首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Mollusc death assemblages were recovered in 98 subtidal sampling stations on the seafloor of the shallow Pertuis Charentais Sea (Atlantic coast of France). Taxonomic composition and spatial distribution of death assemblages were investigated, as well as their response to sediment grain size (field data), bottom shear stress (coupled tide and wave hydrodynamic modelling), and sediment budget (bathymetric difference map). Results showed that molluscs are likely to be reliable paleoenvironmental indicators since death assemblages were able to acquire ecological changes within years (decadal-scale taphonomic inertia), and live–dead agreement inferred from existing data on living benthic communities was high, except close to river mouths and intertidal mudflats that provide terrestrial and intertidal species to subtidal death assemblages, respectively. Taxonomic composition of these within-habitat death assemblages strongly depended on sediment grain size and bottom shear stress, similarly to living subtidal communities. Post-mortem dispersal of shells, owing to relatively low bottom shear stress in the area, was only of a few 10s to 100s of meters, which shows that death assemblages preserved environmental gradients even at a fine spatial scale. Sediment budget had also a significant influence on death assemblages. Thick-shelled epifaunal species were correlated with erosion areas on one side, and thin-shelled infaunal species with deposition on the other, showing that mollusc fossil assemblages could be used as indicators of paleo-sedimentation rate. This new proxy was successfully tested on a previously published Holocene mollusc fossil record from the same area. It was possible to refine the paleoenvironmental interpretation already proposed, in accordance with existing stratigraphic and sedimentological data.  相似文献   

2.
We studied the spatial variability and within-year temporal changes in hydrological features, grain size composition and chemical characteristics of sediments, as well as macrofaunal assemblages, along a heavily modified inlet in the Gulf of Oristano (western Sardinia, Italy). The inlet connects the Cabras lagoon to the gulf through a series of convoluted creeks and man-made structures, including a dam and fish barriers built in the last three decades. Sediments were muddy and mainly composed of the "non-sortable" fraction (i.e., <8 microm particle size) in all four areas investigated: Lagoon, Creeks, Channel and Seaward. Along the inlet, however, the ratio between the <8 microm and the 8-64 microm fractions was highest in Creeks and Channel, between the fish barriers and the dam, suggesting impaired hydrodynamics. Consistently, steep gradients in water salinity, temperature and dissolved oxygen concentrations were found in proximity to the fish barriers. The whole inlet was characterized by a major organic enrichment of sediments, with up to an annual mean of 33.6% of organic matter and 11.7% of total organic carbon in Seaward due to the presence of seagrass leaf litter. Acid-volatile sulphide and chromium-reduced sulphur concentrations were highest throughout the year in Seaward and Lagoon, respectively, with a peak in summer. Consistently, the whole inlet supported low structured macrofaunal assemblages dominated by few opportunist species, with a relatively lower diversity in Lagoon throughout the year and the highest abundances in Seaward in summer. We infer that the presence of artificial structures along the inlet, such as fish barriers and the dam, impair the lagoon-gulf hydrodynamics, sediment exchange and animal recruitment and colonization. We suggest that the removal of these structures would favour water renewal in the Cabras lagoon, but would also increase the outflow of organic C-bonding fine particles into the gulf with serious consequences for Posidonia oceanica and Cymodocea nodosa seagrass meadows. We conclude that all possible consequences of such initiatives should be carefully considered before any action is taken.  相似文献   

