首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
New U–Pb ages of zircons from migmatitic pelitic gneisses in the Omuta district, northern Kyushu, southwest Japan are presented. Metamorphic zonation from the Suo metamorphic complex to the gneisses suggests that the protolith of the gneisses was the Suo metamorphic complex. The zircon ages reveal the following: (i) a transformation took place from the high‐P Suo metamorphic complex to a high‐T metamorphic complex that includes the migmatitic pelitic gneisses; (ii) the detrital zircon cores in the Suo pelitic rocks have two main age components (ca 1900–1800 Ma and 250 Ma), with some of the detrital zircon cores being supplied (being reworked) from a high‐grade metamorphic source; and (iii) one metamorphic zircon rim yields 105.1 ±5.3 Ma concordant age that represents the age of the high‐T metamorphism. The high‐P to high‐T transformation of metamorphic complexes implies the seaward shift of a volcanic arc or a landward shift of the metamorphic complex from a trench to the sides of a volcanic arc in an arc–trench system during the Early Cretaceous. The Omuta district is located on the same geographical trend as the Ryoke plutono‐metamorphic complex, and our estimated age of the high‐T metamorphism is similar to that of the Ryoke plutono‐metamorphism in the Yanai district of western Chugoku. Therefore, the high‐T metamorphic complex possibly represents the western extension of the Ryoke plutono‐metamorphic complex. The protolith of the metamorphic rocks of the Ryoke plutono‐metamorphic complex was the Jurassic accretionary complex of the inner zone of southwest Japan. The high‐P to high‐T transformation in the Omuta district also suggests that the geographic trend of the Jurassic accretionary complex was oblique to that of the mid‐Cretaceous high‐T metamorphic field.  相似文献   

2.
Tetsumaru  Itaya  Hironobu  Hyodo  Tatsuki  Tsujimori  Simon  Wallis  Mutsuki  Aoya  Tetsuo  Kawakami  Chitaro  Gouzu 《Island Arc》2009,18(2):293-305
Laser step heating 40Ar/39Ar analysis of biotite and muscovite single crystals from a Barrovian type metamorphic belt in the eastern Tibetan plateau yielded consistent cooling ages of ca. 40 Ma in the sillimanite zone with peak metamorphic temperatures higher than 600°C and discordant ages from 46 to 197 Ma in the zones with lower peak temperatures. Chemical Th‐U‐Total Pb Isochron Method (CHIME) monazite (65 Ma) and sensitive high mass‐resolution ion microprobe (SHRIMP) apatite (67 Ma) dating give the age of peak metamorphism in the sillimanite zone. Moderate amounts of excess Ar shown by biotite grains with ages of 46 to 94 Ma at metamorphic grades up to the high‐grade part of the kyanite zone probably represent incomplete degassing during metamorphism. In contrast, the high‐grade part of the kyanite zone yields biotite ages of 130 to 197 Ma. The spatial distribution of these older ages in the kyanite zone along the sillimanite zone boundary suggests they reflect trapped excess argon that migrated from higher‐grade regions. The most likely source is muscovite that decomposed to form sillimanite. The zone with extreme amounts of excess argon preserves trapped remnants of an ‘excess argon wave’. We suggest this corresponds to the area where biotite cooled below its closure temperature in the presence of an elevated Ar wave. Extreme excess Ar is not recognized in muscovite suggesting that the entrapment of the argon wave by biotite took place when the rocks had cooled down to temperatures lower than the closure temperature of muscovite. The breakdown of phengite during ultrahigh‐pressure (UHP) metamorphism may be a key factor in accounting for the very old apparent ages seen in many UHP metamorphic regions. This is the first documentation of a regional Ar‐wave spatially associated with regional metamorphism. This study also implies that resetting of the Ar isotopic systems in micas can require temperatures up to 600°C; much higher than generally thought.  相似文献   

