首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional relationship between organic carbon in surface mineral horizons of fine-grained soils and time of soil development is examined in a chronosequence of soils deglaciated within 40 years of sampling. Rates of carbon accumulation increased through time in the first 4 decades of pedogenesis. Little carbon accumulated in the first 10 years, but rapid accumulation occurred over the next 22 years as alders (Alnus crispa) began to colonize.

Several chronofunctions of carbon accumulation are derived for the Burroughs data. A second-order polynomial function provides a good model of carbon accumulation in the first four decades of pedogenesis that is stronger and more significant than conventional exponential and power function models. A data set extended to 1000 years based on earlier studies in the region, indicates that carbon accumulation rates in this proglacial environment can be expressed by a sigmoidal curve. Several conventional chronofunctions derived from the extended data are appropriate for various stages of pedogenesis, but none provides accurate approximations over the entire 1000 years of pedogenesis. [Key words: Glacier Bay, Alaska, soil, carbon, chronofunction.]  相似文献   

2.
Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected.The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 °C mean annual temperature (MAT) in the plains to 102 cm and −4 °C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0–1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it lingers on the landscape. An important parent material factor is airborne dust, which results in fine-grained surface horizons and, if infiltrated, contributes to clay accumulation in some Bt horizons. The time factor is evaluated by soil chronosequence studies of Quaternary deposits in tundra, upper forest, and plains grassland. Few soils in the study area are >10,000 years old in the tundra, >100,000 years old in the forest, and >2 million years old in the grassland. Stages of granite weathering vary with distance from the Continental Divide and the best developed is grus near the sedimentary/granitic rock contact just west of the mountain front. Grus takes a minimum of 100,000 years to form.Some of the relations indicated by the soil map patterns are: (1) parts of the erosion surface have been stable for 100,000 years or more; (2) development of grus near the mountain front could be due in part to pre-Pennsylvanian weathering; (3) a few soil properties reflect Quaternary paleoclimate; and (4) a correlation between soil development in the canyons and stream incision rates.  相似文献   

3.
The evolution of landforms and soils from the Jaldi and Maiskhali anticlines and adjoining areas in a part of the coastal region of the north–south trending fold belt of Bangladesh during the Late Quaternary Period has been investigated. Based on the degree of soil development and luminescence dating, eight soil geomorphic units have been deciphered and grouped into four members (I–IV) of a morphostratigraphic sequence for the study area. Various soil geomorphic units included in different member/sub-members are: Member I—river floodplains and active tidal flats (< 500 years); Member II—distal Piedmont Plains and old tidal flats (0.5–2 ka); Member III—proximal Piedmont Plains (6–10 ka); and Member IV—Mainland Higher and Lower Hillocks and Island Hillocks (> 15 ka). Member IV is further subdivided into Sub-member IVa—Island Hillocks (15–18 ka); Sub-member IVb—Mainland Lower Hillocks (23–25 ka); and Sub-member IVc—Mainland Higher Hillocks (30–35 ka).The youngest and poorly developed soils of Member I show features related to hydromorphism. Moderately developed soils of Members II and III show a fersiallitisation stage of pedogenesis. Member IV includes ‘strongly developed soils’ with a ferrugination stage of pedogenesis. These soils also exhibit degradation and poor birefringence of argillans and ferriargillans, indicating a significant change in conditions of pedogenesis, probably related to a paleoclimatic change from a subhumid to semiarid phase (40 ka to about 16 ka) to a hot humid to subhumid phase (16 ka–present). Parent material composition and physiography also have affected the pedogenesis in the area.Based on ages and heights above the mean sea level for the five terraces recognized in the study area, the overall base-level rise rates calculated are about 3.6 mm/year (18 ka–present) for the Maiskhali Island and 2.86 mm/year (35 ka–present) for the mainland (Jaldi anticline). These base level changes represent combined effects of eustatic sea level and tectonic uplift due to folding.  相似文献   

4.
Five representative soil profiles outcropping in the area around the Cecita Lake (Calabria, South Italy) were characterised by field work, chemical and mineralogical analyses, optical and scanning electron microscopy. Interactions among weathering, pedogenesis and geomorphic processes are emphasised, in an attempt to link the results obtained at different scales of observation. The important role of topography in controlling soil development or removal by erosive processes is discussed, in relation to the natural geomorphological context and the effects of human pressure. Both present-day and relict features were recognised in the studied soils, and discussed in terms of environmental conditions and climatic changes. The chemical composition of volcanoclastic components identified in some soil horizons with Andosol-like field appearance, coupled with pedogenetic features, contributed useful chronological constraints for the reconstruction of Late Quaternary geomorphic events.  相似文献   

