首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recently discovered accelerated expansion of the universe is of current interest in theoretical research on the evolution of the universe. The cause of this behavior is presumably the presence of dark energy, which has been estimated to form up to 70% of the universe and generates a “repulsive force.” In this paper a cosmological model is constructed which takes the dark energy into account in a Jordan-Brans-Dicke tensor-scalar model with a dominant, nonminimally coupled scalar field in the presence of a cosmological scalar. The radiation dominant epoch is discussed. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 151–159 (February 2008).  相似文献   

2.
In this paper we consider a correspondence between the holographic dark energy density and interacting generalized cosmic Chaplygin gas energy density in flat FRW universe. Then, we reconstruct the potential of the scalar field which describe the generalized cosmic Chaplygin cosmology. In the special case we obtain time-dependent energy density and study cosmological parameters. We find stability condition of this model which is depend on cosmic parameter.  相似文献   

3.
In this paper, we investigate Bianchi type-VI cosmological model for the universe filled with dark energy and viscous fluid in the presence of cosmological constant. Also, we show accelerating expansion of the universe by drawing volume scale, pressure and energy density versus cosmic time. In order to solve the Einstein’s field equations, we assume the expansion scalar is proportional to a component of the shear tensor. Therefore, we obtain the directional scale factors and show the EOS parameter crosses over phantom divided-line.  相似文献   

4.
Kantowski-Sachs cosmological model in the presence of magnetized anisotropic dark energy is investigated. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ωρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid does not approach isotropy through the evolution of the universe.  相似文献   

5.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

6.
We study Bianchi type I cosmological model in the presence of magnetized anisotropic dark energy. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ω ρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid do not approach isotropy through the evolution of the universe.  相似文献   

7.
A variant of the Jordan-Brans-Dicke (JBD) theory is examined which contains a cosmological scalar that is written so that on going to the Einstein representation it becomes the ordinary cosmological constant of general relativity theory. This paper is divided into two parts. In Part I we examine the cosmological solutions for the Einstein representation of the JBD theory, i.e., in the presence of a minimally coupled scalar field. In Part II we shall study the cosmological solutions in the proper representation of the JBD theory with a self consistent scalar field. The analysis of these solutions is of interest in connection with modern concepts of the evolution of the universe, in particular, with the observed acceleration of cosmological expansion and estimates of the density of dark matter and dark energy.__________Translated from Astrofizika, Vol. 48, No. 3, pp. 455–462 (August 2005).  相似文献   

8.
This work is devoted to the investigation of new holographic dark energy (infrared cutoff is the Hubble radius) in locally rotationally symmetric Bianchi type-\(I\) universe within the framework of Saez–Ballester (Phys. Lett. A 113:467, 1986) scalar–tensor theory of gravitation. We construct interacting and non-interacting dark energy models by solving the field equations using a relationship between the metric potentials. This leads to a variable deceleration parameter model which exhibits a transition of the universe from deceleration to acceleration. We evaluate various cosmological parameters of our models. We have observed that the energy density parameters, equation of state and important cosmological planes (\(\omega _{\mathit{de}} - \omega _{\mathit{de}}'\) and \(r - s\)) yield the results compatible with the modern observational data. We have, also, discussed the stability analysis of our models.  相似文献   

9.
We consider the BSBM(Bekenstein, Sandvik, Barrow and Magueijo) cosmological model in the presence of tachyon potential with the aim of studying the stability of the model and test it against observations. The phase space analysis shows that from fourteen critical points that represent the state of the universe, only one is stable.With a small perturbation, the universe transits from a state of unstable deceleration to stable acceleration. The stability analysis combined with the best fitting process imposes constraints on the cosmological parameters that are in agreement with observation. In the BSBM theory, the variation of fundamental constants is driven from variation of a scalar field. The tachyonic scalar field, responsible for both variation of fundamental constants and universal acceleration, is reconstructed.  相似文献   

10.
Recent cosmological observations of large-scale structures (red shift of type Ia supernovae) confirm that the universe is currently expanding at an accelerating rate and its dominant component is dark energy. This has stimulated the development of the theory of gravity and led to many alternative variants, including tensor-scalar ones. This paper deals with the role of conformal transformations in the Jordan-Brans-Dicke theory. Variants of intrinsic, conformally coupled, and Einstein representations are examined. In the Einstein representation an exact analytic solution for the standard cosmological model is obtained. It is expressed in terms of the relative energy contributions of ordinary matter Ω m , the scalar field Ω CK , and a term ΩΛ related to the cosmological constant Λ . Information on the evolution of the universe for the case with a minimally coupled scalar field is given in the form of graphs.  相似文献   

