首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Waste disposal sites with volatile organic compounds (VOCs) frequently contain contaminants that are present in both the ground water and vadose zone. Vertical sampling is useful where transport of VOCs in the vadose zone may effect ground water and where steep vertical gradients in chemical concentrations are anticipated. Designs for combination ground water and gas sampling wells place the tubing inside the casing with the sample port penetrating the casing for sampling. This physically interferes with pump or sampler placement. This paper describes a well design that combines a ground water well with gas sampling ports by attaching the gas sampling tubing and ports to the exterior of the casing. Placement of the tubing on the exterior of the casing allows exact definition of gas port depth, reduces physical interference between the various monitoring equipment, and allows simultaneous remediation and monitoring in a single well. The usefulness and versatility of this design was demonstrated at the Idaho National Engineering and Environmental Laboratory (INEEL) with the installation of seven wells with 53 gas ports, in a geologic formation consisting of deep basalt with sedimentary interbeds at depths from 7.2 to 178 m below land surface. The INEEL combination well design is easy to construct, install, and operate.  相似文献   

2.
Hollow-stem augers are a widely used drilling method for constructing monitoring wells in unconsolidated materials. The drilling procedures used when constructing monitoring wells with hollow-stem augers, however, are neither standardized nor thoroughly documented in the published literature.
Variations in drilling procedures and techniques may occur as a result of the: (1) type of auger drill equipment and formation samplers used; (2) hydrogeologic conditions at the site, especially where heaving sands occur; and (3) known or suspected presence of contaminated zones, where there is a potential for the vertical movement of contaminants within the borehole.
In a saturated zone in which heaving sands occur, changes in equipment and drilling techniques are required to provide a positive pressure head of water within the auger column. This may require the addition of clean water or other drilling fluid inside the augers.
When monitoring the quality of ground water below a known contaminated zone, hollow-stem auger drilling may not be advisable unless protective surface casing can be installed. Depending on the site hydrogeology, conventional hollow-stem auger drilling techniques alone may not be adequate for the installation of the protective surface casing. A hybrid drilling method may be needed that combines conventional hollow-stem auger drilling with a casing driving technique that advances the borehole and surface casing simultaneously.  相似文献   

3.
由于石油压裂开采等开发措施的实施,会使在套管周围存在着许多被油气等高阻流体填充的微裂缝.尽管这些裂缝或孔隙可能很小,但对套管井电阻率测量会有非常大的影响,甚至会改变原地层的电阻率测井特征,因此裂缝测井响应的计算及考察对过套管电阻率测井十分重要.为解决裂缝测井响应的计算问题,本文提出了计算等效电阻的电流通量管模型,利用该电流通量管模型给出了含垂直裂缝地层横向电阻的计算方法,基于传输线方程法及地层电阻的过套管测量方法实现了含裂缝地层的过套管电阻率测井响应的数值计算,通过计算实例考察了地层裂缝对过套管电阻率测井响应的影响.算例表明:裂缝中的高阻流体对地层视电阻率测量结果会有较大的影响;环形裂隙比垂直裂缝有更大的电阻率测井响应.本文的研究为解决微裂缝过套管电阻率测井响应的计算这一关键技术问题提供了一种可行的计算与考察方法.  相似文献   

4.
A ground water monitoring program should include an investigation of all possible areas of concern. To be completely effective, the program should include soil sampling, soil analysis and water-quality examination of both the saturated and unsaturated zones. A well-tooled drill rig can take all the proper soil samples, perform all necessary tests and install a functional monitoring well. With the introduction of the fluoropolymer (Teflon(r)) sleeve lysimeter, a single monitoring well can be constructed to monitor both the saturated and unsaturated zones in one installation. The monitoring well screen and casing may also be completely constructed of fluoropolymer.
The sleeve lysimeter is designed with a threaded hollow inner diameter, allowing it to be attached between the joints of a casing string. This hollow I.D. acts as an extension of the casing; the lysimeter surrounds the casing. This creates an isolated vessel for sampling the vadose zone. Access to the screened monitoring well below is unaffected. Tests have shown that when properly installed, these porous fluoropolymer filter units can collect samples with no interaction between the filter and collected fluids.  相似文献   

