首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The standing wave pressures due to laboratory-generated regular and random waves exerted on a vertical wall were measured in a wave flume. The standing wave pressures were measured at four relative depths of submergence on the test model. The regular wave test conditions ranged from intermediate to deep water conditions. The measured pressures due to regular waves were compared with results obtained using linear theory and third-order solution. In the case of random wave tests, the dynamic pressures due to the time histories of water surface elevation following the spectral characteristics of Pierson-Moskowitz and Bretschneider spectra were measured. These pressures are compared with simulated pressures obtained through the linear filter technique of Reid. The variation of pressure spectra along the depth are presented. In addition, comparison of spectral parameters, i.e. zeroth moment, spectral width parameter and narrowness parameter of measured and simulated pressure spectra, are reported and discussed. The behaviour of the coherence function between the wave elevation on the wall and the corresponding pressures is also discussed.  相似文献   

2.
Current velocity profiles in the presence of non-breaking waves on a horizontal bottom are studied. Particular consideration is given to the derivations of measured current profiles from the standard logarithmic profiles near the mean water surface. The deviations are found to be due mainly to the wave-induced second-order stress which was generally neglected in the former models. The available experimental data indicate that the wave-induced second-order stress is a linear function of elevation and depends on the wave parameters, the current strength and the angle between the waves and the current. A semi-empirical model is developed and gives good agreements with experimental measurements of current profiles near the mean water surface.  相似文献   

3.
In this study, an analytical solution is developed for the problem of periodic waves propagating over a poro-elastic seabed of infinite depth. Water waves above the seabed are described using the linear wave theory. The poro-elastic seabed is modelled based on the Biot theory in which the inertia effect and Darcy's friction are added. Continuity of dynamic pressure and flow flux at the interfacial seabed surface are considered. Adopting an approach similar to Hsu et al. (1993), the governing equations for the pore pressure and displacements of the poro-elastic medium are derived. The present analytic solution compares favorably well with experimental results by Yamamoto et al. (1978), and analytical results by Song (1993) for the case of fine sand. Using the present theory, variations of the wavelength and fluid pressure caused by coupling of waves and the poro-elastic seabed are discussed. Results show that higher elasticity of the poro-elastic seabed induces larger interface pressure, but higher permeability causes smaller pressure on the seabed interface. The wave length is affected by the poro-elastic seabed and becomes shorter for softer seabed and shallower water depth.  相似文献   

4.
In this paper, we study the harmonic generation and energy dissipation as water waves propagating through coastal vegetation. Applying the homogenization theory, linear wave models have been developed for a heterogeneous coastal forest in previous works (e.g. [17], [10], [11]). In this study, the weakly nonlinear effects are investigated. The coastal forest is modeled by an array of rigid and vertically surface-piercing cylinders. Assuming monochromatic waves with weak nonlinearity incident upon the forest, higher harmonic waves are expected to be generated and radiated into open water. Using the multi-scale perturbation theory, micro-scale flows in the vicinity of cylinders and macro-scale wave dynamics are separated. Expressing the unknown variables (e.g. velocity, free surface elevation) as a superposition of different harmonic components, the governing equations for each mode are derived while different harmonics are interacting with each other because of nonlinearity in the cell problem. Different from the linear models, the leading-order cell problem for micro-scale flow motion, driven by the macro-scale pressure gradient, is now a nonlinear boundary-value-problem, while the wavelength-scale problem for wave dynamics remains linear. A modified pressure correction method is employed to solve the nonlinear cell problem. An iterative scheme is introduced to connect the micro-scale and macro-scale problems. To demonstrate the theoretical results, we consider incident waves scattered by a homogeneous forest belt in a constant shallow depth. Higher harmonic waves are generated within the cylinder array and radiated out to the open water region. The comparisons of numerical results obtained by linear and nonlinear models are presented and the behavior of different harmonic components is discussed. The effects of different physical parameters on wave solutions are discussed as well.  相似文献   

5.
A newly developed three-dimensional Doppler current meter is described and the results of preliminary field experiments are presented where simultaneous measurements of surface elevation and water velocity associated with wave orbital motion were made. The phase difference between the surface elevation and the vertical velocity measured at 1.0 and 0.45 meters below the mean water level is found to be approximately 90, in accord with the theory for surface waves of infinitesimally small amplitudes. The spectral (frequency) density distribution for velocity is also found to agree with that we would expect from the linear theory for the observed frequency distribution of surface elevation. However, the amplitude of velocity is consistently smaller (about 10 %) than that we would expect. This reduction of amplitude is more pronounced in cases where waves are high and the water depth is shallow.  相似文献   