5.
Inceptisols are developed on silt loam, loam, and sandy loam Indian mounds at the Keller Mound Group and Bluff Top Mound in northeastern Iowa. The mounds date to the Allamakee Phase of the Late Woodland Period (ca. 1650–1250 B.P.) and are built with fill obtained from the A, E, and upper B horizons of pre-existing soils (Alfisols). Differences in the morphologic and chemical characteristics of soils on different mounds are attributed to textural differences of the mounds' fill. Coarse-textured mound fill is pedogenically altered at a faster rate than fine-textured fill, but total carbon percentage of the A horizon attains a steady state faster in fine-textured mound fill. Total phosphorus content is used to determine from which horizons of pre-existing soils the specific layers of mound fill originated. Rates and pathways of pedogenesis in mound fill may not provide good analogues for the early stages of soil development in materials that have not undergone previous weathering and subsequent modification by humans. Nevertheless, mound soils are useful benchmarks for some pedologic studies since they provide time lines for evaluating minimum rates for development of argillic and albic horizons, as well as attainment of the Alfisol order.  相似文献   

6.
A 1:15,000 scale soil map of an area measuring approximately 2.8×2.0 km in the Okstindan Mountains has been constructed using photogrammetric and ground survey techniques. This has allowed an assessment of environmental influences on soil type differentiation and spatial distribution. The major controlling variables are considered to be relief, climate, and vegetation; these interact to determine characteristics of soil surface organic horizons, the extent of translocation in soil profiles, and the nature of downslope mass movement of soil material.  相似文献   

7.
Twenty-four soil pedons on each of four sandy lake terraces in northwestern lower Michigan that ranged in age from 3000 to 11,000 years BP were studied to assess trends in soil morphological variability with time. After verifying the general uniformity of parent materials within and between the four surfaces, we examined temporal trends in the spatial variability of soil color, cementation, horizon thickness and development. E horizons attained high color values (lightness) by 3000 years and changed little after that time, whereas B horizons continued to get darker with time. Cementation within B horizons increased in strength and amount with time, as did B horizon thickness. Soils ≥4000 years old had deeper eluvial zones but much greater variabilities in the thickness of that zone than did younger soils. Soil development increased with time, but spatial variability in degree of development also increased with time. These patterns are best explained by invoking spatially random soil mixing upon a surface that is otherwise undergoing podzolization. [Key words: podzolization, chronofunction, Michigan, soil variability, soil genesis.]  相似文献   

8.
The Quaternary history of the Capitol Reef area, Utah, is closely linked to the basaltic-andesite boulder deposits that cover much of the landscape. Understanding the age and mode of emplacement of these deposits is crucial to deciphering the Quaternary evolution of this part of the Colorado Plateau. Using cosmogenic 3He exposure age dating, we obtained apparent exposure ages for several key deposits in the Capitol Reef area. Coarse boulder diamicts capping the Johnson Mesa and Carcass Creek Terraces are not associated with the Bull Lake glaciation as previously thought, but were deposited 180±15 to 205±17 ka (minimum age) and are the result of debris flow deposition. Desert pavements on the Johnson Mesa surface give exposure ranging from 97±8 to 159±14 ka and are 34–96 kyears younger than the boulder exposure ages. The offset between the boulder and pavement exposure ages appears to be related to a delay in pavement formation until the penultimate glacial/interglacial transition or periodic burial and exposure of pavement clasts since debris flow deposition. Incision rates for the Capitol Reef reach of the Fremont River calculated from the boulder exposure ages range from 0.40 to 0.43 m kyear−1 (maximum rates) and are some of the highest on the Colorado Plateau.  相似文献   

9.
Interrelated, biotic (flora and fauna) and abiotic (pedogenesis and hydrology) processes were examined at four sites (30, and approximately 1000–3000, 7000–12 000, and 125 000 years before present) in the northern Mojave Desert. Data collected at each included floral and faunal surveys; soil texture, structure, and morphology; and soil hydraulic properties. Separate measurements were made in shrub undercanopy and intercanopy microsites. At all sites, shrubs made up greater than 86 percent of total perennial cover, being least on the youngest site (4 percent) and most on the 7000–12 000-year-old site (31 percent). In the intercanopy, winter annual density was highest on the 1000- to 3000-year-old site (249 plants/m2) and lowest on the oldest site (4 plants/m2). Faunal activity, measured by burrow density, was highest on the 1000–3000- and 7000–12 000-year-old sites (0.21 burrows/m2) and density was twice as high in the undercanopy versus the intercanopy. Burrow density was lower at the two oldest sites, although density was not statistically greater in the undercanopy than intercanopy. At the older sites, the soil water balance was increasingly controlled by Av horizons in intercanopy soils in which saturated hydraulic conductivity (Ksat) decreased 95 percent from the youngest to the oldest site. No significant reduction in Ksat in undercanopy soils was observed. Decreases in the intercanopy sites correlated with decreases in annual plant density and bioturbation, suggesting these processes are interrelated with surface age.  相似文献   