3.
The structure and dynamics of vegetation in valley bottoms are both strongly associated with fluvial processes and landform dynamics. All of these associations are disrupted by the installation of engineering control works. We use survey and analysis methods developed previously to investigate the impact of the installation of check‐dams within the confined headwaters of steep seasonally‐flowing streams (fiumaras) in Calabria, southern Italy, on active channel form, sediment calibre, and the richness, cover and development of riparian vegetation. Based on detailed field measurements along transects across the active channel, estimates of indices of vegetation extent (GCC), development (WCH) and their cross‐sectional variability (coefficients of variation of both indices at each survey site CVGCC, CVWCH), the number of species present (Ns), channel shape (w/d – the width/depth ratio), cross‐sectional area (CSA), downstream gradient (slope), surface bed sediment calibre (D50) and subsurface fine sediment content (percentage less than 250 µm by weight) were obtained for 60 transects located immediately upstream (U), downstream (D) and at intermediate sites (I) around 20 check‐dams located in four different headwater catchments. Analysis of this data set suggests that statistically significant changes in channel form and sediment calibre upstream of check‐dams are associated with more consistent vegetation development across the active channel, including an increase in species richness relative to other transects, but notable increases in vegetation cover and development only arise where the physical characteristics of the channel are notably different from intermediate and downstream channels. Because of the naturally steep profile of the study torrents, intermediate sections between check‐dams tend to be more similar in form to channels located immediately downstream of check‐dams than those located upstream, leading to similar structural properties in the riparian vegetation. The intermediate transects support considerably more species than downstream reaches, but the conditions upstream of the check‐dams appear to be so favourable for riparian vegetation development that species richness exceeds that found in intermediate reaches. Despite the confined headwater locations, these contrasts in form, sediment and vegetation development around check‐dams are strong and consistent across the study catchments, over‐riding more subtle contrasts in species richness and sediment calibre between catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Artificial macrophytes were experimentally deployed in Boadella Reservoir (NE Spain) and assessed for fish use throughout the first 3 months of the 2007 summer drawdown. In total, 1,832 individuals of seven fish species were recorded through visual censuses, with introduced perch Perca fluviatilis being the prevalent species. Fish richness and abundance were significantly higher in artificial macrophytes than in rocky shores and sandy beaches, displaying a unimodal variation through time. P. fluviatilis, Rutilus rutilus and Abramis brama were significantly more abundant in artificial macrophytes than in the other two naturally submersed habitats, where no individuals of these species were recorded. The abundances of Squalius laietanus, Lepomis gibbosus, Micropterus salmoides and Cyprinus carpio were overall greater in artificial macrophytes than in rocky shores but displayed significant habitat × time interactions. A decrease in predation risk was apparently the key-factor of the intensive use of artificial macrophytes by small fish (≤100 mm TL) in Boadella Reservoir, since most species reduced drastically or completely the use of submerged structures when body size increased. This study demonstrates that adding artificial structures mimicking aquatic macrophytes can be an interesting tool to mitigate the adverse effects of water level fluctuations on fish assemblages in structure-less and homogeneous ecosystems, and to understand the mechanisms affecting habitat use and species replacement.  相似文献   

5.
Mud deposits near sandy beaches, found throughout the world, are of scientific and societal interest as they form important natural sea defenses by efficiently damping storm waves. A multi-national field experiment to study these phenomena was performed offshore Cassino beach in southern Brazil starting in 2004. This experiment aimed to investigate the formation of an offshore mud deposit, to characterize wave attenuation over potentially mobile muddy bottoms, and to evaluate the performance of models for wave transformation over heterogeneous beds through the measurement of water waves, near-bottom currents, bathymetry, and changes in bottom sediment characteristics. The main instrumentation was a set of wave sensors deployed in a transect from the shoreline across sandy and muddy deposits offshore to a depth of 25 m. Additional sensors, including current meters and optical backscatter sensors, were concentrated at stations in the middle of the mud deposit and in the surf zone to document aspects of the wave boundary layer and lutocline dynamics. This fieldwork also involved the geological and geotechnical characterization of the mud deposit using seismic equipment, echo-sounders, cores, surficial sampling and an in-situ density meter. These sediment samples were subsequently analyzed for density, grain size distribution, mineralogy, rheology and sedimentary structures. In addition, video and radar monitoring equipment were installed to measure the long-term aspects of surf zone damping by fluid mud and any associated morphodynamic responses. This paper provides a summary of environmental conditions monitored during the experiment and describes the major findings of the various investigations. Although data collection was more difficult than anticipated and dramatic wave attenuation involving the onshore transport of fluid mud into the surf zone region was not observed during the instrumented interval, the new methodologies developed and comprehensive observations obtained during this effort are being used to improve our understanding of shoaling wave dynamics and sediment transport in the coastal zone in regions with significant cohesive sediment deposits.  相似文献   

