首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Balanced and restored cross-sections through the central and eastern Pyrenees, constructed using both surface and borehole data, demonstrate the presence of c.18km of shortening above a flat lying N-directed Alpine décollement surface. Hangingwall diagrams show how the North Pyrenean satellite massifs are culminations within this thrust system. Pre-thrusting structures such as subhorizontal stretching lineations in the North Pyrenean Fault zone became rotated above these culminations as the North Pyrenean Fault was cut by Alpine thrusts. Stratigraphic evidence demonstrates that N-directed thrust movements occurred between mid Eocene and Oligocene time, and this is similar to the age of major S-directed thrust movements on the south side of the Axial Zone. The N-directed thrust system probably originated as a series of backthrusts to the dominant S-directed structures.  相似文献   

2.
The Cotiella Nappe includes one of the most important Mesozoic basins of the southern Pyrenees, which was subsequently inverted during the Tertiary compression. The Late Cretaceous Cotiella Basin is here interpreted as the western sector of the Cretaceous Cotiella-Bóixols basin (100᎜ km wide), located in the central part of the southern Pyrenees. The present-day complex structure of the Cotiella Nappe is the result of the inversion process, linked to the emplacement of basement thrust sheets of the Axial zone. In its western sector, the Cotiella Nappe consists of several superimposed thrust sheets, with complex geometry, becoming simpler towards the east, with a single thrust surface and smaller displacements. The Cotiella-Bóixols basin underwent strong subsidence during the Early Cretaceous at its eastern sector, and its depocentre migrated westward during the Late Cretaceous. The reconstruction of the sedimentary basin to the pre-compressional stage shows that during the Mesozoic the Cotiella-Bóixols basin was located to the south of a basement high, which later became the Pyrenean Axial Zone. From a balanced cross section, it can be inferred that the Cotiella, north-verging extensional system was connected with the north-Pyrenean rift by means of a 10-km deep horizontal detachment. The compressional Tertiary detachment within the upper crust was shallower than the extensional detachment, and individualised four basement thrust sheets, which form the Axial Zone antiform.  相似文献   

3.
A ~400 km long deep crustal reflection seismic survey was acquired in central Victoria, Australia, in 2006. It has provided information on crustal architecture across the western Lachlan Orogen and has greatly added to the understanding of the tectonic evolution. The east-dipping Moyston Fault is confirmed as the suture between the Delamerian and western Lachlan Orogens, and is shown to extend down to the Moho. The Avoca Fault, the boundary between the Stawell and Bendigo Zones, is a west-dipping listric reverse fault that intersects the Moyston Fault at a depth of about 22 km, forming a V-shaped geometry. Both the Stawell and Bendigo Zones can be divided broadly into a lower crustal region of interlayered and imbricated metavolcanic and metasedimentary rocks and an upper crustal region of tightly folded metasedimentary rocks. The Stawell Zone was probably part of a Cambrian accretionary system along the eastern Gondwanaland margin, and mafic rocks may have been partly consumed by Cambrian subduction. Much of the Early Cambrian oceanic crust beneath the Bendigo Zone was not subducted, and is preserved as a crustal-scale imbricate thrust stack. The seismic data have shown that a thin-skinned structural model appears to be valid for much of the Melbourne Zone, whereas the Stawell and Bendigo Zones have a thick-skinned structural style. Internal faults in the Stawell and Bendigo Zones are mostly west-dipping listric faults, which extend from the surface to near the base of the crust. The Heathcote Fault Zone, the boundary between the Bendigo and Melbourne Zones, extends to at least 20 km, and possibly to the Moho. A striking feature in the seismic data is the markedly different seismic character of the mid to lower crust of the Melbourne Zone. The deep seismic reflection data for the Melbourne Zone have revealed a multilayered crustal structure that supports the Selwyn Block model.  相似文献   

