首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serpentinite soils, common throughout the world, are characterized by low calcium-to-magnesium ratios, low nutrient levels and elevated levels of heavy metals. Yet the water quality and heavy metal concentrations in sediments of streams draining serpentine geology have been little studied. The aim of this work was to collect baseline data on the water quality (for both wet and dry seasons) and metals in sediments at 11 sites on the Marlborough Creek system, which drains serpentine soils in coastal central Queensland, Australia. Water quality of the system was characterized by extremely hard waters (555–698 mg/L as CaCO3), high dissolved salts (684–1285 mg/L), pH (8.3–9.1) and dissolved oxygen (often >110% saturation). Cationic dominance was Mg > Na > Ca > K and for anions HCO3 > Cl > SO4. Al, Cu and Zn in stream waters were naturally high and exceeded Australian and New Zealand Environment and Conservation Council guidelines. Conductivity displayed the highest seasonal variability, decreasing significantly after wet season flows. There was little seasonal variation in pH, which often exceeded regional guidelines. Stream sediments were enriched with concentrations of Ni, Cr, Co and Zn up to 35, 21, 10 and 2 times the world average for shallow sediments, respectively. Concentrations for Ni and Cr were up to 60 and 16 times those of the relevant Interim Sediment Quality Guidelines Low Trigger Values, respectively. The distinctive nature of the water and sediment data suggests that it would be appropriate to establish more localized water quality and sediment guidelines for the creek system for the water quality parameters conductivity, Cu and Zn (and possibly Cr and Cd also), and for sediment concentrations of Cd, Cr and Ni.  相似文献   

2.
Pannonibacter phragmitetus BB was utilized to treat hexavalent chromium [Cr(VI)] contaminated water. Cr(VI) concentration of the contaminated water (pH 10.85) was 534 mg/L. With the inoculum size ranging from 1 to 20 %, P. phragmitetus BB completely reduced Cr(VI) within 27 h when the initial medium concentration exceeded 20 g/L. The lag time of bio-reduction by Cr(VI)-induced cells was 24 h, which was longer than the non-Cr(VI)-induced cells. Under the agitation condition, an obvious bio-reduction lag phase existed and Cr(VI) was completely reduced within 24 h. However, the lag phase was not observed under the static condition, Cr(VI) was reduced continuously after inoculation and Cr(VI) was completely reduced after 27 h incubation. The main chromium components after Cr(VI) reduction were Cr(OH)3, Cr2O3 and CrCl3. The results of this study are fundamentally significant to the application of P. phragmitetus BB in the treatment of Cr(VI) contaminated water.  相似文献   

3.
Soil pollution in agricultural areas surrounding big cities is a major environmental problem. Tabriz is the largest city in the northwest of Iran and the fourth largest city in the country. Soil samples were taken from 46 sites in the suburbs of the Tabriz city, and separate samples were taken from control site and analyzed. The results indicated that the mean pH value of the soil samples was 9.29, while the mean EC value was 354.33 μs/cm and the amount of TOC and TOM was 0.99 and 1.7 %, respectively. The mean concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the soil were determined to be 1.61, 10.56, 101.25, 87.40, 38.73, and 98.27 mg/kg, respectively (dry weight). The concentrations of heavy metals (Cd, Pb, Cu, Cr, and Zn), with the exception of Ni, were higher than the concentrations of the same heavy metals at the control site. Despite these elevated concentrations, the concentrations of heavy metals were lower than the toxicity threshold limit of agricultural soils. The values of the pollution index revealed that the metal pollution level was Pb > Cr > Cu > Zn > Cd > Ni, and the mean value of the integrated pollution index was determined to be 1.81, indicating moderate pollution. Nevertheless, there were some sites that were severely polluted by Cr (maximum values of 1,364 mg/kg). It was concluded that city probably has affected the surrounding agricultural area. Application of wastewater (municipal and industrial) as irrigation water, using of sludge as soil fertilizer, and atmospheric perceptions have been considered as main reasons of increased heavy metals concentrations found in the studied area.  相似文献   