6.
《Coastal Engineering》1999,36(1):17-36
A time domain method is presented for analyzing simultaneous measurements of pressure and the horizontal components of velocity obtained beneath irregular multidirectional wave fields. This new method differs from the usual linear directional analyses applied to PUV data in two important aspects. First, the essential nonlinearity of the measured waves is not sacrificed to achieve a solution. Therefore, predictions of sea surface elevation and directional kinematics throughout the water column accurately portray the actual nonlinear character of the waves. Second, the analysis method is `local' in that it can be applied to segments of PUV time series much shorter than an individual wave. The viability of the locally nonlinear methodology developed in this paper is proven by demonstrating agreement with higher-order theoretical steady waves. Predictions of sea surface elevation and wave kinematics are also made using actual measurements from PUV instruments at two ocean sites off the west coast of the United States.  相似文献   

7.
A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves, which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with the organized motion are positive. This is in agreement with several field and laboratory measurements which were previously unexplained, and the new theory successfully links measured wave growth rates and measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes occur. The theory is initially developed for long waves, after which the velocity potential and dispersion relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc turbulent diffusion. Future models of atmosphere-ocean exchanges should also acknowledge that momentum is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation for free waves may need to be considered in future wind wave development models.  相似文献   

8.
This paper concerns the propagation of transient wave groups, focused at a point in time and space to produce locally large waves having a range of steepness. The experimental study was carried out in a wave flume at Dalian University of Technology. The numerical simulations were based on a nonlinear boundary integral equation solved by a higher-order boundary element method (HOBEM). Rather than simulate the whole experimental tank, local surface elevation measurements were used to drive the numerical solution from a point less than two wavelengths upstream of the focus position, leading to significant savings in computational time. Excellent agreement is achieved between the water surface elevations and the water particle kinematics measured in the experiments and those predicted numerically at wave group focus, even for near-breaking waves up to a steepness of kA=0.405 for which even locally matched 2nd-order theory is inadequate. Results based on the linear and 2nd-order theory are also presented in the comparisons. When compared with the first- and 2nd-order solutions, the fully nonlinear wave–wave interactions produce a steeper wave envelope in which the central wave crest is higher and narrower, while the adjacent wave troughs are broader and less deep.  相似文献   

9.
Based on the 2nd order cnoidal wave theory, the characters of shallow water standing waves and their action on vertical walls are studied in this paper. The theoretical expressions of the wave surface elevation in front of and the wave pressure on the vertical wall are obtained. In order to verify the theoretical results, model tests were made in the State Key Laboratory of Coastal and Offshore Engineering at DUT. For the wave surface elevation in front of the wall and the wave forces on the wall at the moment when the wave surface at the wall surface goes down to the bottom of the wave trough, the calculated results coincide quite well with the experimental results. For the wave forces on the wall at the moment when the wave surface at the wall surface goes up to the top of the wave crest, the theoretical expressions are modified by the experimental results. For the convenience of practical use, calculations are made for the wave conditions which usually occur in enginering practice by use of the inves  相似文献   

10.
《Applied Ocean Research》2004,26(3-4):137-146
A theoretical approach is applied to predict the propagation and transformation of nonlinear water waves. A semi-analytical solution was derived by applying an eigenfunction expansion method. The solution is applied to analyze the effect of wave frequencies and wave steepness on the propagation of nonlinear waves. The main attention is paid to the wave profile, the wave energy spectrum, and the changes of wave profile and energy spectrum due to the interaction of wave components in a wave train. The results show that for waves of low steepness the nonlinear wave effects and effects associated with the interaction of water waves in a wave train are of secondary importance. For waves of moderate steepness and steep waves the effects associated with the interactions between waves in a wave train are becoming significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position. The evolution of wave components has substantial effects on the wave spectrum. A train of initially very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short period of time. Laboratory experiments were conducted in a wave flume to verify theoretical approaches. The free-surface elevation recorded by a system of wave gauges was compared with the results provided by the semi-analytical solution. Theoretical results are in a fairly good agreement with experimental data. A reasonable agreement between theoretical results and experimental data is observed often even for relatively steep waves.  相似文献   