4.
The structure of the eastern Pyrenees consists mainly of south-directed thrusts involving basement and cover rocks. An antiformal stack developed by the piling up of basement thrust sheets which outcrop in the Axial zone. These structures account for a thin-skinned thrust model rather than a vertical fault model in which the Axial zone would be essentially autochthonous, and the North-Pyrenean fault the axial plane of a fan thrust system. New data from the Eastern Pyrenees and the thin-skinned model suggest that(1) the structure east of the Pedraforca nappe is similar to that of the Central Pyrenees; (2) the cover rocks of the South-Pyrenean units and of the Axial zone-after restoration—built up a northwards-thickening prism consistent with the existence of a unique Pyrenean sedimentary basin during Mesozoic time; (3) the Axial zone is only a complex antiformal stack developed as a part of South-Pyrenean system related to the Paleogene thrusting-tectonics. The Axial zone palaeogeographic area had no special meaning during Mesozoic time.  相似文献   

5.
华北克拉通中生代破坏前的岩石圈地幔与下地壳   总被引:23,自引:11,他引:12  
翟明国 《岩石学报》2008,24(10):2185-2204
华北克拉通是世界上最古老的克拉通之一,有 38亿年的古老陆壳存在,它经历了复杂的地质变迁,在太古宙末(约2500Ma)基本完成克拉通化,在古元古代(约1900~1850Ma)整体受到了高级变质作用,最终完成了克拉通化。它的东部在中生代发生了重大的构造机制的转变,克拉通基底发生了破坏、置换和再造。在太行山重力梯度带以西的华北克拉通受中生代构造转折的改造程度较低,它们的下地壳和岩石圈地幔结构,大致保持了华北克拉通破坏前的状态。前寒武纪麻粒岩地体代表了掀翻抬升到地表的古元古代下地壳,出露地表的时间大致在1850~1800Ma。中、新生代火山岩中的地幔和麻粒岩捕虏体代表了现代的岩石圈地幔和下地壳的岩石。岩石学、地球化学和地球物理的研究,推测华北克拉通西部的岩石圈厚约200km,地壳厚度约45km~50km,是在古元古代(约1.9Ga)时期终极克拉通化作用形成的,其厚度和结构与全球典型的元古宙克拉通岩石圈相同。而太行山重力梯度带以东的克拉通岩石圈地幔受到程度不等的交代、改造、置换和减薄,下地壳大规模重熔,地壳厚度也发生减薄,指示了强烈的壳幔解耦、物质交换和重新耦合的过程。  相似文献   

6.
The Early Cretaceous hyperextended Mauléon rift is localized in the north‐western Pyrenean orogen. We infer the Tertiary evolution of the Mauléon basin through the restoration of a 153‐km‐long crustal‐scale balanced cross‐section of the Pyrenean belt, which documents at least 67 km (31%) of orogenic shortening in the Western Pyrenees. Initial shortening, accommodated through inversion of inherited crustal structures, led to formation of a pop‐up structure, in which the opposite edges underwent similar shortening with different tectonic reactivation styles, localized versus. distributed. Underthrusting of the Iberian margin accommodated further convergence, forming the Axial Zone antiformal stack of crustal nappes within a lithospheric pop‐up. Thin‐skinned and thick‐skinned structures propagated outward from the heart of this pop‐up, a block of strong mantle acting as a buttress inhibiting complete inversion of the Mauléon rift basin.  相似文献   

7.
李海龙  张长厚  邹云  邓洪菱  马君 《地质通报》2008,27(10):1698-1708
燕山中部冀东遵化、迁西、青龙一带以太古宇深变质结晶岩系为核部的东西向构造形迹长期以来被认为是一个复式背斜构造,近年来又有学者提出它是一个中生代变质核杂岩。这2种不同认识涉及到华北克拉通北部中生代区域大地构造演化和稳定克拉通内部大型基底结晶岩系的剥露机制问题。对马兰峪背斜南翼和西部倾伏端盖层岩系开展的详细构造研究表明,变形总体表现为连续的褶皱变形及伴生的逆冲构造;构造样式表现为基底卷入式的厚皮构造与盖层内部软弱岩系控制的薄皮构造共存的特征;变形机制表现为顺层挤压导致的纵弯弯曲和相关的断裂构造;近南北向的缩短率介于16%~27%之间。盖层岩系中未发现变质核杂岩构造模型所预期的系列高角度正断层。基底与盖层不整合面接触带尽管在后期构造变形过程中曾经发生过局部的差异性滑动,但并不是造成大规模构造剥蚀和地壳柱切失的剥离断层。因此,冀东马兰峪背斜不是中生代的变质核杂岩,而是水平挤压背景下基底结晶岩系与盖层共同卷入纵弯褶皱变形的厚皮式褶皱构造。  相似文献   

8.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

9.
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt.