4.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

5.
张亭亭  李江山  王平  薛强 《岩土力学》2019,40(10):3928-3936
采用硫酸亚铁(FeSO4)对铬污染土进行稳定化处理。选用浸出试验、Cr(VI)残留值试验和形态提取试验,研究了粒径和有机质对铬污染土稳定特性的影响规律。试验结果表明,粒径和有机质对铬污染土稳定特性有较大影响。粒径的减小可显著降低稳定土中Cr(VI)和总Cr的浸出浓度及稳定土中Cr(VI)的含量;当污染土粒径小于2 mm时,Fe(II)/Cr(VI)摩尔比为3,稳定土中Cr(VI)和总Cr的浸出浓度分别为4.68、8.9 mg/L,均低于我国《危险废弃物鉴别标准 浸出毒性鉴别》(GB/T5085.3-2007)的限值。有机质添加量的增加可明显降低稳定土中Cr(VI)和总Cr的浸出浓度及Cr(VI)的含量。当Fe(II)/Cr(VI)摩尔比为3时,有机质的添加量为5%,稳定土中Cr(VI)的含量为28.3 mg/kg,低于我国《土壤环境质量标准》(GB15618-2008)中工业和商业用地限值(30 mg/kg);当有机质的添加量为10%时,稳定土中Cr(VI)的含量为4.8 mg/kg,低于居住用地限值(5 mg/kg)。形态提取试验结果表明:粒径的减小可降低弱酸提取态的铬含量,增加可还原态的铬含量,而对可氧化态和残渣态的铬含量影响不大;有机质可促使弱酸提取态、可还原态的铬转化为可氧化态的铬,而残渣态的铬变化不大。稳定土中铬从活性态向较稳定态转化,是铬稳定土稳定特性和环境风险变化的根本原因。  相似文献   

6.
The effective influence of industry or ultramafic rocks by natural processes to soil, plants and groundwater contamination by chromium, which is often a subject of debate, was investigated for the case of the Assopos basin, Greece. The Neogene Assopos basin, is mainly composed by Tertiary and Quaternary sediments of more than 400 m thick and is characterized by brittle type deformation (fault zones, faults). Chromium in soil, ranging from 67 to 204 ppm, is mostly hosted in chromite, Fe-chromite, Cr-bearing goethite and silicates.Special attention was given to the plants, which are a major source of organic matter that serves as the driving force for Cr(VI) reduction. The increase of the Fe, Mn and Ni contents, with the increasing Cr content in the plant-roots, in particular at the external parts of roots and those of bulb-type plants, suggest reduction and immobilization of Cr(VI) and that redox reactions play a significant role to the translocation processes from root to shoot.Groundwater samples from the Assopos aquifer showed a wide spatial variability, ranging from <2 to 180 ppb Crtotal content [almost same to the Cr(VI)-values] despite their spatial association. The presence of Cr(VI)-contaminated groundwater at depths >200 m is attributed to a direct injection of Cr(VI)-rich industrial wastes at depth rather than that Cr(VI) is derived from the Assopos river or by the interaction between water and Cr-bearing rocks. The heterogeneous distribution of Cr in groundwater may be related with the intense neotectonic deformation, as is exemplified by several sharp tectonic contacts between sediment types, while the Cr content in soil is mostly depend on the transported chromite grains.  相似文献   

7.
The discharge of industrial effluents containing hexavalent chromium can be very harmful for the environment. Therefore, Cr(VI) should be removed from contaminated water, and especially from wastewater, to prevent its discharge into the environment. This study is aimed at analyzing the factors that affect the removal of Cr(VI) with the use of almond green hull and ash adsorbent. The effects of pH (2–10), adsorbent dose (2–24 g/L), Cr(VI) concentration (10–100 mg/L), exposure time (1–60 min), and temperature (5–50 °C) were examined. The surface morphology, pore size of adsorbent surfaces were characterized with SEM, EDX, FTIR. Maximum removal occurred at pH = 2. Results showed that the removal yield increased with the rise of exposure time and temperature. The data indicate that due to limited site on adsorbent surface, the removal efficiency decreased as initial Cr(VI) concentration increased. When the adsorbent dose was increased, the removal yield increased in the case of the bioadsorbent as well; however, in the ash adsorbent, there was an increase followed by a decreasing trend. The study highlights that almond green hull can be more efficient than its ash in the removal of Cr(VI) from aqueous solution. As a general result of study, it can be argued that almond green hull bioadsorbent and the obtained carbon are able to remove Cr(VI) from aqueous solutions; thus, they can be used as efficient and economical substitutes for existing adsorbents like activated carbon, for the removal of chromium from polluted aqueous solutions.  相似文献   