5.
Making the Most of Field-Measurable Ground Water Quality Parameters   总被引:1,自引:0,他引:1  
The primary ground water quality parameters temperature, pH, Eh, electrical conductivity, and dissolved oxygen must be measured in the field, though not necessarily in situ, to avoid errors caused by contamination such as aeration. These measurements, when made during the purging of a well, can be used to verify aquifer-representativeness of a sample, detect abnormalities within an aquifer, check laboratory measurements to detect sample deterioration, and prompt further monitoring actions.
Electronic sensors are available for reliable field measurement of the primary parameters. Measurements should be made continuously in an in-line flow cell that is sealed from the atmosphere. Flow can be provided by a bladder pump dedicated to a single well. Samples for laboratory analysis should be collected when the values of the primary parameters do not vary more than 10 percent per casing volume pumped.  相似文献   

6.
Hydrogen gas was discovered within the steel casing above standing water in a percussion-drilled borehole on the Hanlord Site in south-central Washington state. In situ measurements of the borehole fluids indicated anoxic, low-Eh (<-400 mV) conditions. Ground water sampled from adjacent wells in the same formation indicated that the ground water was oxygenated. H2 was generated during percussion drilling, due to the decomposition of borehole waters as a result of aqueous reactions with drilled sediment and steel from the drilling tools or casing. The generation of H2 within percussion-drilled boreholes that extend below the water table may be more common than previously realized. The ambient concentration of H2 produced during drilling was limited by microbial activity within the casing-resident fluids. H2 was generated abiotically in the laboratory, whereby sterilized borehole slurry samples produced 100 times more H2 than unsterilizcd samples. It appears that H2 is metabolized by microorganisms and concentrations might be significantly greater if not for microbial metabolism.  相似文献   

7.
A small but significant proportion of all existing monitoring wells may be affected by leakage through the casing, usually at joints. Casing leakage can render data obtained from a monitoring well unreliable. Anomalous water level, water quality, or isotope data from a particular well are an indication of possible leakage. The occurrence of a casing leak can be confirmed by means of a pressure test using water. The magnitude of the leakage flow can be estimated from the pressure test or from the observed head anomaly. Casing leaks can be largely prevented with adequate care during monitoring well installation, but the possibility that data may be affected by casing leaks should always be taken into account during hydrogeological investigations.  相似文献   

8.
Bad cement bond with water channeling or low strength cement is usually generated on the first and/or secondary interfaces which lie between the cement and casing, and the cement and formation, respectively. It is an inherently complicated problem to evaluate cement bond on the secondary interface (SICB) in a cased borehole. So we need to find a useful wave for evaluating SICB and provide its propagation features. To achieve this, we simulated the acoustic full waveform, 2-D spectrum and dispersion curves in cased boreholes based on the real axis integration method, and a propagator matrix. Simulation results indicated that “casing-cement mode” wave can be utilized to evaluate SICB, as it is most sensitive to water channeling on the secondary interface. Velocity of this mode wave is in between that of the casing wave and the formation wave, so that it is easy to extract it in time. The dispersion curves showed that the casing-cement wave is a dispersion wave, but not a pseudo-Rayleigh wave. Its velocity is obviously larger than vs of cement. Simulation results further indicated that the amplitude of casing-cement wave is decreasing with increasing cement sheath thickness, but not water channeling thickness, and its travel time is influenced by casing and cement together. Moreover, we investigated factors influencing the casing–cement wave and found that casing diameter and peak frequency are major factors influencing the amplitude and the travel time, while other factors, such as P-wave velocities of cement and wall thickness of casing, are minor factors. But none of these factors greatly influence bond index which is computed from the amplitude. So the bond index has an advantage over the amplitude during evaluating SICB. Formation wave is a helpful signal to evaluate low strength cement without water channeling, and its amplitude is mainly related to the velocities (or impedances) of both cement and formation except for formation attenuation and disturbance wave. Experimental data in calibration pits and field data detecting channeling demonstrated the simulation results.  相似文献   