The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults.

The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated.  相似文献   

10.
本文通过对中国东部海域地质地球物理资料进行综合分析,特别是近十年来海洋区域地质调查最新采集的地球物理资料,梳理了研究区基础地质特征,探讨了陆区大地构造单元在海区的延伸。研究表明:渤海和北黄海为典型的华北型基底并发育华北型沉积盖层;南黄海为典型的扬子型基底并发育扬子型沉积盖层;东海陆架为华夏型基底,东部很可能发育晚古生代沉积盖层,其上叠置了晚三叠世以来沉积盖层。下扬子地块西侧通过左旋走滑的郯庐断裂带,东侧通过右旋走滑的朝鲜西缘断裂带揳入华北地块中,朝鲜西缘断裂带兼具走滑和俯冲带性质。整个朝鲜半岛无论从变质基底和沉积盖层来看都类似于华北地块。扬子地块在北侧和东侧都发育“鳄鱼嘴”式构造,扬子地块的下地壳向北、向东俯冲于华北地块之下,而上地壳则仰冲于华北地块之上。江绍结合带表现为宽50~70 km的NE向高磁异常条带,进入杭州湾后走向转为近EW向,经舟山群岛、大衢山岛及附近岛屿,过东海陆架虎皮礁凸起向东进入日本九州岛。虎皮礁凸起的岩石很可能类似于大衢山岛,为一套俯冲增生杂岩。  相似文献   

11.
大别与苏鲁造山带之间的郯庐断裂带张八岭隆起段,构成了华北与扬子板块之间的断裂边界。该边界带的深部结构状态长期以来存在着不同的认识。本文利用张八岭隆起带沿线出露的晚中生代岩浆岩中继承锆石U-Pb年代学信息,结合地球物理资料及Nd、Pb、Hf同位素资料,分析了其深部的岩浆源区属性及结构状态。张八岭隆起带北段晚中生代岩浆岩继承锆石年龄以1.9~2.7Ga为主,最大峰值年龄为2.5Ga;南段继承锆石年龄以2.2~2.6Ga为主,峰值年龄也为2.5Ga;郯庐断裂带庐江段则以含大量新元古代锆石为特征,在0.7Ga形成显著的分布峰值,并有早元古和少量太古代年龄信息。分析结果表明,张八岭隆起带北段的晚中生代岩浆岩源区为华北下地壳,南段的源区兼有华北和扬子陆壳的信息,而更南部庐江段则以扬子地壳源区为特征。电法剖面揭示,郯庐断裂主边界在张八岭隆起带下向南东倾斜,从而深部存在华北地壳;而南部庐江段转变为向北西陡倾,从而深部皆为扬子地壳。郯庐断裂深部产状特征支持其印支期应为斜向汇聚边界。而其中三叠纪继承锆石的缺失指示隆起带上变质岩应为原地岩石,而非来自大别造山带。  相似文献   

12.
华北古大陆克拉通解体、岩石圈减薄的深部过程,对于建立中国大陆中新生代演化动力学模型是亟待深入研究的重要科学问题,因而"华北克拉通破坏"也就成了当前学术界的热门话题。为了研究"华北克拉通破坏"首先需要给出较准确的华北岩石圈结构,这必须依靠包括超宽频带高精度大地电磁深探测在内的现代深部地球物理探测技术。2001和2005年在华北地区东部布置了应县—商河(HB-MT01)、文水—日照(HB-MT02)大地电磁测深剖面进行研究。研究结果表明,在华北地区东部沿地壳-上地幔探测剖面可划分为4个电性区,区内发现有下地壳高导带和上地幔高导层存在。文中依据研究区壳-幔电性结构特征,推断华北地区东部地壳和上地幔之间发生过大规模构造运动,导致壳-幔之间存在解耦现象。研究结果还发现,华北东部确实存在岩石圈减薄区,其岩石圈厚度约50~80km厚。岩石圈明显减薄的区域包括北太行山隆起、华北裂谷带北部和鲁西断隆,其范围比原先认识到的要复杂,并非以太行山重力梯度带为界划分东、西两区,简单地认为东区即是减薄区。此外,在华北地区东部的现代高精度大地电磁探测结果也进一步证明了地球物理观测对于大陆动力学研究的重要性,这使人们更加认识到在今后的研究中必须强调地球物理-地质-地球化学之间的有机结合。  相似文献   

