首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铁路岩溶隧道隧底隐伏岩溶危及列车行车安全,为了彻底消除安全隐患,保证运营安全,在新建铁路工程静态验收前须完成隧底隐伏岩溶探测、整治设计、整治施工等工作。岩溶探测手段以物探为主钻探为辅,地震映像法作为成熟的物探方法得到了大量应用。地震映像剖面包括时域和频域信息,由于目前用于地震映像时频分析方法计算过程较繁琐、精度不高,实际生产中并未得到广泛应用,资料分析仍以时域的波形特征识别为主,而波形特征具有复杂性、多解性,资料解释准确度不高。这里引入Wigner-Ville改进方法对地震映像剖面进行时频分析,得到高精度的瞬时频率属性剖面,综合利用地震映像剖面的时域和频域信息进行解释,减少了多解性,提高了判释的准确度。本新方法在铁路隧底隐伏岩溶探测中得到了成功验证,对类似岩溶勘探具有重要的借鉴作用。  相似文献   

2.
为研究浅埋连拱隧道中隔墙地基受力变形特征及基底注浆加固方法,依托云南省某拟建高速公路连拱隧道,采用MIDAS/GTS软件进行数值模拟计算和分析。研究结果表明:(1)在围岩较好、埋深较小时中隔墙基底压力分布随施工过程由“马鞍形”分布逐渐变为“钟形”分布,最大基底压力出现在先行洞衬砌浇筑后右侧墙趾处,中隔墙地基总体上处于隆起变形状态;(2)在围岩较差或埋深较大时中隔墙基底压力分布呈“马鞍形”分布,最大基底压力出现在后行洞二衬浇筑后中间偏右处,中隔墙地基总体上处于沉降变形状态;(3)通过数值分析得到不同埋深、地质条件下的连拱隧道中隔墙地基需要满足的承载力,并结合现行规范及前人研究成果,提出了中隔墙岩石地基加固前后地基承载力计算方法。研究成果可为连拱隧道的设计和施工提供参考。  相似文献   

3.
《四川地质学报》2022,(Z1):102-108
新建川藏铁路某长大深埋隧道,工程地质条件复杂,围岩分级,岩爆,大变形,涌突水,瓦斯,地温等主要工程地质问题对铁路选线及施工潜在影响极大。通过对某隧道隧址区地形地貌、地层岩性、地质构造等进行调查,简要分析了该深埋隧道工程主要地质问题围岩失稳、大变形、岩爆、涌突水、可溶岩、瓦斯及有害气体等(杨小军,2017)。针对该工程地质问题进行了简要分析评价。  相似文献   

4.
处于薄—中层倾斜层状岩体中的深埋隧道常会产生地质顺层偏压的问题,导致隧道局部塌方、偏压变形及支护结构破坏。本文以郑万线某隧道为例,采用理论分析、数值模拟方法对深埋顺层隧道的破坏机理及不同结构面参数下的破坏规律展开了研究。研究结果表明:(1)深埋顺层偏压隧道洞周围岩将根据其切向应力与结构面夹角的不同发生岩层拉裂破坏、结构面剪切破坏及岩体自身破坏,其中切向应力与结构面平行位置,即反倾侧拱腰及顺倾侧拱脚位置主要发生拉裂破坏,此处围岩塑性区范围最广,围岩位移最大,围岩处于极不稳定状态;(2)顺层偏压隧道的破坏规律与结构面强度参数有直接关系,围岩塑性区范围及围岩位移均随着结构面摩擦角的增大而降低,且降低趋势逐渐放缓,当结构面摩擦角达到岩体摩擦角后,结构面摩擦角继续增加对围岩稳定性影响较小;(3)围岩塑性区及围岩位移场偏压分布特征随结构面倾角的变化而整体旋转,且对于隧道底部而言,结构面最不利倾角为0°,此时隧底最大上鼓量大于其他倾角下的最大上鼓量;对于隧道拱部而言,最不利倾角为40°,此时洞周最大收敛值大于其他倾角下的最大收敛值,最不利位置位于反倾侧拱腰。  相似文献   

