首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motion of Greenland relative to Ellesmere Island along Nares Strait is determined from poles of rotation which provide control for the motion independent of local geology and geophysics. The plate kinematics around the North Atlantic Ocean, the Norwegian and Greenland Seas and the Eurasian Basin of the Arctic Ocean constrain motion along Nares Strait. These motions are checked by examining the stability characteristics of the triple junctions. These junctions are found to be stable. The motion along Nares Strait between anomalies 34 and 13 is a combination of strike-slip and compression. The regional geology is found to support the plate reconstructions. The local geology of the Nares Strait area is reviewed and found not to refute the predicted motions. The geophysical and geological data are interpreted in terms of the Wilson cycle, the opening and closing of an ocean. The Nares Strait area has the characteristics of a cryptic suture, a join between regions of collided continental crust.  相似文献   

2.
Paleogene sediments in fault-bounded basins on Judge Daly Promontory, northeast Ellesmere Island, Canadian High Arctic, are rich in volcanogenic material. Volcanic pebbles within the Cape Back basin near Nares Strait were studied for their petrography, geochemistry, Sr and Nd isotopes, and geochronology to identify and characterize their parent rock. The pebbles are derived from lava flows and ignimbrites of a continental rift-related, strongly differentiated, highly incompatible element enriched, alkaline volcanic suite, the proposed Nares Strait volcanic suite, which is distinct from other alkaline volcanic suites on the northern coasts of Ellesmere Island and Greenland. 40Ar/39Ar amphibole and alkali feldspar ages indicate that volcanism was active around 61–58 Ma and was probably contemporaneous with sedimentation resulting in Middle to Late Paleocene age for deposition within the Cape Back basin and the other Paleogene basins on Judge Daly Promontory.  相似文献   

3.
The West Spitsbergen Fold Belt, together with the Eurekan structures of northern Greenland and Ellesmere Island, are suggested to be the result of Late Cretaceous-Palaeocene intracontinental compressional tectonics. The Late Palaeozoic –Mesozoic rocks of western Spitsbergen are characterized by near-foreland deformation with ramp-flat, top-to-the east thrust trajectories, whereas structurally higher nappes involving Caledonian complexes are typified by more listric thrusts and mylonite zones. A minimum of 40 km of shortening is estimated for the northern part of the West Spitsbergen Fold Belt. The axial trends in the West Spitsbergen and the North Greenland Eurekan fold belts parallel the principal fault zones which accommodated the separation of Greenland and Svalbard after Chron 25/24. In northern Greenland, north directed Eurekan thrusts associated with mylonites and cleavage formation represent at least 10 km of shortening. Between 50 and 100 km of shortening is estimated for the markedly arcuate Eurekan Fold Belt of Ellesmere Island, but the principal tectonic transport is eastwards. Kinematic reconstructions suggest that Svalbard was linked to North America before the opening of the Eurasian Basin and Norwegian — Greenland Sea. In the Late Cretaceous — Palaeocene interval, the relative motion between Greenland and North America was convergent across the Greenland — Svalbard margin, giving rise to the West Spitsbergen Fold Belt and the Eurekan structures of North Greenland.  相似文献   

