首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

2.
Samples produced in piston cylinder experiments were used to document the thermal isotopic fractionation of all the major elements of basalt except for aluminum and the fractionation of iron isotopes by chemical diffusion between a natural basalt and rhyolite. The thermal isotopic fractionations are summarized in terms of a parameter Ωi defined as the fractionation in per mil per 100 °C per atomic mass units difference between the isotopes. For molten basalt we report ΩCa = 1.6, ΩFe = 1.1, ΩSi = 0.6, ΩO = 1.5. In an earlier paper we reported ΩMg = 3.6. These fractionations represent a steady state balance between thermal diffusion and chemical diffusion with the mass dependence of the thermal diffusion coefficient being significantly larger than the mass dependence of the chemical diffusion coefficients for isotopes of the same element. The iron isotopic measurements of the basalt-rhyolite diffusion couple showed significant fractionation that are parameterized in terms of a parameter βFe = 0.03 when the ratio of the diffusion coefficients D54 and D56 of 54Fe and 56Fe is expressed in terms of the atomic mass as D54/D56 = (56/54)βFe. This value of βFe is smaller than what we had measured earlier for lithium, magnesium and calcium (i.e., βLi = 0.215, βCa = 0.05, βMg = 0.05) but still significant when one takes into account the high precision with which iron isotopic compositions can be measured (i.e., ±0.03‰) and that iron isotope fractionations at magmatic temperatures from other causes are extremely small. In a closing section we discuss technological and geological applications of isotopic fractionations driven by either or both chemical and thermal gradients.  相似文献   

3.
Experimental diffusion couples were used to study chemical diffusion between molten rhyolite and basalt with special emphasis on the associated fractionation of calcium and lithium isotopes. Diffusion couples were made by juxtaposing firmly packed powders of a natural basalt (SUNY MORB) and a natural rhyolite (Lake County Obsidian) and then annealing them in a piston cylinder apparatus for times ranging from 0.1 to 15.7 h, temperatures of 1350-1450°C, and pressures of 1.2-1.3 GPa. Profiles of the major elements and many trace elements were measured on the recovered quenched glasses. The diffusivities of all elements except lithium were found to be remarkably similar, while the diffusivity of lithium was two to three orders of magnitude larger than that of any of the other elements measured. Chemical diffusion of calcium from molten basalt into rhyolite was driven by a concentration ratio of ∼18 and produced a fractionation of 44Ca from 40Ca of about 6 ‰. Because of the relatively low concentration of lithium in the natural starting materials a small amount of spodumene (LiAlSi2O6) was added to the basalt in order to increase the concentration difference between basalt and rhyolite, which was expected to increase the magnitude of diffusive isotopic fractionation of lithium. The concentration ratio between Li-doped basalt and natural rhyolite was ∼15 and the resulting diffusion of lithium into the rhyolite fractionated 7Li from 6Li by about 40‰. We anticipate that several other major rock-forming elements such as magnesium, iron and potassium will also exhibit similarly larger isotopic fractionation whenever they diffuse between natural melts with sufficiently large differences in the abundance of these elements.  相似文献   

4.
The equilibrium Mg isotope fractionation factor between epsomite and aqueous MgSO4 solution has been measured using the three isotope method in recrystallization experiments conducted at 7, 20, and 40 °C. Complete or near-complete isotopic exchange was achieved within 14 days in all experiments. The Mg isotope exchange rate between epsomite and MgSO4 solution is dependent on the temperature, epsomite seed crystal grain size, and experimental agitation method. The Mg isotope fractionation factors (Δ26Mgeps-sol) at 7, 20, and 40 °C are 0.63 ± 0.07‰, 0.58 ± 0.16‰, and 0.56 ± 0.03‰, respectively. These values are indistinguishable within error, indicating that the Mg isotope composition of epsomite is relatively insensitive to temperature. The magnitude of the isotope fractionation factor (Δ26Mgeps-sol = ca. 0.6‰ between 7 and 40 °C) indicates that significant Mg isotope variations can be produced in evaporite sequences, and Mg isotopes may therefore, constrain the degree of closed-system behavior, paleo-humidity, and hydrological history of evaporative environments.  相似文献   