8.
The adsorptive removal of Cr(VI) was studied using activated carbon derived from Leucaena leucocephala (ACLL). The physico-chemical properties of ACLL were determined using proximate analysis and N2 BET surface area analysis. The N2 BET surface area of ACLL was determined to be 1131 m2 g?1. The point of zero charge (pHpzc) of 5.42 indicated that ACLL surface was positively charged for pH below the pHPZC, attracting anions. The effect of experimental operating parameters such as time of contact, ACLL dose, pH, initial concentration and temperature was investigated. The optimum values of parameters such as concentration of 100 mg L?1, 300 mg of ACLL dose, time of contact of 60 min, pH of 4 indicated the maximum Cr(VI) uptake of 13.85 mg g?1. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Adsorptive removal of Cr(VI) onto ACLL satisfactorily fitted in the order of Redlich–Peterson > Freundlich > Langmuir > Temkin adsorption isotherm model. The thermodynamic parameters showed the adsorption of Cr(VI) onto ACLL was an endothermic and spontaneously occurred process.  相似文献   

9.
Black, clay-like sediments have been obtained from the area of the pigment manufacturing factories in Dongducheon city, Korea. These sediments were contaminated by heavy metals, especially chromium (700 mg/kg). Indigenous bacteria in the sediments were isolated to investigate their ability to reduce Cr(VI) to Cr(III). The enriched bacterial consortium reduced over 99% of dissolved Cr(VI) in 96 h from the onset of the experiments under anaerobic condition, while there was no change in Cr(VI) concentration until 300 h in abiotic controls. Total amount of dissolved Cr decreased simultaneously when Cr(VI) was reduced, which was likely due to precipitation of Cr(OH)3 after microbial reduction of Cr(VI) to Cr(III). Under aerobic condition, only 30% of dissolved Cr(VI) was reduced by indigenous bacteria until 900 h. The reduction of Cr(VI) did not accompany bacterial growth since the amount of protein did not show a significant change with time both in the presence and absence of O2. These indigenous bacteria may play a role in the treatment of Cr(VI)-contaminated sediments.  相似文献   

10.
Among the dominant species of chromium, the trivalent form widely occurs in nature in chromite ores or in silicate minerals and is extremely immobile. The higher oxidation state Cr(VI), is, however, rarely found in nature, is more mobile, and several times more toxic than Cr(III). Cr(VI) occurs in chromates and dichromates manufactured from chromite ores. The hexavalent state is stable in an oxidizing alkaline environment, whereas the trivalent state is stable in a reducing acidic environment. Serpentinization and Mg release during deuteric alteration of ultramafic rocks create alkaline pore water and lateritization is an intensive oxidation process. Chromite ore bodies in oxidized serpentinite therefore may generate hexavalent chromium from the inert chromites and cause hazardous chromium pollution of the water. With this end in view, a combined field and laboratory study has been made on chromite-bearing oxidized serpentinite rocks of Sukinda in Orissa, India. Laboratory leaching studies on mine overburden samples, chemical analyses of streamwater, and hydrolysate incrustation on detrital grains taken from stream beds have indicated the possibility of chromium mobilization from the chromite ores into the waterbodies.  相似文献   

11.
This research presents a detailed study which was performed to infer the quantity of metal (Cd, Cr, Pb, Zn, Cu and Fe) contents in sediments of Daye Lake, Central China. The geo-accumulation (I geo) and potential ecological risk (PER) of these metals were assessed. The results reveal that: (1) the mean value of I geo ranked an order of Fe (class 6) > Cd (class 5) > Pb (class 3) > Zn (class 2) > Cr (Class 1) > Cu (Class 0); (2) Potential ecological risk (PER) values calculated for all these metals at different sampled points in Daye Lake exceeded the value of very high risk. Multivariate statistical analyses were carried out to determine the relationship between these six metals and to identify the possible pollution sources, with the results suggesting that the metal content in the sediments has three patterns: the first pattern includes Pb, Cd and Cr which were mainly present due to discharged water by smelting industries; second pattern contains Zn and Cu which mainly originated from the waste residue of the copper mining industry; the third pattern is Fe which is mainly related to mine tailing leaches. This study indicates very high metal content levels in the sediments, which may have adverse risks (average PER = 7,771.62) for the lake’s ecosystem and human beings associated with Daye Lake.  相似文献   