4.
Approximately 400,000 line kilometers of high quality, low level Arctic aeromagnetic data collected by the Naval Research Laboratory, the Naval Oceanographic Office and the Naval Ocean Reseach and Development Activity from 1972 through 1978 have been analyzed for depth to magnetic source. This data set covers much of the Canada Basin, the Alpha Ridge, the central part of the Makarov Basin, the Lincoln Sea, the Eurasia Basin west and south of the 55°E meridian and the Norwegian-Greenland Sea north of the Jan Mayen Fracture Zone. The analysis uses the autocorrelation algorithm developed by Phillips (1975, 1978) and based on the maximum entropy method of Burg (1967, 1968, 1975). The method is outlined, examples of various error analysis techniques shown and final results presented. Where possible, magnetic source depth estimates are compared with basement depths derived from seismic and bathymetric data.All major known bathymetric features, including Vesteris Bank and the Greenland, Molloy and Spitsbergen fracture zones, as well as the Mohns, Knipovich and Nansen spreading ridges and the Alpha Cordillera appear as regional highs in the calculated magnetic basement topography. Shallow basement was also found under the northeastern Yermak Plateau, the Morris Jesup Rise and under the southern (Greenland-Ellesmere Island) end of the Lomonsosov Ridge. Regional magnetic source deeps are associated with such bathymetric depressions as the Canada, Makarov, Amundsen, Nansen, Greenland and Lofoten basins; more localized magnetic basement deeps are found over the Molloy F.Z. deep and over the Mohns, Knipovich and Nansen rift valleys. A linear magnetic basement deep follows the extension of Nares Strait through the Lincoln Sea toward the Morris Jesup Rise, suggesting the continuation of the Nares Strait or Wegener F.Z. into the Lincoln Sea. A sharp drop in the regional magnetic source depths to the southeast of the Alpha Ridge suggests the Alpha Ridge is not connected to structures in northwest Ellesmere Island as previously postulated from high altitude aeromagnetic collected by Canadian workers. A regional deep under the east Greenland shelf west of the Greenland Escarpment suggests the presence of 5–10 km of post-Paleozoic sediments.  相似文献   

5.
The extent of glacier ice in the Canadian High Arctic during the Last Glacial Maximum (LGM) has been debated for decades. One school proposed a regional Innuitian Ice Sheet whereas another proposed a smaller, non-contiguous Franklin Ice Complex. Research throughout western Nares Strait supports coalescent Innuitian and Greenland ice during the LGM, based on widespread glacial and marine deposits dated by 14C and amino acid analyses. This coalescence likely promoted a vigorous regional ice flow westward across Ellesmere Island to Eureka Sound. Post-glacial emergence in Eureka Sound suggests a former ice thickness at least as great as that in Nares Strait (≥ 1 km). Recently, independent field studies elsewhere in the High Arctic also support an Innuitian Ice Sheet during the LGM. Collectively, these studies resolve a long-standing debate, and initiate new opportunities concerning the reconstruction of high-latitude palaeoenvironmental and palaeoclimatic change. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Nares Strait separating Greenland and northernmost Canada is floored by continental crust. Most palaeogeographic reconstructions of Laurentia and the North Atlantic region model the seaway as the site of massive sinistral strike–slip and/or compression/transpression, subduction and collision, the supposed manifestations of the hypothetical Wegener Fault. However, these reconstructions fail to take into account the bedrock geology that represents within-plate evolution. Both sides of Smith Sound, the southernmost part of Nares Strait, expose the same early Proterozoic to early Palaeozoic assemblages that are unaffected by seaway-related tectonism or thermal activity. Smith Sound is an intact crustal block or `linchpin' demonstrating that there was no independent Greenland plate. North-west Greenland was not a leading plate margin neither was Nares Strait the site of the plate boundary between Greenland and North America. The Wegener Fault does not exist. The Smith Sound linchpin constitutes a key constraint that must be respected in any palaeogeographic reconstruction of the region.  相似文献   

7.
Based on the analysis of various geophysical data, namely, free-air gravity anomalies, magnetic anomalies, upper mantle seismic tomography images, and topography/bathymetry maps, we single out the major structural elements in the Circum Arctic and present the reconstruction of their locations during the past 200 million years. The configuration of the magnetic field patterns allows revealing an isometric block, which covers the Alpha–Mendeleev Ridges and surrounding areas. This block of presumably continental origin is the remnant part of the Arctida Plate, which was the major tectonic element in the Arctic region in Mesozoic time. We believe that the subduction along the Anyui suture in the time period from 200 to 120 Ma caused rotation of the Arctida Plate, which, in turn, led to the simultaneous closure of the South Anyui Ocean and opening of the Canadian Basin. The rotation of this plate is responsible for extension processes in West Siberia and the northward displacement of Novaya Zemlya relative to the Urals–Taimyr orogenic belt. The cratonic-type North American, Greenland, and European Plates were united before 130 Ma. At the later stages, first Greenland was detached from North America, which resulted in the Baffin Sea, and then Greenland was separated from the European Plate, which led to the opening of the northern segment of the Atlantic Ocean. The Cenozoic stage of opening of the Eurasian Basin and North Atlantic Ocean is unambiguously reconstructed based on linear magnetic anomalies. The counter-clockwise rotation of North America by an angle of ~ 15° with respect to Eurasia and the right lateral displacement to 200–250 km ensure an almost perfect fit of the contours of the deep water basin in the North Atlantic and Arctic Oceans.  相似文献   