5.
High-pressure, low-temperature (HP-LT) rocks from a Cretaceous age subduction complex occur as tectonic blocks in serpentinite mélange along the Motagua Fault (MF) in central Guatemala. Eclogite and jadeitite among these are characterized by trace element patterns with enrichments in fluid mobile elements, similar to arc lavas. Eclogite is recrystallized from MORB-like altered oceanic crust, presumably at the boundary between the down-going plate and overlying mantle wedge. Eclogite geochemistry, mineralogy and petrography suggest a two step petrogenesis of (1) dehydration during prograde metamorphism at low temperatures (<500 °C) followed by (2) partial rehydration/fertilization at even lower T during exhumation. In contrast, Guatemalan jadeitites are crystallized directly from low-T aqueous fluid as veins in serpentinizing mantle during both subduction and exhumation. The overall chemistry and mineralogy of Guatemalan eclogites are similar to those from the Franciscan Complex, California, implying similar P-T-x paths.Li concentrations (?90 ppm) in mineral separates and whole rocks (WR) from Guatemalan and Franciscan HP-LT rocks are significantly higher than MORB (4-6 ppm), but similar to HP-LT rocks globally. Li isotopic compositions range from −5‰ to +5‰ for Guatemalan HP-LT rocks, and −4‰ to +1‰ for Franciscan eclogites, overlapping previous findings for other HP-LT suites. The combination of Li concentrations greater than MORB, and Li isotopic values lighter than MORB are inconsistent with a simple dehydration model. We prefer a model in which Li systematics in Guatemalan and Franciscan eclogites reflect reequilibration with subduction fluids during exhumation. Roughly 5-10% of the Li in these fluids is derived from sediments.Model results predict that the dehydrated bulk ocean crust is isotopically lighter (δ7Li ? +1 ± 3‰) than the depleted mantle (∼+3.5 ± 0.5‰), while the mantle wedge beneath the arc is the isotopic complement of the bulk crust. A subduction fluid with an AOC-GLOSS composition over the full range of model temperatures (50-600 °C) gives an average fluid δ7Li (∼+7 ± 5‰ 1σ) that is isotopically heavier than the depleted mantle. If the lowest temperature steps are excluded (50-260 °C) as too cold to participate in circulation of the mantle wedge, then the average subduction fluid (δ7Li = +4 ± 2.3‰ 1σ, is indistinguishable from depleted mantle. Because of the relatively compatible nature of Li in metamorphic minerals, the most altered part of the crust (uppermost extrusives), may retain a Li isotopic signature (∼+5 ± 3‰) heavier than the bulk crust. The range of Li isotopic values for OIB, IAB and MORB overlap, making it is difficult to resolve which of these components may contribute to the recycled component in the mantle using δ7Li alone.  相似文献   

6.
Liquid phase diffusion experiments were carried out to determine whether diffusive isotopic fractionation of a major chemical element (Ca) varies with chemical composition in high-temperature molten silicates. The objective was to determine how differences in silicate liquid structure, such as the ratio of bridging to non-bridging oxygen atoms, as well as bulk transport properties such as viscosity, relate to isotope discrimination during diffusion. This information, in turn, may relate to the lifetimes and sizes of multi-atom structures in the liquid. Diffusion couples consisting of juxtaposed natural mafic and felsic liquids were held at T = 1450 °C and P = 1.0 GPa for durations of 12-24 h in a standard piston-cylinder assembly. Experiments were done using different mafic endmember compositions (two tholeiitic basalts and a ugandite) and a single rhyolite composition. Major-element diffusion profiles and Ca isotope profiles were measured on the recovered quenched glasses. The starting materials were isotopically indistinguishable, but 44Ca/40Ca variations of ca. 5‰ arose due to a mass dependence of the Ca diffusion coefficients. Results indicate that the mass dependence of Ca diffusion coefficients varies with the magnitude and direction of aluminum gradients and the viscosity of the liquid. Some Ca fractionations result mainly from Al gradients.A simplified multicomponent diffusion model was used to model the experimental results. The model allows for diffusion of Ca in response to gradients in the concentrations of both CaO as well as Al2O3, and the model results are consistent with the inferred existence of at least two distinct species of Ca. The magnitude of isotopic discrimination during diffusion also appears to be stronger on the rhyolite versus the basalt/ugandite side of diffusion couples. The results can largely be accounted for by an adaptation of the model of Dingwell (1990), whereby in high silica liquids, Ca diffuses largely by site hopping through a quasi-stationary aluminosilicate matrix, producing strong isotopic effects because the Ca diffusion is not strongly correlated with the movement of the framework atoms. In low-silica liquids, Ca diffusion is correlated with the movement of the other components and there is less mass discrimination. Combining our Ca results with Ca, Mg, and Li data from previous studies, we show that this model can explain most of the cation- and composition-dependence of diffusive isotopic fractionations observed thus far. A key parameter controlling isotopic discrimination is the ratio of the elemental (Ca, Mg, Li) diffusivity to the Eyring (or Si) diffusivity. However, all experiments done so far also exhibit isotopic features that are not yet fully explained; some of these may relate to small temperature gradients in the capsules, or to more complex coupling effects that are not captured in simplified diffusion models.  相似文献   