11.
In the design of any floating or fixed marine structure, it is vital to test models in order to understand the fluid/structure interaction involved. A relatively inexpensive method, compared to physical model testing, of achieving this is to numerically model the structure and the wave conditions in a numerical wave tank. In this paper, a methodology for accurately replicating measured ocean waves in a numerical model at full scale is detailed. A Fourier analysis of the measured record allows the wave to be defined as a summation of linear waves and, therefore, Airy's linear wave theory may be used to input the wave elevation and associated water particle velocities. Furthermore, a structure is introduced into the model to display the ability of the model to accurately predict wave–structure interaction. A case study of three individual measured waves, which are recorded at the Atlantic marine energy test site, off the west coast of Ireland, is also presented. The accuracy of the model to replicate the measured waves and perform wave–structure interaction is found to be very high. Additionally, the absolute water particle velocity profile below the wave from the numerical model is compared to a filtered analytical approximation of the measured wave at a number of time-steps and is in very good agreement.  相似文献   

12.
A seakeeping analysis in the frequency domain is presented to predict the motion response of an air-lifted vessel (ALV) in waves. The ALV is supported by pressurised air in two separate cushion chambers; the pressure variation in the cushions has a significant effect on the motions of the vessel. The adiabatic gas law is used to couple cushion pressure and the free-surface elevation of water inside the chamber. Attention is focused on the waves generated by the pressure, and a method is presented to compute the corresponding free-surface elevation. New numerical schemes are proposed for calculating the three-dimensional free-surface elevation for the four wave numbers. Numerical results of the free-surface elevation, escape area, escape volume and motion responses of the ALV are provided.  相似文献   

13.
A moving low atmospheric pressure is a main feature of tropical cyclones, which can induce a system of forced water waves and is an important factor that cause water level rise during a storm. A numerical model based on the nonlinear shallow water equations is applied to study the forced waves caused by an atmospheric pressure disturbance moving with a constant velocity over water surface. The effects of the moving speed, the spatial scale and the central pressure drop of the pressure disturbance are discussed. The results show that the wave pattern caused by a moving low-pressure is highly related with its moving speed. The wave pattern undergoes a great change as the moving speed approaches the wave velocity in shallow water. When the moving speed is less than the wave velocity, the distribution of water surface elevation is nearly the same as that of the pressure disturbance, and the maximum of the water surface elevation is located at the center of pressure. When the moving speed is larger than the wave velocity, a triangle shaped wave pattern is formed with a depression occurs in front of the pressure center, and the maximum of the water surface elevation lags behind the center of pressure. As the moving speed increases, the maximum of the water surface elevation firstly increases and then decreases, which reaches a peak when the moving speed is close to the wave velocity. The maximum of water surface elevation is approximately in proportion to the central pressure drop, and slightly affected by the spatial scale of pressure disturbance. Both the central pressure drop and the spatial scale of the pressure disturbance do not significantly affect the forced wave pattern. However, a clear difference can be noticed on the ratio of the maximum water surface elevation in moving pressure situation to that in static situation, when the moving speed is close to the wave velocity. A pressure disturbance with smaller spatial scale and smaller central pressure drop will give a larger ratio when the moving speed is close to the wave velocity.  相似文献   

14.
The present study focuses on building a systematic approach to identify, from experimental results, the nonlinearity in the dynamic system of a high-speed ship. The experimental program consists of tests in both regular and irregular head waves, and the measured quantities included wave elevation, vertical motions, and hull pressures. By contrasting these results to the quasi-linear behaviors of heave motion, the nonlinear behaviors of pressure are highlighted and presented. Three nonlinear assessments, the probability density function, and the variance spectra are provided. Based on these investigations, we conclude that the pressures, particularly, at the ship’s bow contain more nonlinearities than just the heave motion. They are identified mainly by the large amplitude of the higher harmonics and also by the large asymmetry in the measured signals. Furthermore, the coherence spectrum obtained from the third-order orthogonal frequency-domain Volterra model provides information regarding the magnitude of each order at the corresponding frequency, which serves as a strategy to simplify a complex problem or to achieve a balance between regular and irregular waves. The overall results show that the higher-order components are significant for the pressure system and the outcome of the proposed model can offer constructive feedback, which can lead to more practical applications.  相似文献   

