首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a cross-section through the southern arm of the Cantabrian Zone, several duplexes have been identified below the Esla Nappe, which is the uppermost and main thrust sheet of the area. The folds deforming the Esla Nappe are culmination walls linked to frontal and lateral ramps belonging to the lower thrust sheets. The thrust sequence can be established on the basis of quantitative analysis of displacement transfer and out of sequence thrusting. The primitive footwall ramps of the Esla Nappe Region were often subsequently broken by décollements developed in successively lower stratigraphic levels of these footwalls. The kinematics of the lowest duplex are more complicated than those of typical duplexes described elsewhere: some thrusts transfer only part of their displacement to the roof thrust, while the remaining part is accommodated along the higher thrusts of previously emplaced duplexes, cutting out of sequence one or more floor or roof thrusts. Cumulative displacement of the thrusts in this region is about 90 km, giving a present thickness 3 times that of the original pre-orogenic sequence, together with a translation of at least 60 km, for the synorogenic basin.  相似文献   

2.
Duplexes are a common feature in thrust belts at many scales. Their geometries vary significantly from antiformal stacks with significant forethrusting in the cover (e.g. southern Pyrennes, Spain) to triangle zones (e.g. foreland Canadian Rockies) to low-displacement individually spaced ramp-anticlines (e.g. Sub-Andean thrust belt, Bolivia). We present a series of physical experiments demonstrating that the strength of the décollements relative to that of the intervening and overlying rock layers plays a significant role in controlling the duplex style. The models comprise brittle layers made of dry quartz sand and décollements made of two types of viscous silicone polymers. The strength of the décollements in the models is a function of the shortening rate applied to the model. The relative strength of the décollements and surrounding rocks affects the development of active- or passive-roof duplexes (triangle zones). It also affects the amount of translation of individual thrust blocks and the spacing of thrust ramps, which in turn determine if a duplex evolves into an antiformal stack or into individually spaced ramp-anticlines. Model results indicate that specific associations of structural features form systematically under similar rheological and boundary conditions. The presence of relatively strong décollements promotes local underthrusting of the cover, individual ramp-anticlines, internal deformation of thrust sheets, low early layer-parallel shortening, and sequential towards-the-foreland propagation of structures. Weak décollements promote forethrusting of the cover, antiformal stacks, coeval growth of structures, and low internal strain, with the exception of significant early layer-parallel shortening. No underthrusting at a regional scale occurred in any model.  相似文献   

3.
The terminology of structures in thrust belts   总被引:1,自引:0,他引:1  
A review of structures and geometric relationships recognized in thrust belts is presented. A thrust is defined as any contractional fault, a corollary being that thrusts must cut up-section in their transport direction. ‘Flats’ are those portions of a thrust surface which were parallel to an arbitrary datum surface at the time of displacement and ‘ramps’ are those portions of thrusts which cut across datum surfaces. Ramps are classified on the basis of their orientation relative to the thrust transport direction and whether they are cut offs in the hangingwall or footwall of the thrust. Lateral variations in the form of staircase trajectories are joined by oblique or lateral ramps which have a component of strike-slip movement.An array of thrusts which diverge in their transport direction may form by either of two propagation models. These are termed ‘piggy-back’ propagation, which is foreland-directed, and ‘overstep’ propagation which is opposed to the thrust transport direction. An array of thrust surfaces is termed an ‘imbricate stack’ and should these surfaces anastamose upwards a ‘duplex’ will result; the fault-bounded blocks are termed ‘horses’. A duplex is bounded by a higher, ‘roof’ thrust and a lower, ‘floor’ thrust. The intersection of any two thrust planes is termed a ‘branch line’.Thrusts can be classified on the basis of their relationship to asymmetric fold limbs which they cut. A further classification arises from whether a particular thrust lies in the hangingwall or footwall of another one.The movement of thrust sheets over corrugated surfaces, or the local development of thrust structures beneath, will fold higher thrust sheets. These folds are termed ‘culminations’ and their limbs are termed ‘culmination walls’. Accommodation of this folding may require movement on surfaces within the hangingwall of the active thrust. These accommodation surfaces are termed ‘hangingwall detachments’ and they need not root down into the active thrust. This category of detachment includes dip-slip ‘hangingwall drop faults’ which are developed by differential uplift of duplex roofs, and ‘out-of-the-syncline’ thrusts which develop from overtightened fold hinges. Back thrusts, as well as forming as hangingwall detachments, may also form due to layer-parallel shortening above a sticking thrust or by rotation of the hangingwall above a ramp.  相似文献   