7.
Diffusion coefficients for oxygen and hydrogen were determined from a series of natural uraninite-H2O experiments between 50 and 700 °C. Under hydrous conditions there are two diffusion mechanisms: (1) an initial extremely fast-path diffusion mechanism that overprinted the oxygen isotopic composition of the entire crystals regardless of temperature and (2) a slower volume-diffusive mechanism dominated by defect clusters that displace or eject nearest neighbor oxygen atoms to form two interstitial sites and two partial vacancies, and by vacancy migration. Using the volume diffusion coefficients in the temperature range of 400-600 °C, diffusion coefficients for oxygen can be represented by D = 1.90e−5 exp (−123,382 J/RT) cm2/s and for temperatures between 100 and 300 °C the diffusion coefficients can be represented by D = 1.95e−10 exp (−62484 J/RT) cm2/s, where the activation energies for uraninite are 123.4 and 62.5 kJ/mol, respectively. Hydrogen diffusion in uraninite appears to be controlled by similar mechanisms as oxygen. Using the volume diffusion coefficients for temperatures between 50 and 700 °C, diffusion coefficients for hydrogen can be represented by D = 9.28e−6 exp (−156,528 J/RT) cm2/s for temperatures between 450 and 700 °C and D = 1.39e−14 exp (−34518 J/RT) cm2/s for temperatures between 50 and 400 °C, where the activation energies for uraninite are 156.5 and 34.5 kJ/mol, respectively.Results from these new experiments have implications for isotopic exchange during natural UO2-water interactions. The exceptionally low δ18O values of natural uraninites (i.e. 32‰ to −19.5‰) from unconformity-type uranium deposits in Saskatchewan, in conjunction with theoretical and experimental uraninite-water and UO3-water fractionation factors, suggest that primary uranium mineralization is not in oxygen isotopic equilibrium with coeval clay and silicate minerals. The low δ18O values have been interpreted as resulting from the low temperature overprinting of primary uranium mineralization in the presence of relatively modern meteoric fluids having δ18O values of ca. −18‰, despite petrographic and U-Pb isotope data that indicate limited alteration. Our data show that the anomalously low oxygen isotopic composition of the uraninite from the Athabasca Basin can be due to meteoric water overprinting under reducing conditions, and meteoric water or groundwater can significantly affect the oxygen isotopic composition of spent nuclear fuel in a geologic repository, with minimal change to the chemical composition or texture. Moreover, the rather fast oxygen and hydrogen diffusion coefficients for uraninite, especially at low temperatures, suggest that oxygen and hydrogen diffusion may impart characteristic isotopic signals that can be used to track the route of fissile material.  相似文献   