9.
A mathematical formulation for the electric potential from point current-sources coaxial with a metal casing has been obtained. The excitation caused by the axial point-sources will produce currents in the pipe. By assuming that the pipe can be divided into many cylindrical ring segments with constant axially-directed current, the solution of the fields inside and outside the pipe can be formulated in an integral form. The integral equation applied to the segmented pipe yields a set of simultaneous linear equations which are solved for the currents in the pipe; these are then used to calculate the potentials anywhere outside the pipe in the medium. This solution has been used to study the distribution of the potentials in a half-space for a single current-source at and beyond the bottom of a finite length of casing. For a casing 0.1 m in radius and 0.006 m in wall thickness with a conductivity of 106 S/m, in a half-space of 10-2 S/m, it was found that only in a region very near the pipe does the pipe exert substantial influence on the fields of a point-source 100 casing diameters beyond the end of the pipe. It appears that cross-hole resistivity surveys can be implemented without corrections for the casing if the source is located at least 50–100 casing diameters beyond the end of the casing. Hole-to-surface surveys are much more affected by the pipe. For a pipe-source separation of 100 casing diameters, the surface measurements must not be closer than a half pipe length for a 5% or less field distortion.  相似文献   

10.
A suction side sample collector (SSSC) is a contrivance installed hydraulically ahead of the intake port of a pumping device. This paper describes construction and operational details of SSSCs fitted to a submersible pump with packer for use in a 6-inch cased borehole, an air lift pump with packer for use in a 1-inch or 2.5-inch cased borehole, a bladder pump for use in a casing of 2-inch or greater diameter, and a jet pump with packer for use in a 2-inch cased borehole.
Each form of SSSC has been thoroughly tested in ground water quality sampling for volatile organic chemicals. Comparative data for samples collected with the SSSCs and conventional sample collecting gear are presented. The SSSC is demonstrated to be superior to other methods of collecting volatile organic chemical samples owing to its freedom from contamination by the pump delivery line and to its mode of collecting the sample from a position in the well remote from disturbance by the pumping technique.
SSSCs are conveniently decontaminated, easily transported, and can be used to deliver samples to the laboratory while still at formation pressure. The air-lift pumps, described in this paper for use with SSSCs in 1- and 2.5-inch casings, have pumping capacities greater than obtained by other methods that can operate in these small casings. Discharge rates of up to 2 gpm are routinely achieved with the 1-inch model and higher rates are common With the 2.5-inch model. The use of packers with these pumps reduces the time needed to replace the water in the casing with fresh water from the formation.  相似文献   

11.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

12.
Reliable estimates of the fluid pressure in the pore space of rocks are critical for different aspects of petroleum exploration and production including injection operations and scenarios of water flooding. Numerous approaches are available for formation pore pressure evaluation, however, these measurements become a challenge inside a cased borehole, and a list of possible options is short: either the casing is to be perforated, or the production tubing needs to be disconnected to perform the pressure tests. We present a method for through-casing evaluation of formation pore pressure without shutting down production. We suggest equipping an observation well with a borehole gravimeter and acquiring time variations of the vertical component of the gravity field. Changes in gravity occur during gas production and are related to time variations of formation pore pressure. Gravity changes obtained in the observation well are supposed to be inverted for time-dependent formation pore pressure variations beyond the casing. Our results and recommendations are based on numerical modeling of pore pressure spatial distribution during gas field exploitation and relevant changes in borehole gravity. Benchmark models were elaborated in order to consider a dynamic process of pressure changes in time and space under conditions similar to those in the Medvezhye gas field (Russia). Different modeling scenarios are considered for early and late stages of gas field exploitation. The sensitivity analysis was performed to estimate quantitatively a sensitivity of borehole temporal gravity changes to variations in formation pore pressure behind the casing. Based on resolution analysis we justify the possibility to extract the gravity measurements directly related to changes in pore pressure from the total changes in the gravity field due to reservoir exploitation. The impact of pore pressure on the gravity field measured in boreholes during the water flooding is also evaluated, and obtained results are discussed.  相似文献   