11.
The brightnesses of supernovae are commonly understood to indicate that cosmological expansion is accelerating due to dark energy. However the entire discussion presumes a perfectly transparent universe because no effects of reddening associated with the interstellar extinction law are seen. We note that with two kinds of dark matter (baryonic and nonbaryonic) strongly dominating the known mass of the universe, it is seriously premature to assume that these dark matter components have not reduced the transmission of the universe for cosmological sources. We show that the long‐known Lyα clouds, if nucleated by the population of baryonic dark matter primordial planetoids indicated by quasar microlensing, would act as spherical lenses and achromatically fade cosmologically distant sources. We attempt to estimate the amount of this cosmological fading, but ultimately the calculation is limited by lack of a satisfactory model for the tenuous outer parts of a primordial planetoid. We also consider the effects of such cosmological fading on the light of quasars. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The aim of this paper is to study the warm inflation during intermediate era in the framework of locally rotationally symmetric Bianchi type I universe model. We assume that the universe is composed of inflaton and imperfect fluid having radiation and bulk viscous pressure. To this end, dynamical equations (first model field equation and energy conservation equations) under slow-roll approximation and in high dissipative regime are constructed. A necessary condition is developed for the realization of this anisotropic model. We assume both dissipation and bulk viscous coefficients variable as well as constant. We evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor–scalar ratio and running of spectral index in terms of inflaton. These cosmological parameters are constrained using recent Planck and WMAP7 probe.  相似文献   

13.
We consider cosmological dynamics of a canonical bulk scalar field, which is coupled non-minimally to 5-dimensional Ricci scalar in a DGP setup. We show that presence of this non-minimally coupled bulk scalar field affects the jump conditions of the original DGP model significantly. Within a superpotential approach, we perform some numerical analysis of the model parameter space and consider bulk-brane energy exchange in this setup. Also we show that the normal, ghost-free branch of the DGP solutions in this case has the potential to realize a self-consistent phantom-like behavior and therefore explains late time acceleration of the universe in a consistent way.  相似文献   

14.
We propose in this paper an interacting holographic dark energy (IHDE) model in chameleon–tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the scalar field coupling matter Lagrangian in the model rather than being inserted into the formalism as an external source for the interaction. The correspondence between the tachyon field and the holographic dark energy (HDE) densities allows to reconstruct the tachyon scalar field and its potential in a flat FRW universe. The model can show the accelerated expansion of the universe and satisfies the observational data.  相似文献   

15.
This paper investigates the existence of Noether symmetries of isotropic universe model in \(f(R,T)\) gravity admitting minimal coupling of matter and scalar fields. The scalar field incorporates two dark energy models such as quintessence and phantom models. We determine symmetry generators and corresponding conserved quantities for two particular \(f(R,T)\) models. We also evaluate exact solutions and investigate their physical behavior via different cosmological parameters. For the first model, the graphical behavior of these parameters indicate consistency with recent observations representing accelerated expansion of the universe. For the second model, these parameters identify a transition form accelerated to decelerated expansion of the universe. The potential function is found to be constant for the first model while it becomes \(V(\phi )\approx \phi ^{2}\) for the second model. We conclude that the Noether symmetry generators and corresponding conserved quantities appear in all cases.  相似文献   

16.
This article is concerned with the investigation of dynamical behaviour of Kaluza-Klein(KK) FRW type dark energy cosmological models in the framework of a scalar-tensor theory of gravitation formulated by Saez and Ballester (Phys. Lett. A113,467:1986). Three cosmological models, in this theory, are presented by solving the field equations using (i) hybrid expansion law given by Pradhan et al. (Ind.J.Phys.89,5032015), (ii)varying deceleration parameter proposed by Mishra et al.(Int. J. Theor. Phy.52, 2546: 2013) and(iii)linearly varying deceleration parameter defined by Akarsu and Dereli (Int. J. Theor. Phys. 51, 612: 2012). We have evaluated the dynamical parameters for each of the models, namely, the equation of state (EoS) parameter, the deceleration parameter, statefinder parameter and total energy density parameter of dark energy. We have also found the scalar field in the models. We have discussed the dynamical behavior of the parameters through graphical representation with special reference to Planck Collaboration data. It is observed that our models describe accelerated expansion of the universe and our theoretical results are, reasonably, in good agreement with the observational data.  相似文献   

17.
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.  相似文献   

18.
19.
In this communication, we studied the aspects of bulk viscous fluid cosmological model with quadratic equation of state in the presence of strings loaded with particles in a higher dimensional (5- dimensional) Bianchi type-III geometry in Lyra’s Manifold (Lyra, 1951). Using physically plausible circumstances, an exact model of the universe is presented by obtaining the solutions of the Einstein’s field equations. Important geometrical and dynamical parameters of the model universes are premeditated and physical significance regarding their prospect in modern cosmology are discussed in details. Interestingly it is seen that both bulk viscosity and quadratic equation of state are acting crucial jobs throughout the evolution of the model which is expanding with acceleration so it represents dark energy model universe. Hence our model can be thought as a realistic universe.  相似文献   

20.
We study the correspondence between the interacting new agegraphic dark energy and the polytropic gas model of dark energy in the non-flat FRW universe. This correspondence allows us to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号