13.
Horizontal extension of a previously thickened crust could be the principal mechanism that caused the development of widespread extensional basins throughout the North China block (Hua-Bei region) during the Mesozoic. We develop here a regional tectonic model for the evolution of the lithosphere in the North China block, based on thin sheet models of lithospheric deformation, with numerical solutions obtained using the finite element method. The tectonic evolution of this region is defined conceptually by two stages in our simplified tectonic model: the first stage is dominated by N–S shortening, and the second by E–W extension. We associate the N–S shortening with the Triassic continental collision between the North and South China blocks, assuming that the Tan-Lu Fault system defines the eastern boundary of the North China block. The late Mesozoic E–W extension that created the Mesozoic basin systems requires a change in the regional stress state that could have been triggered by either or both of the following factors: First, gravitational instability of the lithosphere triggered by crustal convergence might have removed the lower layers of the thickened mantle lithosphere and thus caused a rapid increase in the local gravitational potential energy of the lithosphere. Secondly, a change to the constraining stress on the eastern boundary of the North China block, that might have been caused by roll-back of the subducting Pacific slab, could have reduced the E–W horizontal stress enough to activate extension. Our simulations show that widespread thickening of the North China block by as much as 50% can be explained by the collision with South China in the Triassic and Jurassic. If convergence then ceases, E–W extension can occur in the model if the eastern boundary of the region can move outwards. We find that such extension may occur, restoring crustal thickness of order 30 km within a period of 50 Myr or less, if the depth-averaged constitutive relation of the lithosphere is Newtonian, and if the Argand number (the ratio of buoyancy-derived stress to viscous stress) is greater than about 4. Widespread convective thinning of the lithosphere is not required in order to drive the extension with these parameters. If, however, the lithospheric viscosity is non-Newtonian (with strain-rate proportional to the third power of stress) the extensional phase would not occur in a geologically plausible time unless the Argand number were significantly increased by a lithospheric thinning event that was triggered by crustal thickening ratios as low as 1.5.  相似文献   

14.
华北克拉通晚中生代壳-幔拆离作用: 岩石流变学约束   总被引:6,自引:5,他引:1  
大陆岩石圈的流变学结构对于岩石圈深部过程(壳/幔过程)有着深刻的影响,直接表现在岩石圈壳-幔结构与浅部构造上.本文注意到华北克拉通晚中生代岩石圈减薄期间地壳的伸展、拆离与减薄在不同地区的宏观、微观构造及地壳岩石流变学等方面的差异表现与区域变化,以及现今和晚中生代时期岩石圈厚度的不均匀性.讨论了以水为主体的地质流体的存在对于岩石圈流变性的影响.综合克拉通东部与西部地壳/地幔厚度变化特点以及下地壳和上地幔含水性特点,阐述了晚中生代时期华北克拉通岩石圈内部壳幔耦合与解耦的规律,提出了华北岩石圈壳-幔拆离作用模型以解释华北克拉通晚中生代岩石圈减薄的基本现象与深部过程.提出区域性伸展作用是岩石圈减薄的主要动力学因素,东部地区在晚中生代伸展作用过程中壳-幔具有典型的解耦性,上部地壳、下部地壳和岩石圈地幔的变形具有显著差异性.而西部区壳幔总体具有耦合性,下地壳与岩石圈地幔共同构成流变学强度很高且难以变形的岩石圈根.  相似文献   