10.
泾河上游黄土高原全新世成壤环境演变与人类活动影响   总被引:10,自引:1,他引:9  
通过对黄土高原腹地甘肃合水MJY-A全新世土壤剖面磁化率、粒度、全铁、TOC、TC、CaCO3等气候代用指标的测定分析。结果表明:在全新世早期,黄土高原中部地区气候虽比较温和干燥,风尘堆积速率降低,土壤发育表现为边沉积边成壤的自然过程;到了全新世中期,气候较为温暖湿润,地表植被发育,生物风化成壤作用强烈,土壤发育依旧表现为自然的成壤过程,形成深厚的古土壤-黑垆土(S0);到了全新世晚期,气候开始恶化,干旱少雨,植被急剧退化,沙尘暴频繁发生,形成的现代黄土层(L0)覆盖了土壤(S0)使之成为埋藏古土壤,土壤发育深受人类活动的影响。现代黄土高原土地资源的退化,并不全是由自然要素本身固有的规律所造成的,而是在自然要素本身变化的背景上叠加了人类活动影响的结果。  相似文献   

11.
This paper discusses the use of soils as indicators of environmental change in the alpine and sub-alpine zones of the Colorado Rocky Mountains. Textural, miner-alogical, and chemical properties of soils developed on Quaternary glacial moraines are examined. A clear discontinuity in soil properties is observed between surface and subsurface horizons. Surface horizons are commonly finer grained and less strongly weathered than subsurface horizons. The soil-property discontinuity is interpreted to be a reflection of parent-material change. Surface horizons are interpreted to have developed in eolian sediments, while subsurface horizons have developed in glacial till. The duplex soils are believed to reflect alternating changes from cold moist climates and glacial advance to cold dry climates and loess deposition. [Key words: alpine soils, alpine weathering, alpine loess, climate change.]  相似文献   

12.
In the Gavarras (NE Spain), a large number of plots on respective schists, leucogranite and granodiorite was studied for their soils and vegetation. Results were used to check conclusions from earlier studies of Mediterranean forest soils (mostly shallow Regosols and Cambisols) on such acidic to intermediate rocks. They confirmed that the humus form depends on catenary position and lithology, and that aggregate stability and infiltration characteristics of the upper mineral soil horizon relate to humus form type. Aggregate stability of the topsoil was found to be relatively high in mor and mull type humus forms, but differences with moder type humus forms were not statistically significant. Differences in aggregate stability are attributed to the presence of stable humus–clay–iron complexes in mulls and to high fungal activity and organic matter content of mors. Low infiltration rates were only encountered in topsoils with mor type humus form, in line with results from the earlier studies. In deeper soil horizons with low organic matter content, aggregate stability will be largely related to soil reaction and base saturation. On leucogranite and granodiorite, these were found to vary strongly, most probably largely due to local differences in fast acid neutralizing capacity (ANCf). These local differences are primarily attributed to differences in the mineralogical composition and texture of the soil material, connected with differences in lithology and/or brought about by erosion, colluviation and soil formation. Consonant with earlier studies, it is concluded that the susceptibility of these forest soils to erosion largely depends on properties of the upper mineral soil horizon, which are controlled by or related with humus form development. General trends in the latter are clear and can be used to predict this susceptibility. In the case of land degradation, which implies a more severe erosion, deeper soil horizons are also involved. Spatial variability in properties of these horizons, relevant for degradation, is considerable and not clearly related to humus form development. Accordingly, the abovementioned trends in humus form development cannot be used to predict the susceptibility to land degradation.  相似文献   