3.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

4.
Tomokazu  Tokada 《Island Arc》1998,7(4):609-620
The Ina district of the Ryoke Belt is divided into two mineral zones, based on the mineral parageneses of the pelitic and psammitic rocks at the peak metamorphism. A biotite–muscovite zone (quartz + plagioclase + biotite + muscovite with or without K-feldspar) constitutes the northwestern part, and a biotite–cordierite–K-feldspar zone (quartz + plagioclase + biotite + cordierite + K-feldspar) comprises the central to southern and eastern parts. The isograd reaction between two mineral zones is defined by a divariant reaction: Mg-rich biotite + muscovite + quartz = Fe-rich biotite + cordierite + K-feldspar + H2O (1), which, in the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system, occurs at ∼ 590 °C at 0.2 GPa and 660 °C at 0.4 GPa. Fibrolite accompanied by andalusite porphyroblasts in aluminous pelitic rocks of the biotite–muscovite zone and the low-grade part of the biotite–cordierite–K-feldspar zone, suggests that sillimanite was the stable aluminosilicate at the peak metamorphic condition throughout the area. In the high-grade part of the biotite–cordierite–K-feldspar zone, fibrolite mostly occurs as inclusions in cordierite or in plagioclase. The phase relations and the compositional zoning of plagioclase in relation to fibrolite inclusions suggest that fibrolite was formed under relatively high-pressure conditions, and that partial melting took place.  相似文献   

5.
Chemical Th–U–total Pb isochron method (CHIME) monazite dating was carried out for pelitic–psammitic migmatites and the Ao granite (one of the Younger Ryoke granites) from the Aoyama area, Ryoke metamorphic belt, Southwest Japan. The Ao granite gives an unequivocal age of 79.8 ± 3.9 Ma. The monazite grains in migmatites yield an age of 96.5 ± 1.9 Ma with rims and patchy domains of 83.5 ± 2.4 Ma. The 83.5 ± 2.4‐Ma overprinting on migmatites over the garnet–cordierite zone suggests a wide and combined effect of thermal input and fluid activity on the monazite grains caused by the contact metamorphism by the Younger Ryoke granites including the Ao granite. This contact metamorphism has not been detected from the major metamorphic mineral assemblage previously, possibly because the migmatites already possessed the high‐temperature mineral assemblage before the granite intrusions and were immune from contact metamorphism in terms of major metamorphic minerals. However, monazite records contact metamorphism clearly. Therefore, the field mapping of the CHIME monazite age is a powerful tool for recognition of polymetamorphism in high‐temperature metamorphic terrains where later thermal effects can not be easily detected by the growth of new major metamorphic minerals.  相似文献   

6.
Ultrahigh‐temperature (UHT) granulite facies rocks from the Achankovil Shear Zone area and the southern domain of the Madurai Granulite Block in South India contain monazite useful for in situ microprobe U–Pb dating. The UHT rocks examined consist of garnet + cordierite (retrograde) + quartz + mesoperthite + biotite + plagioclase + Fe‐Ti oxides ± orthopyroxene ± sillimanite and accessory zircon and monazite. Sillimanite occurs only as inclusions in garnet. Microstructural observations suggest garnet, orthopyroxene, spinel and mesoperthite are products of peak metamorphism. Post‐peak formation of cordierite ± orthopyroxene ± quartz and cordierite + spinel + Fe‐Ti oxides assemblages is also observed. Geothermobarometry on orthopyroxene and garnet‐orthopyroxene bearing assemblages suggest peak UHT conditions of T = 940–1040°C and P = 8.5–9.5 kbar. This was followed by a retrograde stage of 3.5–4.5 kbar and 720 ± 60°C, estimated from garnet‐cordierite assemblages. A small population of rounded, probably detrital, monazites in these rocks yield ages from Meso‐ to Neoproterozoic indicating a heterogeneous source. The youngest associated spot ages are 660–600 Ma suggesting protolith deposition up to ca 600 Ma. In contrast, the vast majority of monazites that crystallized during the latest metamorphic event show late Neoproterozoic to Cambrian ages. Probability‐density plots of monazite age data show a ‘peak’ between 533 and 565 Ma, but this peak need not reflect a particular thermal event. Collating ages from homogenous metamorphic monazites associated with minerals stable at peak P‐T conditions suggests peak metamorphism in these rocks occurred at 580–600 Ma. Together with a re‐evaluation of available data from adjacent granulite blocks in southern India, these data suggest the main metamorphic event coinciding with the suturing of India with the Gondwana amalgam probably occurred 580–600 Ma. The 500–550 Ma ages commonly reported in previous studies might represent post‐peak thermal events.  相似文献   