8.
Mg isotope ratios (26Mg/24Mg) are reported in soil pore-fluids, rain and seawater, grass and smectite from a 90 kyr old soil, developed on an uplifted marine terrace from Santa Cruz, California. Rain water has an invariant 26Mg/24Mg ratio (expressed as δ26Mg) at −0.79 ± 0.05‰, identical to seawater δ26Mg. Detrital smectite (from the base of the soil profile, and therefore unweathered) has a δ26Mg value of 0.11‰, potentially enriched in 26Mg by up to 0.3‰ compared to the bulk silicate Earth Mg isotope composition (although within the range of all terrestrial silicates). The soil pore-waters show a continuous profile with depth for δ26Mg, ranging from −0.99‰ near the surface to −0.43‰ at the base of the profile. Shallow pore-waters (<1 m) have δ26Mg values that are similar to, or slightly lower than the rain waters. This implies that the degree of biological cycling of Mg in the pore-waters is relatively small and is quantified as <32%, calculated using the average Mg isotope enrichment factor between grass and rain (δ26Mggrass-δ26Mgrain) of 0.21‰. The deep pore-waters (1-15 m deep) have δ26Mg values that are intermediate between the smectite and rain, ranging from −0.76‰ to −0.43‰, and show a similar trend with depth compared to Sr isotope ratios. The similarity between Sr and Mg isotope ratios confirms that the Mg in the pore-waters can be explained by a mixture between rain and smectite derived Mg, despite the fact that Mg and Sr concentrations may be buffered by the exchangeable reservoir. However, whilst Sr isotope ratios in the pore-waters span almost the complete range between mineral and rain inputs, Mg isotopes compositions are much closer to the rain inputs. If Mg and Sr isotope ratios are controlled uniquely by a mixture, the data can be used to estimate the mineral weathering inputs to the pore-waters, by correcting for the rain inputs. This isotopic correction is compared to the commonly used chloride correction for precipitation inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.  相似文献   

9.
The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ26Mg values of loess-derived soil above the cave (−1.0 ± 0.5‰), soil water (−1.2 ± 0.5‰), the carbonate hostrock (−3.8 ± 0.5‰), dripwater in the cave (−1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; −4.3 ± 0.6‰), cave loam (−0.6 ± 0.1‰) and runoff water (−1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000lnαMg-cc-Mg(aq) = −2.4‰. A similar Mg-isotope fractionation (1000lnαMg-cc-Mg(aq) ≈ −2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for inorganic precipitation experiments.  相似文献   

10.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

11.
We report lithium (Li) isotopic measurements in seawater-derived waters that were discharged from geothermal wells, thermal springs, and sub-marine springs located in volcanic island arc areas in Guadeloupe (the Bouillante geothermal field) and Martinique (Lamentin plain and the Diamant areas). While Li isotopic signatures of the geothermal fluids collected from deep reservoirs were found to be homogeneous for a given site, the δ7Li signatures for each of these reservoirs were significantly different. The first low temperature (25-250 °C) experiments of Li isotope exchange during seawater/basalt interaction confirmed that Li isotopic exchange is strongly temperature dependent, as previously inferred from natural studies. Li isotopic fractionation ranged from +19.4‰ (Δsolution-solid) at 25 °C to +6.7‰ at 250 °C. These experiments demonstrated the importance of Li isotopic fractionation during the formation of Li-bearing secondary minerals and allowed us to determine the following empirical relationship between isotopic fractionation and temperature: Δsolution-solid = 7847/T − 8.093. Application of experimental results and literature data to the Bouillante area suggested that geothermal water was in equilibrium at 250-260 °C. It likely has a deep and large reservoir located in the upper sheeted dike complex of the oceanic crust, just below the transition zone between andesite volcanic flows and the basaltic dikes. The upper dike section, from which Li is extracted by hydrothermal fluids, was characterized by light Li isotopic values in the rocks, indicating retention of 6Li by the altered rocks. For the Lamentin and Diamant areas, the geothermal fluids appeared to be in equilibrium with reservoir volcano-sedimentary rocks at 90-120 °C and 180 °C, respectively. Further evidence for this argument is provided by the fact that only the Na/Li thermometric relationship determined for sedimentary basins yielded temperature values in agreement with those measured or estimated for the reservoir fluids. This suggests the importance of a sedimentary signature in these reservoir rocks. Altogether, this study highlights that the use of Li isotopic systematics is a powerful tool for characterizing the origin of geothermal waters as well as the nature of their reservoir rocks.  相似文献   

12.
Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta67, 3905-3923]. The metal phase contains 90-99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work.  相似文献   