8.
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.  相似文献   

9.
A new combined magnetic database and a magnetic-profile map are developed for the Eurasia Basin as a result of adjusting all available historical and recent Russian and American magnetic data sets. The geohistorical analysis of magnetic data includes several steps: identification of linear magnetic anomalies along each trackline, calculation of the Euler rotation pole positions for the relative motion of the North American and Eurasian plates, analysis of temporal and spatial variations in the spreading rate, and plate reconstructions. The pattern of key Cenozoic magnetic isochrons (24, 20, 18, 13, 6, 5, 2a) is constructed for the entire Eurasia Basin. In the western half of the basin, this pattern is consistent with a recently published scheme [16]. In its eastern half, magnetic isochrons are determined in detail for the first time and traced up to the Laptev Sea shelf. The main stages in the seafloor spreading are established for the Eurasia Basin. Each stage is characterized by a specific spreading rate and the degree of asymmetry of the basin opening. The revealed differences are traced along the Gakkel Ridge. Systematic patterns in wandering of the Eurasia Basin opening pole are established for particular stages. The continent-ocean transition zone corresponding to the primary rupture between plates is outlined in the region under consideration on the basis of gravimetric data. The nature of different potential fields and bottom topography on opposite sides of the Gakkel Ridge is discussed. The characteristic features of the basin-bottom formation at main stages of its evolution are specified on the basis of new and recently published data. The results obtained are in good agreement with plate geodynamics of the North Atlantic and the adjacent Arctic basins.  相似文献   

10.
It is summarized based on previous studies that warm and salty Atlantic Water (AW) brings huge amount of heat into Arctic Ocean and influences oceanic heat distribution and climate. Both heat transportation and heat release of AW are key factors affecting the thermal process in Eurasian Basin. The Arctic circumpolar boundary current is the carrier of AW, whose flow velocity varies to influence the efficiency of the warm advection. Because the depth of AW in Eurasian Basin is much shallower than that in Canadian Basin, the upward heat release of AW is an important heat source to supply sea ice melting. Turbulent mixing, winter convention and double-diffusion convention constitute the main physical mechanism for AW upward heat release, which results in the decrease of the Atlantic water core temperature during its spreading along the boundary current. St. Anna Trough, a relatively narrow and long trough in northern continental shelf of Kara Sea, plays a key role in remodeling temperature and salinity characteristics of AW, in which the AW from Fram Strait enters the trough and mixes with the AW from Barents Sea. Since the 21st Century, AW in the Arctic Ocean has experienced obvious warming and had the influence on the physical processes in downstream Canada Basin, which is attributed to the anomalous warming events of AW inflowing from the Fram Strait. It is inferred that the warming AW is dominated by a long-term warming trend superimposed on low frequency oscillation occurring in the Nordic Seas and North Atlantic Ocean. As the Arctic Ocean is experiencing sea ice decline and Arctic amplification, the role of AW heat release in response to the rapid change needs further investigation.  相似文献   

11.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   

12.
The Siberian–Icelandic hotspot track is the only preserved continental hotspot track. Although the track and its associated age progression between 160 Ma and 60 Ma are not yet well understood, this section of the track is closely linked to the tectonic evolution of Amerasian Basin, the Alpha-Mendeleev Ridge and Baffin Bay. Using paleomagnetic data, volcanic structures and marine geophysical data, the paleogeography of Arctic plates (Eurasian plate, North American Plate, Greenland Plate and Alaska Microplate) was reconstructed and the Siberian–Icelandic hotspot track was interlinked between 160 Ma and 60 Ma. Our results suggested that the Alpha-Mendeleev Ridge could be a part of the hotspot track that formed between 160 Ma and 120 Ma. During this period, the hotspot controlled the tectonic evolution of Baffin Bay and the distribution of mafic rock in Greenland. Throughout the Mesozoic Era, the aforementioned Arctic plates experienced clockwise rotation and migrated northeast towards the North Pacific. The vertical influence from the ancient Icelandic mantle plume broke this balance, slowing down some plates and resulting in the opening of several ocean basins. This process controlled the tectonic evolution of the Arctic.  相似文献   