7.
Abstract Pseudotachylytes are present along the Dahezhen shear zone in the Qinling–Dabie Shan collisional orogenic belt, central China. Two types of pseudotachylyte vein are documented in the shear zone: cataclasite‐related pseudotachylyte (C‐Pt) and mylonite‐related pseudotachylyte (M‐Pt). M‐Pt is associated with mylonite‐development and is overprinted by C‐Pt. All of the quartz and most of the feldspar porphyroclasts within the M‐Pt are plastically deformed, but not in the C‐Pt. Dynamically recrystallized fine‐grained quartz and feldspar bands are oriented subparallel to the mylonite and M‐Pt foliation, and partially surround the porphyroclasts. Our results suggest that the M‐Pt formed cyclically in the ductile region at estimated conditions of 400–650°C and 400–800 MPa due to propagation of seismic fracturing associated with the thrusting‐related rapid exhumation of the ultrahigh‐pressure metamorphic complex in the brittle regime down to a greater depth than the base of the seismogenic zone. The M‐Pt and mylonite formed in the Dahezhen shear zone at estimated conditions of 400–650°C and 400–800 MPa. The coexistence of C‐Pt and M‐Pt in the same shear zone suggests that repeated seismic slips occurred in both the brittle and ductile portions of the crust during the thrusting‐related rapid exhumation of the ultrahigh‐pressure metamorphic complex.  相似文献   

8.
The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magma- tism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning.  相似文献   

9.
The extensive gneisses in the high‐pressure and ultrahigh‐pressure metamorphic terrane in the Dabie‐Sulu orogen usually show no evidence of eclogite‐facies metamorphism. The garnet‐mica‐plagioclase gneisses from the Qiliping region in the western Dabie Orogen, comprise garnet, phengite, biotite, plagioclase, quartz, rutile, ilmenite, chlorite, epidote, and hornblende. The garnet porphyroblasts, with inclusions of quartz, epidote, and rutile, exhibit slight compositional zonations, from core to mantle with an increase in pyrope and a decrease in spessartine, and from mantle to rim with a decrease in pyrope and grossular and an increase in spessartine. The high‐Si phengite indicates that the gneisses may be subjected to a high‐pressure metamorphism. By the P–T pseudosections calculated in a system NCKMnFMASHTO (Na2O‐CaO‐K2O‐MnO‐FeO‐MgO‐Al2O3‐SiO2‐H2O‐TiO2‐O) for two representative samples, the metamorphic P–T path, reconstructed by the compositionally zoned garnet, shows that the prograde metamorphism is characterized by a temperature increase with a slight pressure increase from the conditions of 17.6 ± 1.5 kbar at 496 ± 15°C to the peak‐pressure ones of 21.8 ± 1.5–22.7 ± 1.5 kbar at 555 ± 15–561 ± 15°C; the early retrograde stage is dominated by decompression with a temperature increase to the maximum of 608 ± 15–611 ± 18°C at 10.3 ± 1.5–11.0 ± 1.5 kbar; and the late retrograde one is predominated by pressure and temperature decreases. The mineral assemblages in the prograde metamorphism are predicted to contain garnet, glaucophane, jadeite, lawsonite, phengite, quartz, rutile, and/or chlorite, which is different from those observed at present. Such high‐pressure metamorphism can partly be reconstructed by the P–T pseudosection in combination with the high‐Si phengite and garnet compositions in the core and mantle. This provides an important constraint on the subduction and exhumation of the terrane during the continent–continent collision between the Yangtze and Sino‐Korean cratons.  相似文献   

10.
The relationships between the intrusion of gneissose granitoids and the attainment of regional high‐T conditions recorded in metamorphic rocks from the Ryoke belt of the Mikawa area, central Japan, are explored. Seven gneissose granitoid samples (tonalite, granodiorite, granite) were collected from three distinct plutonic bodies that are mapped as the so‐called “Older Ryoke granitoids.” Based on bulk‐rock compositions and U–Pb zircon ages obtained by laser ablation inductively coupled plasma mass spectrometry, the analyzed granitoids can be separated into two groups. Gneissose granitoids from the northern part of the area give weighted mean 206Pb/238U ages of 99 ±1 Ma (two samples) and 95 ±1 Ma (one sample), whereas those from the southern part yield 81 ±1 Ma (two samples) and 78–77 ±1 Ma (two samples). Regional comparisons allow correlation of the northern granitoids (99–95 Ma) with the Kiyosaki granodiorite, and mostly with the Kamihara tonalite found to the east. The southern granitoids are tentatively renamed as “78–75 Ma (Hbl)?Bt granite” and “81–75 Ma Hbl?Bt tonalite” (Hbl, hornblende; Bt, biotite). and seem to be broadly coeval members of the same magmatic suite. With respect to available age data, no gneissose granitoid from the Mikawa area shows a U–Pb zircon age which matches that of high‐T metamorphism (ca 87 Ma). The southern gneissose granitoids (81–75 Ma), although they occur in the highest‐grade metamorphic zone, do not seem to represent the heat source which produced the metamorphic field gradient with a low dP/dT slope.  相似文献   