12.
张亭亭  李江山  薛强  王平  熊欢  梁仕华 《岩土力学》2019,40(12):4652-4658
采用硫酸亚铁(FeSO4)对Cr(VI)污染土进行稳定化处理。研究了Fe(II)/Cr(VI)摩尔比和养护龄期对污染土稳定过程中的铬赋存形态及浸出特性的影响规律。结果表明:随着Fe(II)/Cr(VI)摩尔比和养护龄期的增加,Cr(VI)和总Cr的浸出浓度降低,稳定土中Cr(VI)的含量降低,当摩尔比为3时,Cr(VI)和总Cr的浸出浓度均低于我国《危险废弃物鉴别标准 浸出毒性鉴别》(GB/T50853―2007)的限值;当摩尔比为10时,稳定土中Cr(VI)的含量低于我国《土壤环境质量标准》(GB15618―2008)中工业和商业用地的限值(30 mg/kg);当摩尔比为20时,低于居住用地限值(5 mg/kg)。形态提取试验结果表明:FeSO4改变稳定土中铬的赋存形态,可促使铬从弱酸态向可还原态和可氧化态转化,而对残渣态的铬影响不大。Cr(VI)的浸出浓度与稳定土中的Cr(VI)含量均存在指数函数关系,且浸出试验不能全面、客观地评价铬污染土稳定效果。  相似文献   

13.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   

14.
The present study reports on the preliminary investigation of three low-cost natural materials with respect to their chromium(VI) removal efficiency from contaminated water. The tested materials were reed, in milled and chopped form, compost, and dewatered sludge from a municipal wastewater treatment plant. The chromium(VI) removal capacity of the aforementioned materials was investigated by simulating the physicochemical conditions prevailing in a stormwater outfall flowing into the Asopos River in Inofyta, Central Greece. Thus, batch and column experiments were carried out using solutions of 3–5 mg/L chromium(VI) and pH value 8.5 ± 0.5. The results showed that the tested materials were capable of removing 3 mg/L chromium(VI), however by allowing different contact times for each material. The chromium(VI) removal kinetics were studied through batch experiments, and reed was found to be the most efficient material. Therefore, at a second series of batch and up-flow column experiments, the effect of the liquid-to-solid ratio, pH, and contact time on chromium(VI) removal using chopped reed was investigated. Chromium(VI) removal took place through both reduction and adsorption mechanisms, while the released soluble organic matter from reed seemed to favor the reduction mechanism. As a result, reed is a potential biosorbent capable of treating heavily chromium(VI)-contaminated water flows, although a high mass of reed is required for a treatment process, such in the case of the stormwater discharged into Asopos River.  相似文献   

15.
Hexavalent chromium [Cr(VI)] is used in various industries, but its improper and uncontrolled discharge contaminates the environment. In order to circumvent chromium toxicity, several physicochemical and biological strategies have been employed. Among biological approach, microbes convert toxic Cr(VI) to less soluble Cr(III) form and hence can be used to detoxify/remove Cr(VI) from contaminated environment. Considering these, present study was designed to assess the effect of chromium reductases and antioxidants secreted by Penibacillus species to detoxify Cr(VI) and concurrently to augment soybean growth. Bacterial strains (MAI1 and MAI2) were identified as Penibacillus sp. using 16S rRNA gene. Penibacillus species reduced Cr(VI) significantly at pH 7. Maximum Cr(VI) was reduced at 50 and 100 µg/ml of Cr(VI) concentrations. Penibacillus sp. also reduced Cr(VI) significantly at 25 and 35 °C as well as 1 g sodium alginate in 1 g polyvinyl alcohol. Bacterial strains reduced Cr(VI) into Cr(III) which were detected as 33 ± 1 and 35 ± 1 µg/ml in supernatant and 67 ± 2.5 and 65 ± 1 µg/ml in cell debris, respectively, after 120 h. Chromium reductase found in cell-free extract reduced almost all Cr(VI) compared to those observed in cell debris. Both malondialdehyde and antioxidant levels were increased with gradual increase in Cr(VI) concentration. Penibacillus species inoculated soybean plants had better growth and photosynthetic pigments under Cr(VI) stress.  相似文献   

16.
In this study, total heavy metal content of soil and their spatial distribution in Sar?seki-Dörtyol district were analyzed and mapped. Variable distance grids (0.5, 1.0 and 2.0 km) were established, with a total of 102 soil samples collected from two different soil depths (0–5 and 5–20 cm) at intersections of the grids (51 sampling point). Soil samples were analyzed for heavy metals (Cd, Co, Cr, Cu, Pb, Zn, Mn, Fe, and Ni). The most proper variogram models for the contents of all heavy metal were spherical and exponential ones. The ranges of semivariograms were between 1.9 and 31.1 km. According to the calculated geoaccumulation (I geo) values, samples from both soil depths were classified as partly to highly polluted with Cd and Ni and partly polluted with Cr and as partly polluted-to-not polluted with Pb and not polluted with Cu, Fe and Mn. Similar results were also obtained when evaluated by the enrichment factor. The contamination levels of the heavy metals were Ni > Cd > Cr > Pb > Zn > Cu > Co > Fe > Mn in decreasing order. The soils in the study area are contaminated predominantly by Cd and Ni, which may give rise to various health hazards or diseases. Cadmium pollution results primarily from industrial activities and, to a lesser extent, from vehicular traffic, whereas Ni contents in the study area result from parent material, phosphorus fertilizer, industries, and vehicles.  相似文献   