13.
The fractionation of sulfur isotopes by the thermophilic chemolithoautotrophic Thermodesulfatator indicus was explored during sulfate reduction under excess and reduced hydrogen supply, and the full temperature range of growth (40-80 °C). Fractionation of sulfur isotopes measured under reduced H2 conditions in a fed-batch culture revealed high fractionations (24-37‰) compared to fractionations produced under excess H2 supply (1-6‰). Higher fractionations correlated with lower sulfate reduction rates. Such high fractionations have never been reported for growth on H2. For temperature-dependant fractionation experiments cell-specific rates of sulfate reduction increased with increasing temperatures to 70 °C after which sulfate-reduction rates rapidly decreased. Fractionations were relatively high at 40 °C and decreased with increasing temperature from 40-60 °C. Above 60 °C, fractionation trends switched and increased again with increasing temperatures. These temperature-dependant fractionation trends have not previously been reported for growth on H2 and are not predicted by a generally accepted fractionation model for sulfate reduction, where fractionations are controlled as a function of temperature, by the balance of the exchange of sulfate across the cell membrane, and enzymatic reduction rates of sulfate. Our results are reproduced with a model where fractionation is controlled by differences in the temperature response of enzyme reaction rates and the exchange of sulfate in and out of the cell.  相似文献   

14.
Vacuum evaporation experiments with Type B CAI-like starting compositions were carried out at temperatures of 1600, 1700, 1800, and 1900 °C to determine the evaporation kinetics and evaporation coefficients of silicon and magnesium as a function of temperature as well as the kinetic isotope fractionation factor for magnesium. The vacuum evaporation kinetics of silicon and magnesium are well characterized by a relation of the form J = JoeE/RT with Jo = 4.17 × 107 mol cm−2 s−1, E = 576 ± 36 kJ mol−1 for magnesium, Jo = 3.81 × 106 mol cm−2 s−1, E = 551 ± 63 kJ mol−1 for silicon. These rates only apply to evaporation into vacuum whereas the actual Type B CAIs were almost certainly surrounded by a finite pressure of a hydrogen-dominated gas. A more general formulation for the evaporation kinetics of silicon and magnesium from a Type B CAI-like liquid that applies equally to vacuum and conditions of finite hydrogen pressure involves combining our determinations of the evaporation coefficients for these elements as a function of temperature (γ = γ0eE/RT with γ0 = 25.3, E = 92 ± 37 kJ mol−1 for γSi; γ0 = 143, E = 121 ± 53 kJ mol−1 for γMg) with a thermodynamic model for the saturation vapor pressures of Mg and SiO over the condensed phase. High-precision determinations of the magnesium isotopic composition of the evaporation residues from samples of different size and different evaporation temperature were made using a multicollector inductively coupled plasma mass spectrometer. The kinetic isotopic fractionation factors derived from this data set show that there is a distinct temperature effect, such that the isotopic fractionation for a given amount of magnesium evaporated is smaller at lower temperature. We did not find any significant change in the isotope fractionation factor related to sample size, which we interpret to mean that recondensation and finite chemical diffusion in the melt did not affect the isotopic fractionations. Extrapolating the magnesium kinetic isotope fractionations factors from the temperature range of our experiments to temperatures corresponding to partially molten Type B CAI compositions (1250-1400 °C) results in a value of αMg ≈ 0.991, which is significantly different from the commonly used value of .  相似文献   