13.
Jake E. Haugland   《Geomorphology》2004,61(3-4):287-301
Chronosequences of 250 to 130 years were established on two late Holocene glacier forelands in the Jotunheimen region of southern Norway. Patterned features occurring within chronologically established time units were studied. Young patterned features, forming 10–20 years after deglaciation, are frost active. Vegetation cover is minimal within the young patterned features, consisting of bryophytes/organic crusts. Soil development within patterned ground is also minimal/absent because frost action retards horizonization. With time and distance from the glaciated ice margin, frost activity declines within the patterned features, suggesting that a thin, active “periglacial zone” exists near the ice margin. Initially, frost activity decreases at the borders of the features with the centers stabilizing later in time. This results in fine-scale soil heterogeneity and variations of soil development. Fine-scale pedogenic development is first encountered at the borders of patterned ground that has developed on terrain exposed since the 1930s, yet soil development is predominantly absent at the centers of patterned ground. With time and distance from the ice margin, frost activity declines and allows patterned features to homogenize from border to center positions in regard to soil characteristics. Across the chronosequences, soils within patterned features pedogenically follow previous soil chronosequence studies, evolving from USDA classifications of Entisols into Inceptisols. Frost disturbance within patterned ground, however, produces a lag effect, that results in longer periods of time for pedogenesis to occur and thinner soils than that of the surrounding terrain.  相似文献   

14.
Calculations of long-term, small-scale erosion rates based on the measurement of total eroded volume in a rock/soil unit have traditionally relied on poorly constrained, labor-intensive estimates of the removed volume. Digital elevation models (DEMs), now widely available and relatively inexpensive, can be used as data sets to perform this calculation by computer. DEMs of hypothetical pre-erosional topographies need to be constructed for comparison with the post-erosional topography. This requires field observation of contacts and subsequent geometrical calculations. This study's watershed, for which a long-term vertical erosion rate of 17 mm/ky was calculated, is formed in Miocene rhyolitic ash-flow tuffs located in the Chiricahua Mountains of southeastern Arizona. These welded tuffs are also known for their formation of strikingly tall, slender erosional columns. On the basis of spacings of joints that control column formation, a horizontal erosion rate was also calculated. The combined erosion rates indicate that a typical column 50 m high would require approximately 2.9 × 106 years to form. [Key words: denudation, digital elevation model, Miocene volcanics, Arizona, rock columns.]  相似文献   

15.
庐山JL红土剖面的色度气候意义   总被引:10,自引:0,他引:10  
庐山JL红土剖面的Munsell色度体系研究表明,红土色调、明度、彩度等特征值沿剖面呈有规律变化,随深度增加,红度加深、明度降低、彩度增高,总体呈现7次高低值相间的波动。红化率RR作为衡量红化程度的综合指标,随深度增加波动式递增,亦存在7次旋回,与土体中Fe2O3含量的变化趋势一致。该结论表明,庐山红土发育过程中存在热中见凉的气候波动,第四纪以来气候渐趋干凉。同时,RR曲线与C IA曲线变化趋势一致,RR高值对应于CIA高值,指示强成土风化时期,可作为反映成土环境变化的代用指标。  相似文献   

16.
The Southern Alps lie along the convergent Pacific-Indian plate boundary. Geomorphically distinct eastern, axial and western regions reflect the east-west gradient in tectonic uplift (1 to 10 mm a−1) and precipitation (600 to 10,000 mm a−1). The eastern region is divided into front-ange and basin-and-range subregions. Soil-sequence studies on terraces established temporal contrasts in pedogenesis within and between eastern and western regions encompassing Entisols, Inceptisols and Spodosols. On Late Pleistocene and early Holocene terraces Dystrochrepts are persistent soils in the eastern region and Aquods in the western region. These soil sequences are used in the interpretation of relative soil age, stratigraphy and erosion history in hill and mountain drainage basins of the eastern and western regions. In the subhumid to humid eastern front-range subregion, simple soil forms occur as catenary sequences, and there is little evidence of erosion following the destruction of forests in the last millenium. Mollisols are dominant in the subhumid, and Dystrochrepts in humid areas, respectively. Soil-debris mantle regoliths date from the early Holocene and are still developing on slopes. The soil pattern on mountain slopes in the humid, eastern basin-and-range subregion is a complex array of simple, eroded, composite and compound soils. This pattern has resulted from erosion following forest destruction within the last millenium. The oldest surface or buried forest soils are Dystrochrepts dating from the Late Pleistocene to early Holocene. Wind erosion of these low-fertility soils contributes to the loessial sediments in which younger soils have formed. In the western region, soil patterns and soil stratigraphy indicate continous instability with a complex pattern of highly leached, shallow Orthents and bedrock outcrops on slopes. The soils are eroded from slopes within 2 ka. These contrasts in soil development and erosion periodicity in the eastern and western regions of the Southern Alps parallel the east-west contrasts in erosion rates of ca. 1–10 mm a−1.  相似文献   