17.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

18.
The aim of this work was to evaluate the usefulness of Lemna minuta Kunth for the simultaneous removal of Cr(VI) and phenol. The impact of these contaminants on plant growth and some biochemical processes have also been discussed for a better understanding and utilization of this species in the field of phytoremediation. The optimal growth conditions and plant tolerance to Cr(VI) and/or phenol as well as removal were determined. Plants exposed to Cr(VI) and phenol were able to efficiently grow and remove both contaminants at high concentrations (up to 2.5 and 250 mg/L, respectively) after 21 days, indicating that they were resistant to mixed contamination. There were no significant differences between chlorophyll, carotene and malondialdehyde content of treated plants with respect to the controls, which would be due to an efficient antioxidant response. L. minuta showed a higher biomass than control without contaminant when was exposed to low concentrations of Cr(VI), suggesting an hormesis effect. The main removal process involved in chromium phytoremediation would be sorption or accumulation in the biomass. Moreover, our results suggest that phenol could be used as a donor of carbon and energy by these plants. These findings demonstrated that Lemna minuta Kunth might be suitable for treatment of different solutions contaminated with Cr(VI) and phenol, showing a high potential to be used in the treatment of effluents containing mixed contamination.  相似文献   

19.
The development of a fast, effective, simple and low-cost procedure for chromium speciation is an analytical challenge. In this work, a new and simple method for speciation and determination of chromium species in different matrices was developed. Sepia pharaonis endoskeleton nano-powder was used as an adsorbent for the dispersive micro-solid-phase extraction. Finally, the desorbed chromium was determined using a graphite furnace atomic absorption spectrometer. The experimental results showed that Cr(III) could be quantitatively extracted by the adsorbent, while Cr(VI) adsorption was negligible. Concentrated H2SO4 and ethanol reduced Cr(VI)–Cr(III), and total chromium content was assessed as Cr(III). Then, the Cr(VI) concentration in the sample was calculated as the difference. The optimum conditions were obtained in terms of pH, adsorbent amount, contact time, and type, concentration and volume of eluent. Under the optimum conditions that involved the speciation of chromium ions from 25 mL of the water samples at pH 7.0 using 0.025 g of the adsorbent with contact time of 5 min, the method was validated in terms of linearity, precision and accuracy. The calibration curve was linear over the concentration range of 0.01–25.00 μg L?1 for Cr(III). The obtained limit of detection for the proposed method was 0.003 µg L?1. The maximum adsorption capacity of the adsorbent was found to be 995.57 mg g?1. The proposed method was validated by the speciation of Cr(III) and Cr(VI) in different real water and wastewater samples with satisfactory results.  相似文献   

20.
Near the outskirts of the Albanian port of Durres on the Adriatic Coast, at a place called Porto Romano, an old chemical complex has been producing chromate salts for a period of ∼20 years (1972–1993). As a result large quantities of chromite ore processing residue (COPR) waste were released mainly as suspended particles and/or dissolved species in effluents, which settled in a decantation pond area, 200 × 250 m in size, east of the industrial plant. Unfortunately, pollutants were spread out with time. Knowing that chromium mobility and toxicity in natural settings is species dependent, the species characterization has been carried out in different sampling media (pond sediments, lagoonal sediments and water samples). Five pond profiles were sampled within the decantation area up to a depth of ∼1 m, till the underlying Quaternary lagoonal silty-clays were reached. Total Cr content is highly variable with values between 1,130 and 24,409 mg/kg which is clearly higher than the defined local background values for lagoonal silty-clays (198 mg/kg of Cr). Leaching of Cr(VI) especially occurs in the pond sediments, which are low in OC, CEC and clay content, under acidic and neutral pH conditions (e.g. up to ∼2,230 mg/kg Cr(VI) leached from a sample containing a total concentration of Cr 12,200 mg/kg). Moreover, leaching of the Cr(III) occurs only under strictly acidic conditions (maximum 1,144 mg/kg leached from a sample containing a total Cr-concentration of 17,608 mg/kg). In this study also a number of natural attenuation conditions (i.e. reaction with lagoonal clays rich in organic matter and iron as well as isomorphous substitution) have been recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号