15.
Piston-cylinder experiments were conducted to investigate the behavior of partially molten wet andesite held within an imposed temperature gradient at 0.5 GPa. In one experiment, homogenous andesite powder (USGS rock standard AGV-1) with 4 wt.% H2O was sealed in a double capsule assembly for 66 days. The temperature at one end of this charge was held at 950 °C, and the temperature at the other end was kept at 350 °C. During the experiment, thermal migration (i.e., diffusion in a thermal gradient) took place, and the andesite underwent compositional and mineralogical differentiation. The run product can be broadly divided into three portions: (1) the top third, at the hot end, contained 100% melt; (2) the middle-third contained crystalline phases plus progressively less melt; and (3) the bottom third, at the cold end, consisted of a fine-grained, almost entirely crystalline solid of granitic composition. Bulk major- and trace-element compositions change down temperature gradient, reflecting the systematic change in modal mineralogy. These changes mimic differentiation trends produced by fractional crystallization. The change in composition throughout the run product indicates that a fully connected hydrous silicate melt existed throughout the charge, even in the crystalline, cold bottom region. Electron Backscatter Diffraction analysis of the run product indicates that no preferred crystallographic orientation of minerals developed in the run product. However, a significant anisotropy of magnetic susceptibility was observed, suggesting that new crystals of magnetite were elongated in the direction of the thermal gradient. Further, petrographic observation reveals alignment of hornblende parallel to the thermal gradient. Finally, the upper half of the run product shows large systematic variations in Fe-Mg isotopic composition reflecting thermal diffusion, with the hot end systematically enriched in light isotopes. The overall δ56FeIRMM-14 and δ26MgDSM-3 offsets are 2.8‰ and 9.9‰, respectively, much greater than the range of Fe-Mg isotope variation in high-temperature terrestrial samples.In contrast, no obvious chemical differentiation was observed in a similar experiment (of 33 days duration) where the temperature ranged from 550 to 350 °C, indicating the critical role of the melt in causing the differentiation observed in the 950-350 °C experiment. If temperature gradients can be sustained for the multi-million-year time scales implied by geochronology in some plutonic systems, thermal migration could play a heretofore unrecognized role in the development of differentiated plutons. Elemental distributions, dominated by phase equilibria, cannot be used to discriminate thermal migration from conventional magma differentiation processes such as fractional crystallization. However, the observation of Fe-Mg isotopic variations in partially molten portions of the experiment indicates that these isotopic systems could provide a unique fingerprint to this process. This result could also provide a possible explanation for the Fe-Mg isotope variations observed in high-temperature silicate rocks and minerals.  相似文献   

16.
The range in 56Fe/54Fe isotopic compositions measured in naturally occurring iron-bearing species is greater than 5‰. Both theoretical modeling and experimental studies of equilibrium isotopic fractionation among iron-bearing species have shown that significant fractionations can be caused by differences in oxidation state (i.e., redox effects in the environment) as well as by bond partner and coordination number (i.e., nonredox effects due to speciation).To test the relative effects of redox vs. nonredox attributes on total Fe equilibrium isotopic fractionation, we measured changes, both experimentally and theoretically, in the isotopic composition of an Fe2+-Fe3+-Cl-H2O solution as the chlorinity was varied. We made use of the unique solubility of FeCl4 in immiscible diethyl ether to create a separate spectator phase against which changes in the aqueous phase could be quantified. Our experiments showed a reduction in the redox isotopic fractionation between Fe2+- and Fe3+-bearing species from 3.4‰ at [Cl] = 1.5 M to 2.4‰ at [Cl] = 5.0 M, due to changes in speciation in the Fe-Cl solution. This experimental design was also used to demonstrate the attainment of isotopic equilibrium between the two phases, using a 54Fe spike.To better understand speciation effects on redox fractionation, we created four new sets of ab initio models of the ferrous chloride complexes used in the experiments. These were combined with corresponding ab initio models for the ferric chloride complexes from previous work. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 6.39‰ to 5.42‰ for Fe(H2O)62+, 5.98‰ to 5.34‰ for FeCl(H2O)5+, and 5.91‰ to 4.86‰ for FeCl2(H2O)4, depending on the model. The theoretical models predict ferric-ferrous fractionation about half as large (depending on model) as the experimental results.Our results show (1) oxidation state is likely to be the dominant factor controlling equilibrium Fe isotope fractionation in solution and (2) nonredox attributes (such as ligands present in the aqueous solution, speciation and relative abundances, and ionic strength of the solution) can also have significant effects. Changes in the isotopic composition of an Fe-bearing solution will influence the resultant Fe isotopic signature of any precipitates.  相似文献   

