. China, systematically analysing the evolution of the geochemical characteristics of aeolian sand–palaeosol sequences and their environmental significance. Our results indicate that the geochemical components of the Holocene aeolian deposits and surface deposits had the similar material sources, sediment transport and deposition processes in the study region, which were dominated by SiO2, Al2O3, and Na2O. In the weathering process of the Jinjie (JJ) profile, the Na, K, and Si presented the slight leaching and migration in general, while the other elements were relatively accumulated. The Holocene aeolian deposits and surface deposits incurred weaker geochemical weathering under cold and dry conditions and were only weakly leached, which implies a relatively arid environment in the Holocene epoch and the modern era. The weathering degree was controlled by the regional temperature and precipitation, and was probably more sensitive to the precipitation changes. In the sedimentary profile, the geochemical parameters and migration of elements demonstrated that there have been several alternating warm–wet and cold–dry intervals in the Mu Us Desert in the Holocene epoch; there were relatively warm and wet conditions prior to 4.6 ka, and it has been cold and dry since then. Six millennial‐scale dry events were recorded during the Holocene, which were not only accordant with the history of palaeoclimatic changes in the different latitudes and archives of the Northern Hemisphere, but also correspond to the millennial‐scale variation of cosmic radiation and solar activity during that period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The rias of NW Spain are coastal ecosystems of high biological productivity and great economic importance. They are intensively exploited by man for fish and shellfish. There are a number of important centres of population and industrial activity along their margins, which serve as sources of contamination. In this context, it is desirable to achieve the best possible understanding of the physico‐chemical processes that control spatial and temporal variations in the geochemical, mineralogical and sedimentological characteristics of near‐surface sediments in the Ria de Pontevedra and, in particular, the distribution and mobility of heavy metal contaminants. Thus, adequate environmental planning can be achieved for this site and understanding gained for comparable contexts. Core samples were examined from the inner, middle and outer parts of the ria. Grain‐size distributions reflect the presence of two main populations, one dominated by silt and clay, derived mainly from terrestrial sources, and the other by fine sand to coarse silt, which is derived mainly from continental shelf and ria mouth sources. Mineralogical analysis shows an abundance of terrestrial intensive‐weathering products near the ria head, a dominance of shelf‐derived sediment towards the mouth and the presence of several diagenetic minerals whose nature varies with location within the ria. In the inner ria, the near‐surface sediments are slightly enriched in Pb, Cu and Zn from anthropogenic sources. These sediments are fine grained and have a high organic content; hence, they have a higher potential to sorb contaminants than the coarser grained, less organic‐rich sediments of the mid and outer ria. The estimated sedimentation rates for the fine‐grained organic‐rich sediments from the inner part of the ria are about 1 mm year–1. The dominant authigenic minerals in the inner ria are iron sulphides, whereas in the mid and outer ria, iron silicates and oxyhydroxides are more important. These differences in authigenic iron mineralogy are clearly reflected by the magnetic properties of the sediments.  相似文献   

12.
The last millennium is a key period for understanding environmental change in eastern Africa, as there is clear evidence of marked fluctuations in climate (effective moisture) that place modern concern with future climate change in a proper context, both in terms of environmental and societal impacts and responses. Here, we compare sediment records from two small, nearby, closed crater lakes in western Uganda (Lake Kasenda and Lake Wandakara), spanning the last 700 (Wandakara) and 1200 years (Kasenda) respectively. Multiproxy analyses of chemical sedimentary parameters (including C/N ratios, δ13C of bulk organic matter and δ13C and δ18O of authigenic carbonates) and biotic remains (diatoms, aquatic macrofossils, chironomids) suggest that Kasenda has been sensitive to climate over much of this period, and has shown substantial fluctuations in conductivity, while Wandakara has a more muted response, likely due to the increasing dominance of human activity as a driver of change within the lake and catchment over the length of our record. Evidence from both records, however, supports the idea that lake levels were low from ~AD 700–1000 AD, with increasing aridity from AD 1100–1600, and brief wet phases around AD 1000 and 1400. Wetter conditions are recorded in the 1700s, but drought returned by the end of the century and into the early 1800s, becoming wetter again from the mid-1800s. Comparison with other records across eastern Africa suggests that while some events are widespread (e.g. aridity beginning ~ AD 1100), at other times there is a more complex spatial signature (e.g. in the 1200s to 1300s, and from the 1400s to 1600s). This study highlights the important role of catchment-specific factors (e.g. lakemorphometry, catchment size, and human impact) in modulating the sensitivity of proxies, and lake records, as indicators of environmental change, and potential hazards when regional inference is based on a single site or proxy.  相似文献   