15.
燕山西段及北京西山晚中生代逆冲构造格局及其地质意义   总被引:18,自引:0,他引:18  
燕山西段及北京西山晚中生代逆冲构造集中分布于三个NE向带状区域中,三个带状区域的间隔约为60km,延伸长度自东向西依次减小,呈现出明显的逆冲构造发育的三角形区域。三角形区域的北界为“内蒙地轴”南缘断裂西段,南西界与中元古代早期古盆地构造边界一致,东南部边界则与华北克拉通基底新太古代-古元古代中部碰撞造山带的东部边界大致吻合。逆冲构造具有基底卷入的厚皮构造与盖层内部的薄皮构造共存的构造属性,上盘运动方向总体指向NW,逆冲构造变形主要发生在140~130Ma。逆冲后伸展构造变形以发育在主要逆冲构造后侧为主,并利用先存构造薄弱带。先存构造薄弱带在有利区域构造应力和其他影响因素的作用下导致的构造活化,可能是燕山板内构造变形的重要机制之一。主要逆冲变形前后均有大规模岩浆活动的构造-岩浆时空组合表明,收缩构造造成地壳加厚及由此引发的深部地壳重熔,难以作为统一的机制对这些特征进行合理阐释,需要有其他方式的深部热物质与能量的参与。北京西山霞云岭—长操、教军场—大安山以及马兰—胡林等逆冲断层,是一个统一的大规模的逆冲构造的不同组成部分,具典型、连续的断坪-断坡结构,它形成于髫髻山组(148~146Ma)之后、南窖闪长岩(128Ma)侵入之前,而不是“印支期(或更早)”,它与南大寨—八宝山逆冲构造构成北京西山晚中生代逆冲构造格局。区域性的NW-SE向收缩构造作用及南大寨—八宝山逆冲构造上覆岩席的构造加载,可能是北京西山的蓝晶石带和硬绿泥石带为代表的高压动力变质作用的基本构造原因。  相似文献   

16.
Eastern Anatolia consisting of an amalgamation of fragments of oceanic and continental lithosphere is a current active intercontinental contractional zone that is still being squeezed and shortened between the Arabian and Eurasian plates. This collisional and contractional zone is being accompanied by the tectonic escape of most of the Anatolian plate to the west by major strike-slip faulting on the right-lateral North Anatolian Transform Fault Zone (NATFZ) and left-lateral East Anatolian Transform Fault Zone (EATFZ) which meet at Karlıova forming an east-pointing cusp. The present-day crust in the area between the easternmost part of the Anatolian plate and the Arabian Foreland gets thinner from north (ca 44 km) to south (ca 36 km) relative to its eastern (EAHP) and western sides (central Anatolian region). This thinner crustal area is characterized by shallow CPD (12–16 km), very low Pn velocities (< 7.8 km/s) and high Sn attenuation which indicate partially molten to eroded mantle lid or occurrence of asthenospheric mantle beneath the crust. Northernmost margin of the Arabian Foreland in the south of the Bitlis–Pötürge metamorphic gap area is represented by moderate CPD (16–18 km) relative to its eastern and western sides, and low Pn velocities (8 km/s). We infer from the geophysical data that the lithospheric mantle gets thinner towards the Bitlis–Pötürge metamorphic gap area in the northern margin of the Arabian Foreland which has been most probably caused by mechanical removal of the lithospheric mantle during mantle invasion to the north following the slab breakoff beneath the Bitlis–Pötürge Suture Zone. Mantle flow-driven rapid extrusion and counterclockwise rotation of the Anatolian plate gave rise to stretching and hence crustal thinning in the area between the easternmost part of the Anatolian plate and the Arabian Foreland which is currently dominated by wrench tectonics.  相似文献   