11.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

12.
Within the Tethyan realm, data for the subduction history of the Permo–Triassic Tethys in the form of accretionary complexes are scarce, coming mainly from northwest Turkey and Tibet. Herein we present field geological, petrological and geochronological data on a Triassic accretionary complex, the A?vanis metamorphic rocks, from northeast Turkey. The A?vanis metamorphic rocks form a SSE–NNW trending lozenge‐shaped horst, ~20 km long and ~6 km across, bounded by the strands of the active North Anatolian Fault close to the collision zone between the Eastern Pontides and the Menderes–Taurus Block. The rocks consist mainly of greenschist‐ to epidote‐amphibolite‐facies metabasite, phyllite, marble and minor metachert and serpentinite, interpreted as a metamorphic accretionary complex based on the oceanic rock types and ocean island basaltic, mid‐ocean ridge basaltic and island‐arc tholeiitic affinities of the metabasites. This rock assemblage was intruded by stocks and dikes of Early Eocene quartz diorite, leucogranodiorite and dacite porphyry. Metamorphic conditions are estimated to be 470–540°C and ~0.60–0.90 GPa. Stepwise 40Ar/39Ar dating of phengite–muscovite separates sampled outside the contact metamorphic aureoles yielded steadily increasing age spectra with the highest incremental stage corresponding to age values ranging from ~180 to 209 Ma, suggesting that the metamorphism occurred at ≥ 209 Ma. Thus, the A?vanis metamorphic rocks represent the vestiges of the Late Triassic or slightly older subduction in northeast Turkey. Estimated P–T conditions indicate higher temperatures than those predicted by steady state thermal models for average subduction zones, and can best be accounted for by a hot subduction zone, similar to the present‐day Cascadia. Contact metamorphic mineral assemblages around an Early Eocene quartz diorite stock, on the other hand, suggest that the present‐day erosion level was at depths of ~14 km during the Early Eocene, indicative of reburial of the metamorphic rocks. Partial disturbance of white‐mica Ar–Ar age spectra was probably caused by the reburial coupled with heat input by igneous activity, which is probably related to thrusting due to the continental collision between Eastern Pontides and the Menderes–Taurus Block.  相似文献   

13.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

14.
Ultrahigh‐temperature (UHT) granulites in the South Altay orogenic belt of Northwestern China provide important clues for the lower crustal components and tectonic evolution of the Central Asian Orogenic Belt during the Paleozoic. In this paper, we studied whole‐rock geochemistry and mineral characteristics to understand the protolith and metamorphic evolution of the Altay UHT granulite. The Altay granulite shows negative discriminant function values (DF) of ?9.27 to ?3.95, indicating a sedimentary origin, probably an argillaceous rock. The peak metamorphic temperature–pressure conditions of 920–1010 °C and > 9 kbar were estimated from the geothermobarometry, together with the stability of spinel (low ZnO) + quartz and orthopyroxene (Al2O3 up to 9.2 wt.%) + sillimanite + quartz in the Altay UHT rock, indicate a UHT metamorphic condition has been achieved. Two stages of retrograde conditions are recognized in these rocks; the first is an isothermal decompression to approx. 750 °C at 5.2–5.8 kbar at the early stage, and the second is the cooling down to 520–550 °C at 4.8–5.2 kbar. Combined with previous study, the formation of the Altay UHT pelitic granulite with a clockwise retrograde P–T path is inferred to be related with collisional and accretional orogenic process between the Siberian and Kazakhstan–Junggar plates.  相似文献   