13.
We present a record of peatland development in relation to climate changes and human activities from the Palomaa mire, a remote site in northern Finland. We used fine‐resolution and continuous sampling to analyse several proxies including pollen (for vegetation on and around the mire), testate amoebae (TA; for mire‐wetness changes), oxygen and carbon isotopes from Sphagnum cellulose (δ18O and δ13C; for humidity and temperature changes), peat‐accumulation rates and peat‐colour changes. In spite of an excellent accumulation model (30 14C dates and estimated standard deviation of sample ages <1 year in the most recent part), the potential to determine cause–effect (or lead–lag) relationships between environmental changes and biotic responses is limited by proxy‐specific incorporation processes below the actively growing Sphagnum surface. Nevertheless, what emerges is that mire development was closely related to water‐table changes rather than to summer temperature and that water‐table decreases were associated with increasing peat‐accumulation rates and more abundant mire vegetation. A rapid fen‐to‐bog transition occurred within a few years around AD 1960 when the water table decreased beyond the historical minimum, supporting the notion that mires can rapidly shift into bogs in response to allogenic factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
1IntroductionThecomponentsoftheenvironmentaredamagedbyagriculturalpractices.Soilslosstheirfer tilityandwaterdeterioratesduetopollution .Chemicalweatheringofmineralandsoiloccursattheinterfacesbetweentheliquidandsolidphases;consequentlythesurfaceareaandcompositionofthemineralsplayanimportantroleinthisprocess.GarrelsandMackenzie ( 1 96 7)suggestedthatincon gruentweatheringreactionswouldproducedissolvedspeciesandnewsolidsthataremorestableintheweatheringenvironmentthantheoriginalbedrockminerals.Ro…  相似文献   

15.
Second‐order transgressive–regressive (T–R) cycles, previously recognized using sedimentological criteria in Lower Jurassic hemipelagic deposits from northern Spain, are distinguishable based upon bulk‐rock organic geochemistry [total organic carbon (TOC) and hydrogen index (HI)] and the stable carbon isotope compositions from belemnite rostra. There is a coincidence between regressions and decreasing δ13Cbel, TOC and HI values, and between transgressions and increasing δ13Cbel, TOC and HI values. The δ18O and Mg/Ca records from the belemnite rostra are not always in phase with the T–R cycles. The δ18Obel record reveals, however, a prominent excursion towards higher values within the spinatum Zone that correlates, according to our results, with a regression and with negative shifts in Mg/Ca, δ13Cbel and TOC. On the other hand, an excursion in the δ18Obel towards lower values in the serpentinus Zone also correlates with a peak transgression and with positive shifts in Mg/Ca, δ13Cbel and TOC. These two excursions have been identified in other European regions as geochemical perturbations of the same characteristics. This suggests a link between second‐order relative sea‐level changes and variations in seawater geochemistry that may reflect local and regional palaeoceanographic perturbations in sea‐water temperature, salinity and water circulation during the Early Jurassic. Terra Nova, 18, 233–240, 2006  相似文献   

16.
In this study, a ca. 4000 cal. yr ancient lacustrine (or wetland) sediment record at the southern margin of Tarim Basin is used to reconstruct the history of climate change. Six radiocarbon dates on organic matter were obtained. δ18O and δ13C of carbonate, pollen and sediment particle size were analysed for climate proxies. The proxies indicate that a drier climate prevailed in the area before ca. 1010 BC and during period 1010 BC–AD 500 climate then changed rapidly and continuously from dry to moist, but after about AD 500 climate generally shows dry condition. Several centennial‐scale climatic events were revealed, with the wettest spell during AD 450–550, and a relatively wetter interval between AD 930–1030. Pollen results show that regional climate may influence human agricultural activities. Spectral analysis of mean grain size (MGS) proxy reveals statistically pronounced cyclic signals, such as ca. 200 yr, ca. 120 yr, ca. 90 yr, ca. 45 yr and ca. 33 or 30 yr, which may be associated with solar activities, implying that solar variability plays an important role in the decadal‐ and centennial‐scale climate variations in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