13.
Although theories of thoroughly mixed and unmixed wellbore flow have been developed, recent studies suggest that ground water data variability and bias can result from various types of partial mixing. In this study, digital images of dye distributions within a vertical cross-sectional model of a screened monitoring well allowed mixing processes to be recorded and characterized. Given the conditions represented by this study, two scales of well water mixing are evident: small-scale mixing adjacent to the well screen and larger-scale mixing with the water from the casing above the screen section. Evidence suggested that the small-scale mixing initially caused concentrations at the pump to change more rapidly than the aforementioned theories predicted and to stabilize at biased concentrations. Larger-scale mixing of casing water and screen section water resulted from either turbulent/viscous entrainment or, more likely, a slightly elevated casing water density. If this mixing occurs due to wellhead cooling where the casing water is significantly chemically altered, bias would result. These results suggest that concentration variability and bias before and during pumping are, in part, controlled by the characteristics and prevalence of small and large scale partial mixing throughout the wellbore in the presence of wellbore-concentration heterogeneities. The bias and variability could be on the order of those concentration heterogeneities where concentration heterogeneities and partial mixing are present. Bias and variability of the type observed under these experimental conditions call for investigations into conditions that lead to partial mixing in the field and into the possible magnitude of the influences of these processes.  相似文献   

14.
A number of samples of polyvinyl chloride (PVC) well casings used for ground water monitoring that varied in schedule, diameter or manufacturer were placed in contact with low concentrations of aqueous solutions of TNT, RDX, HMX and 2,4-DNT for 80 days. Analysis indicated that there was more loss of TNT and HMX with the PVC casing than with the glass controls, but that the amount lost was, for the most part, equivalent among different types. A second experiment was performed to determine if these losses were due to sorption or if biodegradation was involved. Several different ground water conditions were simulated by varying salinity, initial pH and dissolved oxygen content. The only case where there was an in-creased loss of any substance due to the presence of PVC casing was with the TNT solution under non-sterile conditions. The extent of loss was small, however, considering the length of the equilibration period. This increased loss is thought to be associated with increased microbial degradation rather than sorption. Several samples of PVC casing were also leached with ground water for 80 days. No detectable interferences were found by reversed-phase high performance liquid chromatography (HPLC) analysis. Therefore, it is concluded that PVC well casings are suitable for monitoring ground water for the presence of these munitions.  相似文献   

15.
State-of-the-art analytical techniques are capable of detecting contamination In the part per billion (ppb) range or lower. At these levels, a truly representative ground water sample Is essential to precisely evaluate ground water quality. The design specifications of a ground water monitoring system are critical in ensuring the collection of representative samples, particularly throughout the long-term monitoring period.
The potential interfaces from commonly used synthetic well casings require a thorough assessment of site, hydrogeology and the geochemical properties of ground water. Once designed, the monitoring system must be installed following guidelines that ensure adequate seals to prevent contaminant migration during the installation process or at some time in the future. Additionally, maintaining the system so the wells are in hydraulic connection with the monitored zone as well as periodically Inspecting the physical integrity of the system can prolong the usefulness of the wells for ground water quality. When ground water quality data become suspect due to potential interferences from existing monitoring wells, an appropriate abandonment technique must be employed to adequately remove or destroy the well while completely sealing the borehole.
The results of an inspection of a monitoring system comprised of six 4-inch diameter PVC monitoring wells at a hazardous well facility Indicated that the wells were improperly installed and in some cases provided a pathway for contamination. Subsequent down hole television inspections confirmed inaccuracies between construction logs and the existing system as well as identified defects in casing materials. An abandonment program was designed which destroyed the well casings in place while simultaneously providing a competent seal of the re-drilled borehole.  相似文献   

16.
The objective of this study was to assess the possible impact of deep well disposal operations, conducted between 1958 and 1974, on the ground water quality in a shallow fresh water aquifer beneath Sarnia, Ontario, Canada. Because of the breakout of formation fluids in Sarnia and Port Huron, Michigan, in the early 1970s, it had been hypothesized that liquid waste from the disposal zone in bedrock had leaked through numerous abandoned oil, gas, and salt wells in the area up to the shallow fresh water aquifer and from there to the surface.
A monitoring well network of 29 5cm (2 inch) diameter piezometers was established in the thin sand and shale aquifer system, which exists between 30 and 70m (100 and 230 feet) below ground surface. In addition, a 300m (1000 foot) deep borehole was drilled and instrumented with a Westbay multilevel casing, which permitted sampling of the disposal zone.
Ground water samples from the shallow monitoring wells and the Westbay multilevel casing were analyzed for volatiles by GC/MS. Those volatile aromatics that were conspicuously present in the deep disposal zone, e.g., ethyl toluenes and trimethyl benzene, were not detected in the shallow monitoring wells. Thus, if contaminants from the disposal zone did indeed migrate to the shallow aquifer, contamination was not widespread and probably consisted mostly of displaced chloride-rich formation waters.  相似文献   