17.
林伟  王军  刘飞  冀文斌  王清晨 《岩石学报》2013,29(5):1791-1810
欧亚大陆东部晚中生代伸展构造十分显著,表现为大量发育的变质核杂岩、同构造岩浆岩、韧性拆离断层带等伸展成因的穹隆和地堑-半地堑盆地.通过对这些伸展构造进行系统分析、归纳和总结,将欧亚大陆东部晚中生代伸展构造发育区划分为:泛贝加尔-鄂霍次克带、华北西部带、华北东部带、华北南缘及秦岭-大别带和华南内陆带.这些伸展构造记录了大区域上的NW-SE方向伸展,构成了全球最大的陆壳伸展地区.这些伸展构造使地壳深部的岩石沿拆离断层折返至地表,从而使中下地壳结构发生了强烈的改造.除华北东部带给出了一个较为宽泛的伸展时段外,各个研究区所涉及的伸展穹隆及其相关的拆离断层所表现的伸展峰期时间均十分相近:位于130 ~ 126Ma之间.岩石圈根部的拆沉可能是这个巨型伸展构造带形成的动力学机制.这个模型为探讨华北克拉通破坏和减薄的时限、机制、模式及深部动力学背景提供直接的构造证据.  相似文献   

18.
Surface structural data and published stratigraphies are combined to construct two balanced and restored sections through the Nogueras Zone of the south central Pyrenees. The allochthonous Nogueras Zone units are interpreted as the foreland-dipping margin of a major antiformal stack in the Palaeozoic rocks of the Pyrenean Axial Zone. Their structural evolution is summarized in a hangingwall sequence diagram. This reinterpretation of the Nogueras Zone is incorporated into a new NS balanced and restored section from the centre of the Pyrenean Axial Zone to the Ebro Basin. A classical ‘Rocky Mountains’ piggy-back thrust model is employed and the resulting section is a significant departure from those previously published. It is argued that ‘gravity gliding’ has never been an important mechanism in the Alpine Pyrenees. Section restoration casts doubt on the correlation of the surface expression of the North Pyrenean Fault and the seismically detected Moho step beneath it.  相似文献   

19.
地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束   总被引:19,自引:0,他引:19  
伸展条件下的地壳拆离作用是岩石圈减薄的重要浅部构造响应。晚中生代时期的伸展构造(包括拆离断层、变质核杂岩构造和断陷盆地)在华北、华南、东北和东蒙古及贝加尔地区普遍发育,它们切过上部地壳(断陷盆地)、中、上地壳(拆离断层)或中部地壳(变质核杂岩)。地壳拆离作用具有运动学极性(NWW或SEE)、几何学宏观(区域)对称与微观(局部)不对称性、遍布全区但不均匀性,以及形成时间的跨越性(140~60Ma)等特点,并使得地壳和岩石圈发生显著的减薄。本文研究揭示出现今岩石圈厚度变化与晚中生代伸展构造的发育程度和分布之间并没有必然的联系。其变化的基本规律是,除新生代裂陷发育区岩石圈厚度明显较小且厚度有迅速变化外,从华北向贝加尔地区总体的变化趋势是逐渐加厚,也即东亚地区岩石圈具有楔形形态。晚中生代时期的地壳(或地幔)拆离作用伴随着广泛的岩石圈减薄作用,区域岩石圈同时遭受到一定程度的减薄和破坏,华北克拉通在这一时期的破坏仅仅是区域岩石圈减薄在华北的具体体现。  相似文献   

20.
华北克拉通中生代下地壳置换:非造山过程的壳幔交换   总被引:25,自引:15,他引:25  
华北克拉通内部前寒武纪麻粒岩地体和新生代火山岩的麻粒岩捕虏体的研究表明,前寒武纪下地壳与现今下地壳的是不同的。下地壳的主要置换发生在中生代。这表明,华北克拉通中生代的构造重大转折,不仅使得盆山格局发生了变化,而且下地壳和上地幔的组成和结构发生了变化。已发表的关于东部岩石圈减薄的机理有折沉作用、幔柱构造模式,均与造山带的演化相联系。本文注意到,华北克拉通最下部地壳的部分或大部都已被中代的下地壳置换,它们不仅发生在克拉通边部,而且发生在克拉通内部。因此华北克拉通中生代的下地壳被中生代的下地壳取代的作用,可称为华北克拉通中生代换底作用。中生代时期的华北拉通下可能存在有规模的地幔柱,强烈的壳幔交换是换底的作用的主要方式,热侵蚀和化学侵蚀的细节还不清楚。但可以推测这与造山带的演化没有直接关系,和造山带岩石圈根部的折沉作用有一般意义的底侵作用不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号