6.
To study the correlation between nutrient enrichment derived from fish farming activities and changes in macrobenthic assemblages, a one-year field study was conducted in Kau Sai Bay marine fish culture zone of Hong Kong. Bimonthly sediment samples were collected at six stations: two at the fish cages, two near the boundary of the fish culture area, and two reference sites further away from the culture area. Sediment physico-chemical characteristics in terms of silt/clay fraction, moisture content, total organic carbon (TOC), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) were analyzed. The macrobenthos (>0.5 mm) present in the sediment were sorted, identified and enumerated. On average, TOC, TKN and TP levels at the fish cage stations were 82.8%, 128.5% and 1315.7% higher than those at the reference stations, respectively. As a result, the N:P molar ratio was greatly reduced from 8.75 at the reference stations to 1.83 at the fish cage stations. Univariate and multivariate analyses revealed that diversity of macrofauna was significantly reduced and community structure differed at the fish cage stations relative to the reference sites. The intermediary stations near the fish culture area showed a transitional state of disturbance. Faunal diversity was negatively correlated with nutrient level, reflecting the adverse impacts of nutrient enrichment derived from fish farming activities on the benthic assemblages. Whilst in subtropical Asia-Pacific trash fish is the major feed for fish culture resulting in a higher nutrient loading and nutrient ratio accumulated in the sediment beneath the fish rafts, the effects of nutrient enrichment on macrobenthic assemblages are comparable to that in temperate waters owing to relatively high sediment metabolism rate and smaller fish culture scale in Hong Kong.  相似文献   

7.
Coral reef fish communities in the Seychelles are highly diverse and remain less affected by the direct impacts of human activities than those on many other coral reefs in the Indian Ocean. These factors make them highly suitable for a detailed survey of the impacts of the 1998 mass coral mortality, which devastated the coral faunas of the region. Using underwater visual census (UVC) techniques. fish communities were sampled in three localities in the southern Seychelles and one locality in the northern (granitic) Seychelles. Initial surveys were undertaken from the latter site in 1997. Surveys were undertaken at all sites during the coral bleaching episode in 1998 prior to any major changes in the reef fish communities. Repeat surveys were undertaken in 1999 one year after the coral mortality. Over 250 fish species were sampled from 35 families. Results suggest that changes in the overall fish community structures are not great, despite massive changes in the benthic cover. Significant changes have been observed in a number of individual species. These include those most heavily dependent on live coral cover for shelter or sustenance. Future potential changes are discussed, and potential management interventions are considered.  相似文献   

8.
An in situ monitoring of the sediment characteristics and macrobenthic communities was undertaken at a marine fish culture site in subtropical waters of Hong Kong before and after the deployment of biofilters which were made of cement concrete artificial reef (AR) structures. According to the distance to the boundary of the fish cages, 6 points were selected as sampling stations: 2 at the fish cages, 2 near the boundary of the fish culture area, and 2 reference sites further away from the culture area. Bimonthly sediment samples were collected for analysis of silt-clay fraction (SCF), moisture content (MC), total organic carbon (TOC), total Kjeldahl nitrogen (TKN) and total phosphorus (TP). The macrobenthos (>0.5mm) present in the sediment were sorted, identified and enumerated. TOC, TKN and TP levels at the fish cage stations were consistently higher than those at the reference stations over the 1-year pre-AR and 2-year post-AR deployment monitoring period. The diversity of macrofauna was significantly reduced at the fish cage stations relative to the reference sites. The intermediary stations near the fish culture area showed a transitional state of disturbance. Over the 2-year post-AR deployment period, TOC, TKN and TP showed a decreasing trend at the fish cage and intermediary stations. More diverse macrofaunal communities were recorded at the fish cage stations, with species diversity H'increasing from 0-1 at the beginning of the AR deployment to H'>2 at the end of the study. The present results demonstrated that artificial reefs can improve the benthic abiotic environment and biotic conditions beneath fish rafts which are deteriorated due to farming activities.  相似文献   