17.
过套管电阻率测井通过测量套管壁电势实现测量地层视电阻率,不同的地层模型对过套管电阻率测井会有不同的测井响应. 在传输线方程系数中本文考虑了径向含多个界面地层的影响,对轴向(井轴方向)呈层状、径向阶跃变化地层模型,给出了电势分布递推公式,计算了过套管电阻率测井响应,绘出了测井响应曲线. 算例表明,该方法有较强的轴向地层界面分辨能力;对径向均匀地层计算结果非常接近地层模型电导率,能较好地反映实际地层特征;对高电导地层,低电导水泥环有明显的测井响应;当径向存在多个地层界面时计算结果则为径向各层电导率的综合反映,不是某一径向层的电导率;算例显示该方法有较快(算例运行时间在1s内)的计算速度.  相似文献   

18.
Transmissivity can be estimated by several well documented methods employing data from rising water level slug tests in wells. A very simple and relatively inexpensive system can be constructed to lower the water level in a well. Compressed air is injected through a sealed device called a well head manifold, which screws onto the casing top and contains an air pressure gauge, an air entry valve, a quick release valve and a multi-channel water level indicator or a pressure transducer. Either of the latter is lowered into the well prior to pressurization.
Compressed air is injected into the casing at a low rate through the manifold, depressing the water level a desired amount. After stabilization, the quick release valve is opened and the air pressure inside the casing is reduced to atmospheric pressure instantaneously; the water level then starts to rise. Successive elevations of the rising water level are determined with the indicator or transducer and their elapsed times from valve opening are recorded. Plots of water level recovery vs. time can then be used to estimate transmissivity by the published methods of Cooper, Bredehoeft and Papadopulos (1967), Ferris and Knowles (1954) and Hvorslev(1951).
All of the items used for construction, with the exception of the quick release valve, can be bought off the shelf. The valve can be easily constructed in a machine shop. The total cost of the device, exclusive of the transducer, should be less than $500.  相似文献   

19.
The impact of lost circulation during rotary drilling near an existing monitoring well cluster was evaluated by periodic measurements of water levels and contaminant concentrations at the well cluster. Due to regulatory concerns, changes in water levels or VOC concentration in the well cluster during drilling would trigger monitoring well redevelopment. The borehole was drilled approximately 30 feet northeast of four nested monitoring wells that screen Devonian and Silurian carbonate bedrock at depths of 15, 60, 130, and 190 feet. Following complete circulation loss at depths of 177 and 1 S3 feet in the borehole, a rapid decrease in water levels was observed in the upper three monitoring wells. The water level in the well that was screened through the lost circulation zones increased slightly.
Decreasing water levels in formations located above the point of circulation loss appear to occur in response to a sudden decrease in borehole fluid pressure caused by the flow of drilling fluid into the formation. The relative contribution of contaminated formation water lo the borehole can be estimated by using the time-drawdown relationship and estimates of transmissivity. At the point of circulation loss, significant dilution of contaminant concentrations occurs from the loss of drilling fluid into the contaminated zone. Contaminated formation water entering the borehole during periods of complete lost circulation may mobilize contaminants from upper lo lower formations. Lost circulation into a formation would be signaled by a water level increase in monitoring wells. The wells would subsequently require development to remove the volume of fluid lost to the formation, including both drilling fluid and contaminated formation water. Monitoring wells exhibiting declining water levels following lost circulation would not require development since drilling water has not entered the zones screened by these wells.  相似文献   

20.
The procedures used to construct monitoring wells with hollow-stem augers may vary depending on the hydrogeologic conditions at the site. In cohesive materials in which the borehole stands open, the auger column may be fully retracted from the borehole prior to the construction of the monitoring well. In non-cohesive materials in which the borehole will not stand open, the monitoring well may be constructed through the hollow axis of the auger column.
The techniques used to construct monitoring wells through the hollow axis of the auger column may vary depending on the specific site conditions and the experience of the driller. Selection of an appropriately sized diameter hollow-stem auger for the installation of the required size of well casing is necessary to permit an adequate working space between the casing and augers, through which filter pack and annular seal materials are emplaced. Assurance that the filter pack and annular seal are properly emplaced is typically limited to careful measurements taken and recorded during construction of the monitoring well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号