5.
宜万铁路八字岭隧道岩溶管道冲积物特征实验研究   总被引:1,自引:0,他引:1  
岩溶山区的隧道工程建设中,隧址区的岩溶管道连通性对隧道设计中涌水量、水压力等指标的确定以及隧道施工防灾具有重要意义。以宜万铁路八字岭隧道为例,系统分析了岩溶管道粗颗粒沉积物的粒度、岩石及矿物成分、圆度度组合等特征,通过对比分析,探讨了碎屑沉积物的地质联系,研究了沉积物的来源,以此为基础分析了隧址区岩溶管道的连通性,为工程设计施工提供参考。  相似文献   

6.
玄武湖水下交通隧道环境地质条件分析及工程方案评价   总被引:5,自引:0,他引:5  
城市水下交通隧道,既在城市,又于水下,是一种脆弱环境下的典型的地质工程。本文对玄武湖水底交通隧道施工不良地质条件、城市环境约束因素以及隧道工程可能带来的环境影响问题作了具体分析,进而对隧址及施工方案作了初步评价。  相似文献   

7.
本文论述了铁路选线工程地质、铁路工程地质勘察、钻探工作、铁路地质灾害、巨型铁路桥梁及长大铁路隧道等方面工程地质研究所取得的进展及进一步研究的方向。  相似文献   

8.
林峰  伍振志 《地质科技情报》2004,23(3):101-104,108
结合某双连拱隧道的工程地质条件和支护设计特点,借助有限元软件3D-σ,模拟分析了隧道锚喷支护和锚喷钢拱支护两种支护方式的支护效果;并通过改变喷层厚度、钢拱架间距、钢拱架强度等支护参数,分析了其对隧道围岩稳定性的影响,为优化双连拱隧道初期的支护设计提供了参考依据.  相似文献   

9.
地质雷达在公路隧道超前地质预报中的应用   总被引:13,自引:1,他引:12  
方建立  应松  贾进 《中国岩溶》2005,24(2):160-163
在公路隧道施工中,由于勘察设计的局限性和隧道围岩地质条件的复杂多变性,施工人员对隧道掌子面前方的不良地质情况往往了解不清,致使隧道掘进过程中局部地段经常出现塌方、涌水等地质灾害,导致人身伤亡,工期延误,造成巨大的经济损失。因此,在公路隧道施工中进行超前地质预报就显得十分重要。本文以崇- 遵高速公路夏家庙隧道掘进超前地质预报为例,介绍了地质雷达方法在溶洞等不良地质灾害预报中的应用。   相似文献   

10.
为分析交错新建隧道施工对既有隧道的影响,采用公路隧道结构与围岩综合试验系统对交错隧道进行三维物理模型试验。测试的内容包括新建隧道开挖引起既有隧道围岩内部压应力、围岩内部位移及支护结构内力的变化规律。试验结果表明,既有隧道拱顶径向压应力和拱腰切向压应力具有增加趋势,拱顶切向压应力和拱腰径向压应力具有减小趋势;拱顶围岩内部位移表现为压缩变形,拱腰围岩内部位移为拉伸变形;既有隧道支护结构的轴力和弯矩全为增加,右拱腰的弯矩受到的影响最大;新建隧道施工对既有隧道L8截面的影响较小,对L1和L4截面的影响非常明显,当间距小于L8截面情况时应采取加固措施。  相似文献   

11.
以川藏铁路茶洛隧道水热不良地质体大地电磁场特征为研究对象,利用大地电磁测深多测点-多频点阻抗张量成像分析,分解出电性主轴统计玫瑰图、频率分布云图、测点分布云图及构造维性参数等进行大地线性构造识别,利用精细二维反演技术推测地质结构特征,对不良地质体进行成像,为川藏铁路隧道选线提供地球物理参考。得出结论为:拟建隧道处大地构造二维性强,适宜开展二维大地电磁测深作为隧道水热勘察手段;通过查明研究区构造特征,推测出了研究区热泉群深部地热运移模式机理,且该热害影响茶洛隧道建设的可能性很小,只有在杂马岗-毛垭坝断裂与隧道位置交汇处存在一定规模的水害影响。  相似文献   