9.
Topographic changes in two blowouts located in Island Beach State Park, New Jersey, USA were monitored over the winter of 1981-1982. Elevation changes were measured with erosion pins, and sediment traps placed at comparable locations in each blowout monitored the amount of sand moved by the wind. Discrete wind events were identified from regional data, and morphological data for the intervals with the highest onshore and offshore wind speeds are examined in detail. Vegetation is the primary influence on the development of the two blowouts. Blowout A is characterized by eroding sidewalls, a stable base, and an accreting blowout rim. High rates of sediment transport occur through the blowout throat which results in accretion on the vegetated rim. This blowout is an active sediment transfer system. Vegetation causes a large amount of deposition in the throat of blowout B. As vegetation was buried over the winter, the area of deposition migrated inland. Sidewall erosion also occurred in blowout B. Little change was recorded on the blowout rim. Blowout B is a recovering system where sediment is delivered to the blowout floor from the beach by onshore winds and from the blowout rim by offshore winds where it is stabilized by vegetation. The development of foredune blowouts is governed largely by vegetation cover on the dune crest and by sidewall erosion during offshore and onshore winds. Blowout recovery depends on vegetation growth and sediment deposition in the throat, and on the role of the sidewalls as sources of sediment which is deposited elsewhere within the system. Foredune blowouts are dynamic systems in which positive feedbacks in sediment availability and vegetation growth lead to a cycle of development and closure.  相似文献   

10.
Effects on sediments of fish farming activity near Vrgada Island was analysed through living and total foraminiferal assemblages and concentration of major, minor and trace elements from three sediment cores. Elemental concentrations of sediments are in accordance with carbonate characteristics of the surrounding area and show mostly natural element variations between sampling locations and throughout the cores, with no significant increases due to fish farming activity. Only phosphorus concentration shows elevate values below the fish cage, assigned to fish pellets. Foraminiferal communities are dominated by epifaunal and stress tolerant species, while diversity indices point to normal marine conditions. The type of substrate and phosphorus content in sediments principally influence foraminiferal community composition, while other elemental concentrations have no perceptible effect on the assemblages. Some foraminiferal species Ammoniatepida, Ammoniabeccarii, Elphidiumcrispum, Elphidiummacellum and genus Haynesina are confirmed to be tolerant to elevated nutrient (phosphorus) content, while Ammonia parkinsoniana shows sensitivity to pollution. Postmortem processes cause decrease of foraminiferal density and species richness with core depth. All results point to negligible influence of fish farming and relatively stable environmental conditions at all sampling locations.  相似文献   

11.
Ephemeral aquatic ecosystems have a global distribution being most abundant in semi-arid and arid regions. Due to anthropogenic impacts threatening these environments, there is a need to understand various factors and processes structuring animal communities in these habitats. Macroinvertebrate and zooplankton assemblages were studied in different ephemeral (i.e. flood plain, large endorheic and small endorheic) pans in the south-eastern Lowveld of Zimbabwe in the wet season. Ten Cladoceran species, Calanoids and Cyclopoids taxa and thirty-three macroinvertebrate taxa were identified over the entire hydroperiod. Predator macroinvertebrates were the dominant taxa especially in endorheic pans. The pan categories differed significantly in both zooplankton and macroinvertebrates composition and richness, with zooplankton and macroinvertebrate taxa richness being high in flood plain pans. Conductivity, fish presence, hydroperiod, maximum depth, turbidity and vegetation cover played a major role in shaping both zooplankton and macroinvertebrate communities. The macroinvertebrate community assemblage reveals that small endorheic and flood plain pans represent extremes ends of the environmental gradient in the region while large endorheic pans represent an intermediate end.  相似文献   

12.
Our study describes and evaluates environmental influences on assemblages of aquatic Coleoptera and Heteroptera in artificial ponds situated near Lake Steinhude in Lower Saxony (Germany). We determined temporal dynamics and colonization patterns for 14 ponds of different age. In total, we recorded 4941 individuals that represented 87 species of aquatic beetles and bugs. Between 30 and 40 species were found in most of the ponds. Heteropteran species of the families Corixidae and Notonectidae acted as pioneer species in new ponds, while aquatic coleopterans predominated in older ponds. The results of Canonical Correspondence Analyses (CCA) showed that among the key factors affecting community structure were land use, vegetation cover, water chemistry and the age of the ponds. We found that the distribution of adjacent ponds on areas with different land use has a positive influence on the diversity and abundance of the aquatic insect fauna.  相似文献   