15.
李绍武  于志安  熊赞 《海洋学报》2007,29(2):137-142
在MPS无网格方法中,引进预定候选粒子集概念用以生成邻接粒子集矩阵,使该部分的机时耗费缩短为引进前的1/11;采用Bi-CGSTAB方法求解压力泊松方程,显著地提高了求解速度.模拟了孤立波在数值波浪水槽中的传播及其与直墙作用时的爬升、回落过程,结果表明模拟波面结果与解析值及实测结果基本相符,针对不同波高的孤立波计算得到的墙前最大爬升值与实测结果也是一致的.  相似文献   

16.
This paper presents the results of a physical model study of waves around the Brent Bravo gravity based structure. The work arose as a result of a recent incident in which significant amounts of water were projected upwards, thus causing damage to ancillary steelwork and pipework. Measurements of the water surface elevation in the vicinity of the model structure show that the three large, closely spaced legs give considerable wave-structure interaction. In particular, if the incident waves are relatively short and steep, this wave-structure interaction produces high-frequency waves which radiate outwards from the centre of the structure. Nonlinear interaction of these waves with the incoming wave field leads to enhancement of their height and steepness, and explains the very high water surface elevations experienced at Brent Bravo.

Although the present data specifically relate to this structure, similar behaviour may arise in other types of structures with large, closely spaced legs. The observed nonlinear wave-structure interaction is also relevant for the study of ‘ringing’, or the highfrequency response of relatively flexible structures, but in the case of very stiff structures such as Brent Bravo, this leads to excitation of the fluid rather than the structure. For structures where nonlinear interaction with waves may occur, it cannot be assumed that the crest elevation in the open sea provides a good estimate for the air-gap. However, it must be stressed that given the nature of the interaction, any wave impact will be local rather than global and will therefore not threaten the overall integrity of the structure. On the basis of the test results, practical guidance was developed for the assessment of loads on items in the air-gap of Brent Bravo.  相似文献   


17.
《Coastal Engineering》1999,38(1):1-24
This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary conditions. It is demonstrated that previous fully dispersive formulations from the literature have used an inconsistent linear relation between the velocity potential and the surface elevation. As a consequence these formulations are accurate only in shallow water, while nonlinear transfer of energy is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement with the measurements, and it is found that the accuracy of e.g., the energy spectrum and of the third-order statistics is considerably improved by the new formulations, particularly outside the shallow-water range.  相似文献   

18.
This paper presents a 1D time-domain model for an oscillating water column (OWC) based on previous works on trapped air cavities for marine vehicles. The paper describes the coupling between the hydrodynamic and the thermodynamic forces for an OWC with an orifice. The model enables to obtain the water elevation and pressure variation inside the chamber in the time-domain for regular and irregular waves. The numerical predictions are compared with experimental data performed on a model scale OWC.  相似文献   

19.
A numerical investigation of the bottom pressure and wave elevation generated by a planing hull in finite-depth water is presented. While the existing literature addresses the free-surface deformation and pressure field at the seafloor independently, this work proposes a direct comparison between the two hydrodynamic quantities. The dependence of the pressure disturbances at the ocean floor from the waves generated at the free-surface by a planing hull is studied for several values of both the depth and hull Froude numbers. The methodology employed is Smoothed Particle Hydrodynamics (SPH), a numerical technique based on the discretization of the continuum fields of hydrodynamics through mesh-less particles. The SPH code herein chosen is initially validated against experimental data for transom-stern flow. Subsequently, numerical simulations are presented for a planing hull in high-speed regimes. The results show a direct correlation between surface wave dynamics and hydrodynamic pressure disturbances at the seafloor as the value of the Froude number is varied. This is assessed by studying the inverse dependence of the low-pressure wake angle with the Froude number and by comparison of SPH results with similar works in the cited literature.  相似文献   

20.
Zhao  Xi-zeng  Cheng  Du  Zhang  Yi-fei  Li  Meng-yu 《中国海洋工程》2019,33(3):253-267
In this study, solitary waves passing over a submerged breakwater are investigated both experimentally and numerically. A total of 9 experimental conditions are carried out, including different incident wave heights and water depths. Numerical simulations are performed using a high-order finite-difference model solving Navier–Stokes (N–S) equations. The predicted water wave elevation, velocity and pressure show good agreement with experimental data, verifying the accuracy and capacity of the numerical model. Furthermore, parametric studies are conducted by numerical modelling to examine the effects of the geometrical features of submerged dike on hydrodynamic characteristics around the breakwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号