18.
The Lower Murrumbidgee alluvial fan at the eastern edge of the Murray Basin is comprised of high‐yielding coarse‐grained aquifers and interlayered fine‐grained deposits that exert an important control on recharge and vertical leakage of contaminants such as salt. Concerns over increasingly saline shallow groundwater, particularly in irrigation areas, has focused investigations on the depositional origin and spatial distribution of these fine‐grained deposits (aquitard units), which may constitute both a source of leachable salt and a barrier to leakage. Detailed laboratory analysis of a minimally disturbed core to 83m depth, obtained from a drillhole adjacent to an irrigation bore, was augmented with geophysical investigations from this and other boreholes near the apex of the alluvial fan. Previously mapped clay units (aquitards) are redefined as clayey silts based on clay content variation between 10% and 30%. Mineralogical and lithostratigraphic evidence for three clayey silt units is presented: a lower unit (75–83m), a middle unit (45–64m) and an upper unit (0–16m). Electrical image surveys indicate that the upper unit is discontinuous, interrupted by large palaeodrainage features probably containing sands and gravels. These palaeodrainage channels are buried beneath a veneer of clay and significantly increase recharge and leakage. Some evidence suggests an aeolian component near the surface and within the middle clayey silt unit. However, mixing with fluvial deposits and subsequent weathering has also occurred. The clayey silt units are extensively weathered and oxidised, with the degree of oxidation increasing towards the surface and adjacent to aquifers saturated with oxygenated groundwater. Post‐depositional weathering of the middle and lower units may also have been associated with leaching of salts. No salt remains in the middle and lower units, but 10.2kg/m2 is stored within 15m of the surface at the Tubbo site. The upper clayey silt unit is a significant source of leachable salt, which is associated with increasing shallow groundwater salinity at some sites.  相似文献   

19.
Research on abrupt paleoclimatic and paleoenvironmental change provides a scientific basis for evaluating future climate. Because of spatial variability in monsoonal rainfall, our knowledge about climate change during the mid-to lateHolocene in southern China is still limited. We present a multi-proxy record of paleoclimatic change in a crater lake, Lake Shuangchi. Based on the age-depth model from 210 Pb, 137 Cs and AMS14 C data, high-resolution mid-to late-Holocene climatic and environmental records were reconstructed using multiple indices(TOC, TN, C/N, δ13 C and grain size). Shuangchi underwent a marked change from a peat bog to a lake around 1.4 kaBP. The C3 plants likely dominated during 7.0–5.9 ka and 2.5–1.4 kaBP, while C4 plants dominated between 5.9–3.2 and 3.0–2.5 kaBP. Algae were dominant sources of organic matter in the lake sediments after 1.4 kaBP. Several intervals with high concentrations of coarser grain sizes might be due to flood events. These results reveal that several abrupt paleoclimatic events occurred around 6.6 ka, 6.1 ka, 5.9 ka, 3.0 ka, 2.5 ka and 1.4 kaBP. The paleoclimatic change recorded in the lake may be related to the migration of the Intertropical Convergence Zone(ITCZ) and El Ni?o-Southern Oscillation(ENSO) activity.  相似文献   

20.
Ribeiro, S., Moros, M., Ellegaard, M. & Kuijpers, A. 2012 (January): Climate variability in West Greenland during the past 1500 years: evidence from a high‐resolution marine palynological record from Disko Bay. Boreas, Vol. 41, pp. 68–83. 10.1111/j.1502‐3885.2011.00216.x. ISSN 0300‐9483. Here we document late‐Holocene climate variability in West Greenland as inferred from a marine sediment record from the outer Disko Bay. Organic‐walled dinoflagellate cysts and other palynomorphs were used to reconstruct environmental changes in the area through the last c. 1500 years at 30–40 years resolution. Sea ice cover and primary productivity were identified as the two main factors driving dinoflagellate cyst community changes through time. Our data provide evidence for an opposite climate trend in West Greenland relative to the NE Atlantic region from c. AD 500 to 1050. For the same period, sea‐surface temperatures in Disko Bay are out‐of‐phase with Greenland ice‐core reconstructed temperatures and marine proxy data from South and East Greenland. This is probably governed by an NAO‐type pattern, which results in warmer sea‐surface conditions with less extensive sea ice in the area for the later part of the Dark Ages cold period (c. AD 500 to 750) and cooler conditions with extensive sea ice inferred for the first part of the Medieval Climate Anomaly (MCA) (c. AD 750 to 1050). After c. AD 1050, the marine climate in Disko Bay becomes in‐phase with trends described for the NE Atlantic, reflected in the warmer interval for the remainder of the MCA (c. AD 1050–1250), followed by cooling towards the onset of the Little Ice Age at c. AD 1400. The inferred scenario of climate deterioration and extensive sea ice is concomitant with the collapse of the Norse Western Settlement in Greenland at c. AD 1350.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号