12.
李文江  朱永全  刘志春 《岩土力学》2006,27(Z1):377-380
温福铁路琯头岭隧道下穿既有同三高速公路琯头岭隧道,两隧道平面交角约36°,新建铁路隧道顶板距既有高速公路隧道底板仅2.91 m。根据新建铁路隧道近接既有高速公路隧道施工的实际情况,对岩石隧道近接施工效应进行了模拟分析,分析结果认为,新建隧道施工对既有隧道结构的应力分布和变形均产生一定影响,施工中应采取必要的超前支护和地层加固措施,以满足既有隧道运营安全的需要;在数值模拟分析的基础上,对隧道施工过程中开挖方法、预支护形式以及减振、隔振等技术措施进行了分析探讨。  相似文献   

13.
峨汉高速廖山隧道地处西南岩溶区,岩溶地质灾害频发。在开展岩溶区地质环境调研的基础上,厘清隧址区岩溶发育特征,浅析隧址区岩溶发育规律及其控制因素,最后探究了岩溶发育的工程效应。结果表明:隧址区岩溶形态多样,呈现多尺度、多样化、密集性发育的特征;岩溶在控溶因素的耦合作用下表现出显著的选择性、方向性、分层性、不均匀性以及系统连贯性等规律,其中地层岩性及其组合情况是物质基础,地形地貌与地质构造特征是主导条件,而水文地质条件是决定性因素;岩溶发育的工程效应表现在隧洞稳定性、岩溶涌水突泥和全寿命周期内的影响三个方面,不良岩溶地质体及岩溶富水空间的存在极易诱发洞身大变形、隧底岩溶塌陷等稳定性问题,以及局部静态岩溶水突出与湖水倒灌等涌水突泥灾害,甚至对隧道结构在运营期内的稳定性和耐久性造成不利影响。   相似文献   

14.
在天陇铁路勘察设计工作中,发现上倪滑坡是新建天水至陇南铁路一处控制性不良地质体。本文在充分获取地质资料的基础上,从地形地貌角度出发,结合其地层岩性特征,分析了滑坡成因,认为上倪滑坡在北侧和南侧各存在一个软弱面,滑坡整体稳定性较差,尤其是滑坡北侧危险性较大。通过力学计算,显示该滑坡自然状态下能够保持相对稳定,但在地震或暴雨天气下发生滑动的可能性极大,对线路工程具有严重影响。经过对三种线路方案的综合比选,建议以深埋隧道形式从后壁通过上倪滑坡,保证工程安全性。  相似文献   

15.
山岭隧道工程具有隐蔽性、施工复杂性、地层条件和周围环境不确定性等特点,采用科学的勘察方法,是查明隧道岩土体工程地质条件的有效手段。本文以海淀区西山隧道为依托,针对隧道工程勘察中的关键地质问题,运用工程地质测绘、钻探、工程物探、水文地质勘查等综合勘察方法,有效地查明隧址区的地质构造、岩土体结构和地下水分布特征,全面、客观地评价隧道进出口段边坡及仰坡稳定性、隧道围岩质量与稳定性、隧道涌水量、地应力及有害气体等工程地质问题,并针对不良地质现象提出防治对策,以期为工期紧张、地形困难且日趋增多的山岭隧道工程地质勘察,提供可以借鉴的模式和方法。  相似文献   

16.
富水黄土隧道施工开挖后含水率增加对隧道工程施工影响较大,前人建立了多种以黄土含水率为指标的工程措施判别标准,但对于黄土含水率的变化原因及时空变化特征缺乏系统研究。银西高铁驿马一号隧道不同工况下含水率的变化特征表明,自然渗流状态下隧道洞身黄土含水率平均为25.9%,局部为软塑;施工排水阶段受渗涌水影响,黄土含水率平均上升到31.3%,下拱腰上升到32.2%,引起了隧底软化、掌子面滑塌失稳、围岩稳定性变差等问题;采取地表降水后,黄土含水率下降为25.4%,改善了黄土的物理性质,确保了隧道施工安全与进度;水位恢复后,黄土含水率平均上升到29.4%,拱顶与上拱腰变化较小,下拱腰达到了37.2%。研究认为地下水渗流变化将使得隧道洞身黄土含水率变幅达15%~33%,通过控制地下水渗流作用可以达到隧道安全施工的目的。  相似文献   