13.
Biological quality in a bay affected by man's activities was evaluated by means of the composition of assemblages of sponges and ascidians. Our results showed that the structure of these two groups of filter-feeders aided in discriminating between undisturbed and disturbed areas, establishing different "environmental health categories" from moderately to strongly disturbed areas, and in ascertaining the extension of the area of each "health category". We were able to divide the bay into four zones based on type of disturbance or anthropogenic source: (1) stations free of any source of disturbance, (2) stations under moderate disturbance, located close to industrial ports, millworks, etc., (3) stations that are under the direct influence of industrial wastes such as a power station and oil refinery, and (4) stations near strongly disturbed areas, influenced directly by harmful steelworks activities. We differentiated clearly between four large species assemblages, and related the composition of these assemblages to different kinds of disturbances. Thus, these species could be used to manage the marine environment in this bay by comparing the observed fauna, with expected fauna in an unstressed site. Moreover, the joint presence of the sponge Cliona vastifica and tunicate Policitor adriaticum seems always to indicate a more or less pristine environmental situation, functioning as bioindicators of normal conditions. We think that the use of specific bioindicators for monitoring disturbance is a valid tool to establish baselines to predict impacts associated with industrial development in many marine ecosystems. The advantages to monitoring communities on hard rocks versus sandy or muddy bottoms are also commented upon.  相似文献   

14.
石希  夏军强  周美蓉  邓珊珊 《湖泊科学》2023,35(6):2036-2047
受三峡工程运用的影响,长江中游水沙情势剧变,江心洲生境结构发生变化,洲上植被密度、活力和分布情况也随之改变。因此亟需开展针对江心洲植被的长期观测以厘清其对三峡调控的响应机制,从而制定有效的洲滩植被保护和修复策略。卫星遥感技术是开展长时间、长河段地貌观测的常用手段。目前应用卫星遥感技术监测江心洲植被动态的研究,主要聚焦于三峡工程运用对江心洲植被面积和覆盖度的影响,而较少深入探讨植物长势和分布模式的变化趋势。因此,本文以长江中游4个典型江心洲为研究对象,提出了一系列可用于反演江心洲淹没范围和滩面上植被动态的方法,并量化分析三峡工程运用对植被动态的影响。结果表明:(1)三峡工程运用后,江心洲整体淹没频率降低,部分原有边滩逐步满足耐水植物的生长条件,促使江心洲植被面积呈现增长的趋势;原分布在高滩上的不耐水植物逐步蔓延至低滩,导致江心洲植被茂密程度整体上升;(2)三峡工程运行前,2002年含沙量较大的漫滩洪水有促进植物第二年生长的趋势;而三峡工程运行后,2016年具有同样规模但含沙量减少近80%的漫滩洪水则有抑制植物生长的作用;(3)部分形态稳定的江心洲,其高、低滩植被分布模式之间的异质性受三峡...  相似文献   

15.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

16.
Artificial drainage of forested wetlands to increase timber production has profoundly altered the hydrology of North-European landscapes during the 20th century. Nowadays, drainage ditches and small dredged streams can comprise most fluvial water bodies there, but the resulting ecological effects are poorly documented. In the current study, we explored, using fish as an indicator group, consequences of the transformation of natural stream networks to a mixture of natural and artificial watercourses. We asked whether the transformation results in impoverishment, enrichment or re-assembling of the communities both at watercourse and the landscape scales. We sampled fish in 98 sites in five well-forested regions in Estonia where ditches formed 83–92%, dredged streams 4–7%, and natural streams 3–10% of the total length of small watercourses. Based on a total of 6370 individual fish of 20 species, we found that, compared to natural streams, ditches had an impoverished fauna at both scales and both in terms of species richness and assemblage composition. Only natural streams hosted characteristic species (with Barbatula barbatula, Lampetra planeri and Lota lota emerging as significant indicators), while dredged streams had intermediate assemblages. The habitat factors explaining those drainage-related differences included a reduced flow velocity, loss of stream channel variability, less transparent water, and abundant aquatic vegetation. Hence, for stream-dwelling fish, drained forest landscapes represent degraded habitats rather than novel ecosystems, which contrasts with the transformation of terrestrial assemblages. Future studies should address whether that reflects the situation for whole aquatic assemblages, and how is the functioning of the hydrological systems affected. We suggest that the critical management issues for environmental mitigation of ditching effects on fish include basin scale spatial planning, protecting of the remaining natural streams, and rehabilitation of ditch channels in flat landscapes lacking beavers.  相似文献   