17.
Mapping of late Quaternary geomorphic surfaces, and analysis of the soils and sediments buried within them, provides evidence for the history of a small study area within the Red Valley physiographic zone, Black Hills, South Dakota. Geomorphic thresholds for this grassland system are correlated with periods of major climatic change. Well-developed soils dating to the late Pleistocene and early Holocene (14,000 to 9000 yr B.P.) suggest more mesic conditions and geomorphic stability. A mid-Holocene Altithermal (ca. 8000 to 4500 yr B.P.) denudation almost completely stripped the landscape of earlier Holocene sediments and soils. A prolonged, mid-Holocene (ca. 4500 to 3600 yr B.P.) mesic period of landscape stability and soil development followed, but was abruptly terminated around 3600 yr BP. Late Holocene conditions approached stability about 1200 yr BP. After this time, alluvial terrace surfaces remained stable, while alluvial fans experienced periods of stability punctuated by midslope aggradation.  相似文献   

18.
Rock magnetic properties of recent soils from northeastern Bulgaria   总被引:1,自引:0,他引:1  
In this paper, basic rock magnetic studies of Holocene loess-soil samples from northeastern Bulgaria are reported. The sites are related to the Danube river and located at different distances southwards, thus representing various pedogenic conditions. The study is primarily aimed at determining the main magnetic carrier(s) and their physical characteristics (grain-size distribution, magnetic enhancement, etc.). Oxyhydroxides, maghemite and titanomagnetites of various oxidation degrees are assumed to be the main ferromagnetic minerals present. Our results suggest that the uppermost part of recent soil profiles is rich in stable, near-single-domain (SD) particles, while the illuvial horizons are characterized by a gradual decrease in grain sizes, from highly viscous to a true superparamagnetic (SP) domain state. The properties of samples from carbonate-rich horizons of recent soils are basically controlled by detrital minerals, while those from sites with more intensive pedogenesis and especially grey forest soils are influenced by strongly magnetic minerals formed ' in situ '.  相似文献   

19.
Environmental magnetic studies were conducted on a 9.42-m-long sediment core from Gonghai Lake, North China. Radiocarbon dating indicates that the record spans the last 15,000 cal year BP. The principal magnetic mineral in the sediments is pseudo-single domain magnetite of detrital origin with minimal post-depositional alteration. Although the variations in the concentration of detrital magnetic minerals and their grain size throughout the core reflect inputs from both soil erosion and eolian dust, it is shown that their climatic and environmental significance changes with time. In the lowermost part of the core, ~15,000–11,500 cal year BP, the magnetic minerals were supplied mainly by bedrock erosion, soil erosion and dust input when climate ameliorated after the cold and dusty last glacial maximum. The increasing magnetic susceptibility (χ) in this interval may indicate a combination of changes in the lake environment together with catchment-surface stabilization and a decreasing proportion of dust input. In the central part of the core, ~11,500–1,000 cal year BP, the detrital magnetic minerals mainly originated from dust inputs from outside the catchment when the lake catchment was covered by forest, and catchment-derived sediment supply (and thus the lake sediment accumulation rate) were minimal. The generally low concentration of magnetic minerals in this part of the core reflects the highest degree of soil stability and the strongest summer monsoon during the Holocene. In the uppermost part of the core, the last ~1,000 years, detrital magnetic minerals mainly originated from erosion of catchment soils when the vegetation cover was sparse and the sediment accumulation rates were high. Within this part of the core the high magnetic susceptibility reflects strong pedogenesis in the lake catchment, and thus a strong summer monsoon. This scenario is similar to that recorded in loess profiles. Overall, the results document three main stages of summer monsoon history with abrupt shifts from one stage to another: an increasing and variable summer monsoon during the last deglacial, a generally strong summer monsoon in the early and middle Holocene and a weak summer monsoon in the late Holocene. The results also suggest that different interpretational models may need to be applied to lake sediment magnetic mineral assemblages corresponding to different stages of environmental evolution.  相似文献   

20.
Ron Malega 《Urban geography》2013,34(4):530-549
This study explores Black household affluence at the metropolitan scale and suggests that metropolitan-level opportunity structures shaped rates of Black affluence for the 100 largest American metropolitan areas in 2000. I hypothesize that affluent black households favored metropolitan areas of opportunity, those places characterized by having (1) economic opportunities, (2) favorable Black–White relational standing, (3) metropolitan diversity and residential opportunities, and (4) their location in the South, which serves as a Black homeplace. Results fail to suggest evidence regarding the role of the ‘new South’ for understanding metropolitan-level rates of Black affluence. More generally, findings from this study challenge our understanding of socioeconomic stratification by investigating diversity within America’s Black community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号