17.
岩溶隧道突涌水危险性评价的属性识别模型及其工程应用   总被引:6,自引:0,他引:6  
岩溶突涌水是岩溶地区隧道建设中的主要地质灾害之一,为有效控制岩溶隧道突水涌泥风险、确保隧道建设安全,基于属性数学理论建立了岩溶隧道突涌水危险性评价的属性识别模型。首先,根据隧址区岩溶水文地质及工程地质条件,选取地层岩性、不良地质、地下水位、地形地貌、岩层产状、可溶岩与非可溶岩接触带及层间与层间裂隙等作为属性评价的一级指标,其中不良地质情况分为含水构造、岩溶水系统和断层破碎带3个二级指标。通过对典型岩溶隧道突涌水实例的系统收集与整理分析,采用频数统计法确定一级评价指标所占权重;采用层次分析法构造判断矩阵确定二级评价指标的权重;其次,对评价指标进行属性测度分析,通过构建各评价指标的属性测度函数以计算单指标属性测度及样本综合属性测度;最后应用置信度准则对隧道突涌水危险性进行属性识别。在工程应用中,采用建立的属性识别模型对三峡翻坝高速公路鸡公岭隧道突涌水危险性进行评价,评价结果与现场施工情况吻合较好,为岩溶隧道突涌水危险性评价提供了一种有效途径。  相似文献   

18.
针对复杂地质条件下深埋隧道精细应力场准确反演以及主要地质条件对地应力场影响问题,以滇西南双江至沧源高速姜染山隧道为例开展研究。采用精细DEM数据、实测地质资料建立隧址区精细地质模型,以地应力实测数据和GPS速度场数据作为联合约束条件,开展姜染山隧道工程区精细地应力场反演计算,揭示了隧址区精细应力场特征及主要地质条件影响作用。结果表明:隧道区模拟变形速度场与GPS观测结果基本一致,模型能够较好反映工程区现今构造应力环境;隧址区地应力场存在应力水平西高东低、主应力方向局部偏转的特征,近E-W向的小黑江断裂对研究区地应力场的影响主要表现为造成主应力方向小幅偏转,未造成应力量值急剧变化,局部次级断裂和地形叠加影响作用有限;隧道沿线最大主应力在7.47~27.23 MPa之间,中间主应力在1.59~15.12 MPa之间,最小主应力在0.01~6.71 MPa之间,隧道沿线应力水平总体上未表现出明显异常特征;基于反演精细应力场数据的岩石应力强度比方法计算结果显示,现今地应力条件下,隧道岩石强度应力比结果总体在0.20~0.48之间,表明隧道围岩整体为无岩爆和轻微岩爆情况。本研究实例表明,复杂地质...  相似文献   

19.
通过工程实例,简单介绍了新中梁山隧道勘察采用地质测绘、地面物探以及工程钻探等手段,查明了隧址区断层的平面分布位置及断破碎带的深度、厚度、隧道围岩完整性等,为施工图设计提供了可靠的地质依据。施工揭露的地质条件与勘察成果高度吻合,表明上述勘察方法与手段行之有效,可供类似工程参考。  相似文献   

20.
内昆铁路为国家I级单线铁路,北起成渝铁路的内江站、南至昆明,其中云南水富至贵州梅花山段为新建段,全长357.643 km。新建河谷段不良地质极其发育,主要分布于水富至大关段,影响和控制着线路方案选择的主要工程地质问题有滑坡、岩堆、危岩落石、泥石流、“顺层”等。内昆线在勘察设计中,对河谷(大型)不良地质体及集中发育分布地段线路方案进行了由浅入深、由宏观至局部的方案研究和比选,采取了“裁弯取直”、“内移作隧”、“外移设桥”等不同工程类型的方案比选,方案多采取绕避。对一些难以绕避的,采取对通过该处具体线位的比选,选择有利于稳定的方案,并采取桩、锚索、挡墙等工程防治措施;比选累计长度逾50 km,在线路方案选择中充分考虑地质因素,仅因地质问题提出的改线地段达20余处,充分体现了地质选线的重要性。内昆线施工开挖揭示及结合竣工工程现状,表明河谷地段线路方案的工程地质比选是合理的,工程措施是有效和可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号