4.
The Lewis thrust sheet of the southern Canadian Rocky Mountains contains many spectacular examples of small-scale duplex structures. This paper presents the results of a detailed analysis of such structures found in the Mississippian carbonates of the Banff Formation at Crowsnest Pass, southwestern Alberta.Foreland dipping, hinterland dipping and antiformal stacked duplexes are found in the hangingwall of the Lewis thrust. Out-of-sequence thrusts, back thrusts and folds that push out of the plane of the cross-section, termed lateral lobes, give rise to complex internal geometries. Dominant slip vectors are towards 080–090° but the complex fault geometries have generated significant variations in slip away from this direction. The duplex structures occur as discrete thrust fault-bounded packages with each package having different slip vectors. The panels above and below the duplex structures show consistent slip vectors towards 080–090° whereas the duplexes exhibit a wide scatter of slip vectors from 350–160°. The stacking of duplexes with many horses can be likened to the stacking of many inverted soup bowls, herein termed turtle back structures, and will involve a wide scatter of slip directions, particularly if the horses are of limited lateral extent. Such a stacking mechanism involving out-of-section movement invalidates the assumption of two-dimensional plane strain in the plane of the cross-section that contains the regional tectonic transport direction. Correctly balanced cross-sections cannot be constructed through such stacked duplex structures as described in this paper.  相似文献   

5.
From surface and subsurface data, line-length and area balancing were used to construct four balanced and restored sections of the Pyrenees. In the Mesozoic cover, a thin-skinned tectonic model is used. In the basement an anticlinal stack geometry is applied for the foreland part of the thrust nappes. We present and discuss three possible models for the deep structures of the belt: a thin-skinned tectonic model, a thick-skinned tectonic model and an inhomogeneous strain model. The thrusts steepen downwards and the displacements die out in ductile deformation deep in the section. Therefore, we use the inhomogeneous strain model and we equal-area balance the surface of the continental crust.Hanging-wall sequence diagrams are constructed taking into account (1) the strong N-S thickness variations of the Mesozoic cover related to the Cretaceous drift of Spain and (2) the related crustal thinning of the North Pyrenean Zone superimposed upon a previous late Hercynian rise of the lower crust.The Moho step at the vertical of the North Pyrenean Fault results from the thinning of the North Pyrenean Zone. The thickening of both the Axial Zone and the North Pyrenean Zone during the Eocene compressional event preserved the step geometry.Calculated values of the minimum shortening range from 55 km in the western part of the belt to 80 km in the eastern part. Most of the shortening occurs south of the North Pyrenean Fault in the eastern part (Axial Zone) and north of the North Pyrenean Fault in the western part (Labourd thrust).  相似文献   

6.
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW–SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW–SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE–WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480–525 °C at 2–4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660–580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle–ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement along transcurrent shear zones and low angle normal ductile shear zones and consequently, development and exhumation of Sibai core complex.  相似文献   

7.
米仓山、南大巴山前缘构造特征及其形成机制   总被引:6,自引:0,他引:6  
在对四川盆地东北部盆山结合部地表地质和石油地球物理资料综合分析的基础上,阐述了米仓山前缘构造、南大巴山前缘构造的几何学、运动学特征;发现了二者的共性和不同,二者均以双重构造为主,通过古生代构造层的叠置,而迅速抬升出露地表,米仓山前缘以被动顶板双重构造为主,即典型的"三角带"构造,南大巴山前缘以主动顶板双重构造为其显著特征;初步分析了原因,区域滑脱层,特别是嘉陵江组-雷口坡组膏盐岩滑脱层及古生界泥页岩滑脱层,构成了顶板和底板逆冲断层,其间的台地相碳酸盐岩构成了断夹块,受米仓山早期基底隆升和侧向挤压,形成了被动顶板双重构造,南大巴山递进挤压变形,形成了主动顶板双重构造。  相似文献   