17.
Most assessments of fish contamination in Southern California use ecologically different species from different sites. Use of ecologically similar species (a guild) might provide better assessments of fish contamination across different sites and depths. In July-August 1997, we collected samples of four sanddab guild species at 22 sites where species pairs co-occurred and determined total DDT concentrations in homogenized whole fish composites. Log-transformed DDT concentrations were highly correlated among all species pairs within this guild. All relationships were linear over the range observed, with slopes not statistically different from unity. The variability in response among species was about four times the variability encountered among replicates within species, but 15 times smaller than the variability among sites. Together, these results suggest that the sanddab guild, widespread on soft bottoms of the Southern California coastal shelf, can be used as a "superspecies" in bathymetrically diverse regional assessments of fish tissue contamination.  相似文献   

18.
Active gully systems developed on highly weathered or loose parent material are an important source of runoff and sediment production in degraded areas. However, a decrease of land pressure may lead to a return of a partial vegetation cover, whereby gully beds are preferred recolonization spots. Although the current knowledge on the role of vegetation on reducing sediment production on slopes is well developed, few studies exist on the significance of restoring sediment transport pathways on the total sediment budget of degraded mountainous catchments. This study in the Ecuadorian Andes evaluates the potential of vegetation to stabilize active gully systems by trapping and retaining eroded sediment in the gully bed, and analyses the significance of vegetation restoration in the gully bed in reducing sediment export from degraded catchments. Field measurements on 138 gully segments located in 13 ephemeral steep gullies with different ground vegetation cover indicate that gully bed vegetation is the most important factor in promoting short‐term (1–15 years) sediment deposition and gully stabilization. In well‐vegetated gully systems ( ≥ 30% of ground vegetation cover), 0.035 m3 m–1 of sediment is deposited yearly in the gully bed. Almost 50 per cent of the observed variance in sediment deposition volumes can be explained by the mean ground vegetation cover of the gully bed. The presence of vegetation in gully beds gives rise to the formation of vegetated buffer zones, which enhance short‐term sediment trapping even in active gully systems in mountainous environments. Vegetation buffer zones are shown to modify the connectivity of sediment fluxes, as they reduce the transport efficiency of gully systems. First calculations on data on sediment deposition patterns in our study area show that gully bed deposition in response to gully bed revegetation can represent more than 25 per cent of the volume of sediment generated within the catchment. Our findings indicate that relatively small changes in landscape connectivity have the potential to create strong (positive) feedback loops between erosion and vegetation dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the controls of vegetation on runoff and erosion dynamics in the dryland environment of Jornada, New Mexico, USA. As the American southwest has seen significant shifts in the dominant vegetation species in the past 150 years, an understanding of the vegetation effects on hydrological and erosional processes is vital for understanding and managing environmental change. Small‐scale rainfall simulations were carried out to identify the hydrological and erosional processes resulting from the grassland and shrubland vegetation species. Results obtained using tree‐regression analysis suggested that the primary vegetation control on runoff and erosion is the shrub type and canopy density, which directly affects the local microtopographic gradient of mounds beneath the shrubs. Significant interactions and feedbacks were found to occur among the local mound gradient, crust cover, soil aggregate stability and antecedent soil moisture between the different vegetation species for both the runoff and erosion responses. Although some of the shrub species were found to produce higher sediment yields than the grass species, the distinguishing feature of the grassland was the significantly higher enrichment in the fine sediment fraction compared to all other surface cover types. This enrichment in fines has important implications for nutrient movement in such environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号