13.
Chronology of the last recession of the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
A new deglaciation chronology for the ice‐free parts of Greenland, the continental shelf and eastern Ellesmere Island (Canada) is proposed. The chronology is based on a new compilation of all published radiocarbon dates from Greenland, and includes crucial new material from southern, northeastern and northwestern Greenland. Although each date provides only a minimum age for the local deglaciation, some of the dates come from species that indicate ice‐proximal glaciomarine conditions, and thus may be connected with the actual ice recession. In addition to shell dates, dates from marine algae, lake sediments, peat, terrestrial plants and driftwood also are included. Only offshore and in the far south have secure late‐glacial sediments been found. Other previous reports of late‐glacial sediments (older than 11.5 cal. kyr BP) from onshore parts of Greenland need to be confirmed. Most of the present ice‐free parts of Greenland and Nares Strait between Greenland and Ellesmere Island were not deglaciated until the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Seismic slip vectors along the Japan Trench, the eastern margin of the Japan Sea and the Sagami Trough are compared with global relative plate motions (RM2, Minster and Jordan, 1978) to test a new hypothesis that northern Honshu, Japan, is part of the North American plate. This hypothesis also claims that the eastern margin of the Japan Sea is a nascent convergent plate boundary (Kobayashi, 1983; Nakamura, 1983).Seismic slip vectors along the Japan Trench are more parallel to the direction of the Pacific-North American relative motion than that of the Pacific-Eurasian relative motion. However, the difference in calculated relative motions is too small avoid to the possibility that a systematic bias in seismic slip vectors due to anomalous velocity structure beneath island arcs causes this apparent coincidence. Seismic slip vectors and rates of shortening along the eastern margin of the Japan Sea for the past 400 years are also consistent with the relative motion between the North American and Eurasian plates calculated there. Seismic slip vectors and horizontal crustal strain patterns revealed by geodetic surveys in south Kanto, beneath which the Philippine Sea plate is subducting, indicate two major directions; one is the relative motion between the North American and Philippine Sea plates, and the other that between the Eurasian and Philippine Sea plates.One possible interpretation of this is that the eastern margin of the Japan Sea may be in an embryonic stage of plate convergence and the jump of the North American-Eurasian plate boundary from Sakhalin-central Hokkaido to the eastern margin of the Japan Sea has not yet been accomplished. In this case northern Honshu is a microplate which does not have a driving force itself and its motion is affected by the surrounding major plates, behaving as part of either the Eurasian or North American plate. Another possibility is that the seismic slip vectors and crustal deformations in south Kanto do not correctly represent the relative motion between plates but represent the stresses due to non-rigid behaviors of part of northern Honshu.  相似文献   

15.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

16.
Along a 70 km section of western Kennedy Channel three prominent weathering zones are identified and serve to differentiate major events in the Quaternary landscape. The oldest zone (Zone 111b) is characterized by a deeply weathered, erratic-free terrain which extends from the mountain summits down to ca. 470 m above sea level. This zone shows no evidence of former glacierization. Zone 111a extends from ca. 470 to 370m above sea level and is characterized by sparse granite, gneiss and quartzite erratics amongst weathered bedrock and extensive, oxidized colluvium. The Precambrian provenance and uppermost profile of these erratics reflect the maximum advance of the northwest Greenland Ice Sheet onto northeastern Ellesmere Island. These uppermost erratics along western Kennedy Channel decrease in elevation southward and suggest that the former Greenland ice was thickest in the direction of the major outlet of Petermann Fiord. No evidence of a former ice ridge in Nares Strait was observed. Zone II is marked by the moraines of the outermost Ellesmere Island ice advance which form a prominent morpho-stratigraphic boundary where they cross-cut the zone of Greenland erratics at ca. 250–350 m above sea level. These moraines show advanced surface weathering and ice recession from them is associated with a pre-Holocene shoreline at 162 m above sea level. Late Wisconsin/Würm glacial deposits, equivalent to Zone I, were not observed in the lower valleys bordering Kennedy Channel. The outermost Ellesmere Island ice advance (Zone II) is radiometrically bracketed by 14C dates on in situ shells from subtill and supratill marine units which are 40,350±750 and>39,000 B.P., respectively. Amino acid age estimates on the same shell samples and others from similar stratigraphic positions all suggest ages of >35,000 B.P. Stratigraphically and chronologically this ice advance is correlated with the outermost Ellesmere Island ice advance 20–40 km to the north which formed small ice shelves when the relative sea level was ca. 175 m above sea level. The Holocene marine transgression along western Kennedy Channel occurred in an ice-free corridor maintained between the separated margins of the northwest Greenland and northeast Ellesmere Island ice sheets during the last glaciation. Initial emergence may have begun ca. 12,300 B.P., however, sea level had dropped only 15 m by ca. 8000 B.P. after which glacio-isostatic unloading of the corridor was rapid. The implications of these data are discussed in the context of existing models on high latitude glaciation and paleoclimatic change  相似文献   