8.
应用多级平衡恢复原则,对浙西北地区褶皱-冲断构造样式及其组合进行缩短量计算与分析,同时,对前陆褶皱冲断带的变形缩短量和前陆盆地的缩短量及其二者关系进行了探讨,表明后者包容于前者之中.平衡缩短量与构造样式空间展布关系的研究表明前陆褶皱冲断带蕴含了递进变形的复杂过程,记录了造山作用及其挤压变形从初始→发展→顶峰→尾声的连续过程.综合分析表明缩短量自南东向北西呈递减趋势,即向前陆方向缩短量减少,与应变状态向前陆方向减弱是协调一致的.构造平衡及其综合分析是浙西北前陆褶皱冲断带向北西的构造极性的主要制约因素之一.  相似文献   

9.
在过去的25年里,由于许多原因,作为最常见、分布也最广泛的地质构造形迹之一,逆冲断层成为倍受关注的科学研究主题。文中指出,关于逆冲断层及其几何学特征的许多普遍认识(或观念),并不像以往文献中所阐述的那样简单。其中之一的"薄皮"冲断构造是受地层控制的,极少有或者没有结晶基底物的卷入。文中主张,"薄皮"一词只有逆冲板片的几何学形态含义,而不应包含地层意义,并列举了一些完全由结晶岩石所构成的薄皮逆冲构造的例子来说明这一主张。近来,逆冲双重构造成为构造文献中的热点。关于逆冲双重构造的成因,引用得最多的是1982年Boyer和Elliot在其重要论文"逆冲断层系统"中所作的解释。他们认为,双重道冲构造是通过在冲断坡底部发生下盘破裂。新生断裂不断向前扩展并进入先存断层下盘的一系列变形过程中逐渐形成的。根据Boyer和Elliot提出的这种变形过程,将形成一个具有平面状顶板断层的边冲双重构造,这个顶板断层只在活动断坡的顶部是主动向前扩展的。依笔者之见,在实际的构造变形当中,是不可能具备形成平顶过冲双重构造的地质条件的。而能对平顶过冲双重构造形成作出最好解释的是反序(out-of-sequence,OOS)边冲断层的发育,即断层向着主冲断层的后方发展,在先存道冲构造的上部?  相似文献   

10.
The Siwaliks in the foothills of the Himalayas, containing molasse sediments derived from the rising mountain front, represent a foreland fold-thrust belt which was deformed during the continued northward convergence of the Indian plate following the continent-continent collision. In this contribution we present balanced and restored cross sections along a line from Adampur through Jawalamukhi to Palampur in the foothills of the Punjab and Himachal Himalayas using published surface/subsurface data. The cross section incorporates all the rock units of the Sub-Himalaya Zone as well as that of the northern Lesser Himalaya Zone. The structural geometry of the fold-thrust belt in this section is largely controlled by three buried thrusts within the Sundernagar Formation of the Lesser Himalaya Zone. Two of these buried thrusts splay from the basal detachment and delineate a buried horse. Three thrusts towards foreland, including the Main Frontal Thrust (inferred to be a blind thrust in this sector), splay from these buried thrusts. In the hinterland, an anticlinal fault-bend fold was breached by a sequence of break-back thrusts, one of which is the Main Boundary Thrust. A foreland propagating thrust system is inadequate to explain the evolution of the fold-thrust-belt in this section. We show that a “synchronous thrusting” model in whichin-sequence initiation of thrusts at depth combined with continued motion on all the thrusts leading toout-of-sequence imbrication at the upper structural levels better explains the evolution of the fold-thrust belt in the Jawalamukhi section. The estimated shortening between the two chosen pin lines is about 36% (about 72 km).  相似文献   