17.
In order to use lithium isotopes as tracers of silicate weathering, it is of primary importance to determine the processes responsible for Li isotope fractionation and to constrain the isotope fractionation factors caused by each process as a function of environmental parameters (e.g. temperature, pH). The aim of this study is to assess Li isotope fractionation during the dissolution of basalt and particularly during leaching of Li into solution by diffusion or ion exchange. To this end, we performed dissolution experiments on a Li-enriched synthetic basaltic glass at low ratios of mineral surface area/volume of solution (S/V), over short timescales, at various temperatures (50 and 90 °C) and pH (3, 7, and 10). Analyses of the Li isotope composition of the resulting solutions show that the leachates are enriched in 6Li (δ7Li = +4.9 to +10.5‰) compared to the fresh basaltic glass (δ7Li = +10.3 ± 0.4‰). The δ7Li value of the leachate is lower during the early stages of the leaching process, increasing to values close to the fresh basaltic glass as leaching progresses. These low δ7Li values can be explained in terms of diffusion-driven isotope fractionation. In order to quantify the fractionation caused by diffusion, we have developed a model that couples Li diffusion with dissolution of the glassy silicate network. This model calculates the ratio of the diffusion coefficients of both isotopes (a = D7/D6), as well as its dependence on temperature, pH, and S/V. a is mainly dependent on temperature, which can be explained by a small difference in activation energy (0.10 ± 0.02 kJ/mol) between 6Li+ and 7Li+. This temperature dependence reveals that Li isotope fractionation during diffusion is low at low temperatures (T < 20 °C), but can be significant at high temperatures. However, concerning hydrothermal fluids (T > 120 °C), the dissolution rate of basaltic glass is also high and masks the effects of diffusion. These results indicate that the high δ7Li values of river waters, in particular in basaltic catchments, and the fractionated values of hydrothermal fluids are mainly controlled by precipitation of secondary phases.  相似文献   

18.
Measurements are presented of the magnesium isotopic composition of chlorophyll-a, extracted from cyanobacteria, relative to the isotopic composition of the culture medium in which the cyanobacteria were grown. Yields of 50-93% chlorophyll-a were achieved from the pigment extracts of Synechococcus elongatus, a unicellular cyanobacteria. This material was then digested using concentrated nitric acid to extract magnesium. Separation was accomplished using columns of cation-exchange resin, which achieved a 103 ± 10% yield of magnesium from chlorophyll-a. This procedure ensured accurate measurement of the magnesium-isotopic ratios without isobaric interferences using a multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We find a slight depletion in the heavier isotopes of magnesium in chlorophyll-a relative to culture medium, early growth phase: Δ26Mg = −0.71(±0.35)‰ and Δ25Mg = −0.37(±0.18)‰; late growth phase: Δ26Mg = −0.53(±0.20)‰ and Δ25Mg = −0.26(±0.11)‰, due to an apparent mass-dependent fractionation. We suggest that the small fractionation results from chelation during intracellular processes. A likely candidate for this chelation step involves the magnesium-chelatase enzyme, which mediates the insertion of magnesium to the tetrapyrrole ring during chlorophyll-a biosynthesis. Proof of this hypothesis can be tested with biological controls whereby steps in the enzymatic pathways of chlorophyll synthesis are selectively suppressed.  相似文献   

19.
Lithium isotopes in global mid-ocean ridge basalts   总被引:1,自引:0,他引:1  
The lithium isotope compositions of 30 well-characterized samples of glassy lavas from the three major mid-ocean ridge segments of the world, spanning a wide range in radiogenic isotope and elemental content and sea floor physical parameters, have been measured. The overall data set shows a significant range in δ7Li (+1.6 to +5.6), with no global correlation between Li isotopes and other geochemical or tectonic parameters. The samples with the greatest lithophile element depletion (N-MORB: K2O/TiO2 < 0.09) display an isotopic range consistent with the extant database. Samples with greater trace element enrichment display a greater degree of isotopic variability and trend toward heavier compositions (δ7Li = +2.4 to +5.6), but are not distinct on average from N-MORB. Together with published data, N-MORB is estimated to have mean δ7Li = +3.4 ± 1.4‰ (2σ), consistent with the estimate for an uncontaminated MORB source based on pristine peridotite xenoliths. Locally, where sampling density permits, sources of Li isotope heterogeneity may be evaluated. Sample sets from the East Pacific Rise show correlation of δ7Li with halogen concentration ratios. This is interpreted at 15.5°N latitude to represent incorporation of <5 weight percent recycled subduction-modified mantle in the MORB source. At 9.5°N latitude the data are more consistent with shallow level magma chamber contamination by seawater-derived components (<0.5 wt.%).  相似文献   

20.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号