17.
板块演化控制了盆地的形成与演化,盆地的性质和地质特征由其所处的板块构造单元决定.本文从大地构造背景角度出发,沿北纬60°±5°绘制了欧亚大陆东西向跨洲剖面,西起北海内伊湖—阿兰盆地,东至北鄂霍茨克盆地,全长为11000km.剖面将构造单元划分为不同级别(超大陆与构造域—板块与造山带—陆块与构造带—盆地与拱起),进而将构...  相似文献   

18.
Widespread molluscan samples were collected from raised marine sediments to date the last retreat of the NW Laurentide Ice Sheet from the western Canadian Arctic Archipelago. At the head of Mercy Bay, northern Banks Island, deglacial mud at the modern coast contains Hiatella arctica and Portlandia arctica bivalves, as well as Cyrtodaria kurriana, previously unreported for this area. Multiple H. arctica and C. kurriana valves from this site yield a mean age of 11.5 14C ka BP (with 740 yr marine reservoir correction). The occurrence of C. kurriana, a low Arctic taxon, raises questions concerning its origin, because evidence is currently lacking for a molluscan refugium in the Arctic Ocean during the last glacial maximum. Elsewhere, the oldest late glacial age available on C. kurriana comes from the Laptev Sea where it is < 10.3 14C ka BP and attributed to a North Atlantic source. This is 2000 cal yr younger than the Mercy Bay samples reported here, making the Laptev Sea, ~ 3000 km to the west, an unlikely source. An alternate route from the North Atlantic into the Canadian Arctic Archipelago was precluded by coalescent Laurentide, Innuitian and Greenland ice east of Banks Island until ~ 10 14C ka BP. We conclude that the presence of C. kurriana on northern Banks Island records migration from the North Pacific. This requires the resubmergence of Bering Strait by 11.5 14C ka BP, extending previous age determinations on the reconnection of the Pacific and Arctic oceans by up to 1000 yr. This renewed ingress of Pacific water likely played an important role in re-establishing Arctic Ocean surface currents, including the evacuation of thick multi-year sea ice into the North Atlantic prior to the Younger Dryas geochron.  相似文献   

19.
Marine geological information is synthesized to provide the most comprehensive history available of sea surface conditions of the Norwegian-Greenland Sea during the Neogene ice age. The initiation of glaciation in this region at approximately 3.0 Ma can be inferred only from indirect sources. DSDP Leg 38 recovery in glacial sections is summarized, and the research of CLIMAP members is reviewed. Quarternary sediments of the Norwegian-Greenland Sea are compared to Arctic, Antarctic, and North Atlantic regions. Evidence concerning the existence of permanent ice cover during glacial stages is considered to be inconclusive. Warning of the Norwegian-Greenland Sea at the end of the Weichselian Glacial Stage began approximately 13,000 abp, and there is no demonstratable concordance between oceanic conditions and terrestrial climates of Scandinavian after North Atlantic water re-enterred this sea. Recession of an ice shelf of unknown extent on the continental margin northwest of Möre, Norway is inferred from slope sediments and physiography.  相似文献   

20.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号