11.
Detailed (1:60 scale) mapping of the Fort Foster Brittle Zone in the mylonitic Rye Formation of southernmost Maine has revealed the intricate internal duplex structure of a system of probable Paleozoic-age dextral strike-slip faults that have produced abundant pseudotachylyte and minor breccia. The internal configuration of this brittle zone consists of a mosaic of individual pseudotachylyte generation zones as slab-duplex structures. Individual duplex zones are up to 100 m in length and 1 m or less in width and are defined by pairs of layer-parallel slip surfaces along which frictional melts were produced. These slab-duplex structures are interpreted as zones of displacement transfer between long, overlapping, layer-parallel en échelon strike-slip fault surfaces. Contractional duplexes develop layer-parallel compressional structures that tend to shorten and thicken the fault-bounded slabs by the formation of lateral ramps and conjugate faults, kinks and asymmetric folds. Extensional duplexes develop layer-parallel stretching and thinning by the formation of oblique dextral shears, high-angle conjugate pairs and localized fault breccias. The production of pseudotachylyte by friction melting along layer-parallel fault surfaces in these exposures is attributed to rapid slip during paleoseismic events. The rupture structures developed during these events may be characteristic of fault structure and mechanics at near-focal depths in a strike-slip seismogenic zone.  相似文献   

12.
We apply multiple balancing/restoration methods to three examples of fault-bend folds exhibiting increasing levels of complexity and uncertainty. Three methods (the Chamberlin depth-to-detachment calculation, direct measurement of fault displacement, and flexural-slip restoration/balancing) assume that bed lengths and thicknesses (BLT) remain constant during deformation. The area-depth-strain (ADS) method allows bed lengths and thicknesses to vary during deformation. For a kinematic model, the agreement among methods is exact to within measurement error. For an experimental sand model, the disagreement among methods is substantial. The ADS relationship shows that the sand model has significant layer-parallel shortening and an area increase of ∼4%. A previously published interpretation of a seismically imaged fault-bend fold from the Rosario oil field, Venezuela, is nearly line-length balanced, but the ADS relationship indicates small, but significant, anomalies, including an area deficit for the deeper stratigraphic levels. A revised interpretation with a more internally consistent ADS relationship suggests that much of the footwall uplift is real and not a velocity pull-up. Our comparisons of the results of the various balancing/restoration techniques show the resolving power of the ADS method to detect sub-resolution changes in bed lengths and thicknesses and to identify footwall structures overlooked by the constant BLT methods.  相似文献   

13.
Folds and thrust faults formed by layer-parallel shortening coaxial with extensional structures such as normal dip-slip faults and ductile necking structures with orthorhombic fabric symmetry are usual, but little-recognised structures formed within normal dip-slip shear zones bounding rifts. They are generated because of the shear distribution in a zone of progressive deformation and may be later extended and disrupted depending on which part of the strain ellipsoid they may be located. We here describe folds and thrust faults from the southern margin of the Ala?ehir Rift in western Turkey as an opportunity to discuss the properties of pure extension–related structures formed by layer-parallel shortening. Such structures are more commonly generated during the early stages of rifting, when deformation rates are slow and the shear zones broader than those forming later in the life of a rift when strain rates are usually higher. Such structures have commonly been mistaken for witnesses documenting regional episodes of shortening rather than as integral parts of the extensional structures forming rifts. Not all layer-parallel shortening-related structures therefore indicate regional shortening. We plead that hasty statements concerning the meaning of geological structures at all scales be avoided before a thorough understanding of bulk strains that have affected a region are properly understood.  相似文献   