15.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   

16.
Abstract High‐ to ultrahigh‐pressure metamorphic (HP–UHPM) rocks crop out over 150 km along an east–west axis in the Kokchetav Massif of northern Kazakhstan. They are disposed within the Massif as a 2 km thick, subhorizontal pile of sheet‐like nappes, predominantly composed of interlayered pelitic and psammitic schists and gneisses, amphibolite and orthogneiss, with discontinuous boudins and lenses of eclogite, dolomitic marble, whiteschist and garnet pyroxenite. On the basis of predominating lithologies, we subdivided the nappe group into four north‐dipping, fault‐bounded orogen‐parallel units (I–IV, from base to top). Constituent metabasic rocks exhibit a systematic progression of metamorphic grades, from high‐pressure amphibolite through quartz–eclogite and coesite–eclogite to diamond–eclogite facies. Coesite, diamond and other mineral inclusions within zircon offer the best means by which to clarify the regional extent of UHPM, as they are effectively sequestered from the effects of fluids during retrogression. Inclusion distribution and conventional geothermobarometric determinations demonstrate that the highest grade metamorphic rocks (Unit II: T = 780–1000°C, P = 37–60 kbar) are restricted to a medial position within the nappe group, and metamorphic grade decreases towards both the top (Unit III: T = 730–750°C, P = 11–14 kbar; Unit IV: T = 530°C, P = 7.5–9 kbar) and bottom (Unit I: T = 570–680°C; P = 7–13.5 kbar). Metamorphic zonal boundaries and internal structural fabrics are subhorizontal, and the latter exhibit opposing senses of shear at the bottom (top‐to‐the‐north) and top (top‐to‐the‐south) of the pile. The orogen‐scale architecture of the massif is sandwich‐like, with the HP–UHPM nappe group juxtaposed across large‐scale subhorizontal faults, against underlying low P–T metapelites (Daulet Suite) at the base, and overlying feebly metamorphosed clastic and carbonate rocks (Unit V). The available structural and petrologic data strongly suggest that the HP–UHPM rocks were extruded as a sequence of thin sheets, from a root zone in the south toward the foreland in the north, and juxtaposed into the adjacent lower‐grade units at shallow crustal levels of around 10 km. The nappe pile suffered considerable differential internal displacements, as the 2 km thick sequence contains rocks exhumed from depths of up to 200 km in the core, and around 30–40 km at the margins. Consequently, wedge extrusion, perhaps triggered by slab‐breakoff, is the most likely tectonic mechanism to exhume the Kokchetav HP–UHPM rocks.  相似文献   

17.
Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U–Pb ages are reported from an ultrahigh‐temperature (UHT) spinel–orthopyroxene–garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan–Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950°C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P–T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 ± 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490–500 Ma. Since the granulite was metamorphosed at temperatures >900°C, exceeding the closure temperature of U–Pb system in zircon, a possible interpretation is that the 499 ± 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ~500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo‐Asian Ocean and associated accretion‐collision tectonics of the Siberian and Kazakhstan–Junggar Plates followed by rapid exhumation leading to decompression.  相似文献   

18.
Daisuke  Nakamura 《Island Arc》1995,4(2):112-127
Abstract X-ray diffraction (XRD) analyses of carbonaceous materials were carried out in conjunction with petrological studies for selected metamorphic rocks in order to compare the structural state of carbonaceous materials between contact and regional metamorphic rocks. The most extensive study was done for the Daimonji contact aureole in the eastern part of Kyoto city, Japan. The Daimonji contact aureole can be divided into three mineral zones using mineral parageneses of pelitic rocks: chlorite, biotite and cordierite zones. The cordierite zone can be further subdivided into lower- and higher-grade subzones. Petrological considerations allow the two isograd reactions that define the lower- and higher-grade cordierite subzones to be determined and suggest these reactions occurred at 510–560°C and 560–590°C per 2.0-2.3 kbar, respectively. A combination of the petrological studies and the XRD data of carbonaceous materials suggest that fully ordered graphite (FG; defined by d(002) ≤ 3.360 Å following the convention used by many workers), appears around 560–590°C in the Daimonji contact aureole. This data and refinement of geothermometer for published data confirmed that the FG appears at 400–500°C in regional metamorphic rocks, but at higher than 530°C in contact aureoles. One possible explanation for such a temperature difference is the duration of heating. However, the width at half height (WH) of the graphite peak attains a similar value of 0.30° at around 500°C both in contact and regional metamorphic rocks, suggesting that WH value is a more reliable indicator of metamorphic grade than the change of d(002) value. Furthermore, the depressed d(002) data of graphite was observed locally in the higher grade part (≥ 500°C) of the Ryoke regional metamorphic belt, where granitic intrusions exist within a few km distance. These facts indicate that the duration of heating is not an important factor controlling the change of d(002) value. It is possible that interlayered impurities, such as chlorine, which was derived from igneous intrusions, may be an important factor in suppressing the reduction in d(002) at temperatures greater than 500°C.  相似文献   

19.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   

20.
Yujiro  Nishimura  Philippa M.  Black  Tetsumaru  Itaya 《Island Arc》2004,13(3):416-431
Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction‐related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite‐pumpellyite and pumpellyite‐actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 Å, the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite‐actinolite facies for which the highest temperature may be approximately 300°C. Metamorphic white mica K–Ar ages are reported for magnetic separates and <2 µm hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180–130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150–130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach–Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号