14.
An examination of thrust structures in the eastern part of the Dauphinois Zone of the external French Alps (referred to in the literature as the Ultradauphinois Zone) shows that major basement thrusts climb up section to produce cover-basement synclines. These thrusts also climb laterally and are continuous with thrust in the cover rocks. The external basement massifs are recognized as thrust sheets with variably deformed and thrust cover sequences. The distinction made in the previous literature between the Dauphinois and Ultradauphinois Zones is no longer tenable. Cover thrusting proceeded by both smooth slip and rough slip, the latter producing a duplex of cover thrust slices. Restoration of this duplex indicates that a shortening of 70 km in the cover occured during its formation. Possible errors in this estimate include uncertainties in the original stratigraphic thickness and in the overall shape of the duplex. Another duplex is thought to have formed at a basement ramp created by the presence of an early basement normal fault. Partial footwall collapse of this basement ramp gave rise to a basement horse at the bottom of the duplex. The overall relation between cover and basement thrusting is indicated using a hanging wall sequence diagram. Recent geophysical studies suggest that the basement thrusts developed from a mid-crustal décollement which passes down dip to offset the Moho. Model studies of thin-skinned tectonics may not be appropriate to such thrust geometries.  相似文献   

15.
Existing balancing methods utilizing excess area in cross sections rely heavily on the presence of a perfectly horizontal décollement surface. This is rarely the case in thrust belts, and the commonly observed hindward dip of floor thrusts imparts uplift and internal strain to the thrust wedge during transport. A modified excess area balancing technique is presented to account for hinterland dipping floor thrusts.  相似文献   

16.
The Lesser Himalayan duplex (LHD) is a prominent structure through much of the Lesser Himalayan fold–thrust belt. In the Darjeeling - Sikkim Himalaya a component of the LHD is exposed in the Rangit window as the Rangit duplex (RD). The RD consists of ten horses of the upper Lesser Himalayan Sequence (Gondwana, Buxa, Upper Daling). The duplex varies from hinterland-dipping in the north, through an antiformal stack in the middle to foreland-dipping in the south. The Ramgarh thrust (RT) is the roof thrust and, based on a balanced cross-section, the Main Himalayan Sole thrust is the floor thrust at a depth of ~ 10 km and with a dip of ~ 3.5° N.Retrodeformation suggests that the RD initiated as a foreland-dipping duplex with the Early Ramgarh thrust as the roof thrust and the RT as the floor thrust. The RT became the roof thrust during continued duplexing by a combination of footwall imbrication and concurrent RT reactivation. This kinematic history best explains the large translation of the overlying MCT sheets. The restoration suggests that RD shortening is ~ 125 km, and the original Gondwana basin extended ~ 142 km northward of its present northernmost exposures within the window.  相似文献   

17.
The External Sierras of the southern Pyrenees represent the frontal thrust complex of a south Pyrenean thrust sheet which was active from the late Eocene to early Miocene. Triassic, Cretaceous and Eocene limestones, sandstones and mudstones involved in this thrusting can be divided into eight mappable units. Mapping and the construction of serial sections across the Western External Sierras show that the amount of southward translation of the thrust sheet increases eastwards from the thrust tip. There is an increased slip of at least 5km along 30km of the External Sierras. Structures show a progressive development from a “primitive” form in the west to a more complex thrust and fold geometry in the east. The general pattern is one of thrust and fold development in response to compression from the north. Backthrusting has occurred on the forward side of the frontal thrust complex. These backthrusts cut up section towards the north and form triangle zones where they intersect thrusts which cut up sections towards the south. The latest thrust movements deformed early Miocene fanglomerates and were out-of-sequence reactivations of earlier thrusts.  相似文献   

18.
《Gondwana Research》2010,17(3-4):697-715
The Lesser Himalayan duplex (LHD) is a prominent structure through much of the Lesser Himalayan fold–thrust belt. In the Darjeeling - Sikkim Himalaya a component of the LHD is exposed in the Rangit window as the Rangit duplex (RD). The RD consists of ten horses of the upper Lesser Himalayan Sequence (Gondwana, Buxa, Upper Daling). The duplex varies from hinterland-dipping in the north, through an antiformal stack in the middle to foreland-dipping in the south. The Ramgarh thrust (RT) is the roof thrust and, based on a balanced cross-section, the Main Himalayan Sole thrust is the floor thrust at a depth of ~ 10 km and with a dip of ~ 3.5° N.Retrodeformation suggests that the RD initiated as a foreland-dipping duplex with the Early Ramgarh thrust as the roof thrust and the RT as the floor thrust. The RT became the roof thrust during continued duplexing by a combination of footwall imbrication and concurrent RT reactivation. This kinematic history best explains the large translation of the overlying MCT sheets. The restoration suggests that RD shortening is ~ 125 km, and the original Gondwana basin extended ~ 142 km northward of its present northernmost exposures within the window.  相似文献   

19.
Bir M'Cherga-Ain Asker area, situated in the hinterland of Zaghouan thrust (Tunisian dorsal), was the land example treated with metric and cartographic scale in order to identify duplex genesis criteria and to include thrusting tectonics associated with tear faults, which are in fact the directory response generating duplex structures identified in outcrop for the first time through Tunisia in this case. Given its geological location between the "dôme" and the "dorsal" zone of Tunisia, this area was the most exposed to a highly paleostress history expressed by a huge fault system remobilization and reactivation through several tectonic events from NE–SW middle Cretaceous distension to a NW–SE and NNW–SSE Paleogene compression. Regarding fault planes generated analysis, they show numerous streak generation of normal, strike-slip, and reverse faults that go with geodynamic and paleostress evolution of the studied area; we note that each streak generation is perfectly matching with one of the tectonic event (mentioned before) affecting the area. In this paper, we analyze duplex structure elaboration scenarios to assess the involved kinematics and their geometrical recognition criterious. We propose to discuss the causes of duplex structures installation in a thrust belt system and the predictable geometrical styles after its installation on foreland or backland. Using the geometrical criteria acquired through this analysis, we will show that such, however, exceptionable structures exist on the land, and that they record the mechanisms of their genesis linked to the tear faults acting in this case. We describe "tear faults" as the sliding breaks which disunite two compartments during deformation, allowing them to undergo different independent deformations in their drawing and their width (for example more or less stretched folds). These types of faults differ from that of the true stick-slip faults, which slice and shift preformed structures (it's even this shift which makes it possible to highlight them); here, there are no shift but dissimilarity of the structures on both sides of the fault; therefore, deformations are the direct results of displacements; they are expressed in thrust belts by ramp folds, intense internal deformations, and even by complex duplex structures. A duplex feature that is not mainly studied is made up by tilted imbricate sedimentary sequences (or horses), separated by link thrusts and underlined respectively at their tops and bottoms by roof and floor thrusts. Imbrications cause a shortening, a thickening, or a thinning of stratigraphic columns and even its crushing and inverting. In thrust belts, duplexes are usually set up following two or even more deformational events; those structures start typically with decollement and imbricate sedimentary unit ones which are made cover by a roof thrust sometimes visible at outcrop. Through this paper, we suggest to discuss geometrical duplex criteria, and we will try a zooming through different scales, from regional to local one in order to show how the shape (expression) of the deformation differs.  相似文献   

20.
Surface and subsurface data are integrated to characterize the structural architecture of the Marathon fold and thrust belt in west Texas. Multiple detachment levels are present within the thrust belt and result in distinct structural domains. In addition to the basal décollement, whose stratigraphic position varies along strike, we recognize a regionally extensive detachment zone in the late Mississippian to early Pennsylvanian lower Tesnus Formation. The Lower Tesnus Detachment forms a structural domain boundary that can be observed along strike in the surface data and at depth in the subsurface. The stratigraphic intervals above and below this detachment exhibit characteristic patterns of deformation. The Lower Tesnus Detachment is folded by imbrication and the formation of duplexes in the early Mississippian to Ordovician section, suggesting that the detachment may have initially formed as a perched décollement in the foreland that was subsequently exploited as a roof thrust in a duplex system as deformation progressed in a break-forward sequence and older strata were incorporated into the toe of the allochthonous wedge. The structural model presented here for the Marathon region may be applicable across much of the Ouachita orogenic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号