首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
Light may be an important limiting resource that influences community structure of chenopod shrublands. As part of a larger study that aimed to determine the factors that influence chenopod community structure, the focus of this study was the influence of plant canopy on the growth and establishment of smaller plants. We therefore measured the height and cover of three chenopods (Enchylaena tomentosa, Maireana brevifolia and Maireana georgei) when growing within and outside of the canopy of Atriplex bunburyana under field conditions. All three chenopods had lower cover and E. tomentosa was taller when growing within the canopy of A. bunburyana in comparison to those growing outside of the canopy. The chenopods were then grown under three artificial shade regimes. Plant height, cover, biomass, relative leaf area and photosynthetic surface area measurements showed that each species responded differently to shade. E. tomentosa biomass was facilitated by shade. This was inferred by an increase in total plant biomass. M. brevifolia, in contrast, tolerated shade by increasing above-ground biomass allocation. M. georgei was adversely affected by the shade regimes: root biomass decreased in response to shade. Competition for light is, therefore, likely to influence chenopod community structure of semi-arid and arid environments.  相似文献   

2.
In a Picea mariana forest near Fort Norman, NWT, Canada, a corridor was cleared in the spring of 1985 to simulate a seismic line or pipeline disturbance. Salix arbusculoides, the dominant erect shrub, was monitored for three growing seasons after canopy harvesting. Leaf area was not consistent between the three years in either the cleared right-of-way or the undisturbed forest control area. Relative to control shrubs, leaves were significantly larger in right-of-way shrubs in 1985, virtually identical in size in 1986, and smaller in the right-of-way shrubs in 1987. In 1986, stem production was so great for right-of-way shrubs that the mean leaf/stem biomass ratio for this sample was smaller than both the other two years for right-of-way samples and the control sample for that year. Right-of-way shrubs were consistently shorter in height than control shrubs; by the third growing season, however, this difference was negligible. Right-of-way shrub canopy volume was significantly less than control shrubs only in the first growing season of recovery (right-of-way shrub volume averaged 85% of control shrub volume). By the second growing season after harvesting, right-of-way shrubs had attained canopy volumes that were no longer significantly less than control shrubs. Although the average canopy volume of right-of-way shrubs approached that of control shrubs as time passed, the right-of-way shrubs maintained a lower, broader morphology, as reflected in the height to mean canopy diameter ratio which was typically lower for right-of-way shrubs. [Key words: plant morphology, vegetation disturbance, subarctic, Canada.]  相似文献   

3.
Regression equations were developed to estimate above ground biomass and carbon and nitrogen mass of foliage and stem size fractions from plant size dimensions (basal diameter, canopy area, height, canopy volume) for a tall shrub species (Prosopis velutina) that has increased in abundance in arid and semi-arid grasslands in the southwestern United States and northwestern Mexico. Regression equations were also developed to describe relationships among the dimensions of plant size. All equations were significant (p < 0.001); and all but two had r2 values >0.72. In addition to species-specific information, we found support for the global patterns of foliar biomass increasing to the ¾ power of stem biomass and height increasing to the ½ power of stem diameter. We provide a comprehensive report of all equations, which can support a variety of in situ (ground-based), modeling, and remote-sensing objectives related to quantifying changes in ecosystem function and carbon sequestration accompanying changes in woody plant abundance. We advocate that comprehensive reporting should become more common for arid and semi-arid woody species in order to support a broad spectrum of users while laying the foundation for the development of global generalizations similar to those available for forest trees.  相似文献   

4.
A prescribed burn resulted in significant decreases in canopy cover of the grasses: Bouteloua eriopoda, Sporobolus flexuosus, and Aristida purpurea. One year post-burn, basal cover of B. eriopoda remained significantly lower in burned patches than in unburned areas but there were no differences in basal cover of the other perennial grasses. Only one species of the 14 summer annual species occurred in both burned and unburned plots. There were six species of spring annuals in burned patches but no spring annuals in the unburned grassland ten months post-burn. Fire killed 100% of the snakeweed shrubs (Gutierrezia sarothrae), 77% of the Ephedra torreyana shrubs, and 36% of the Yucca elata. All mesquite shrubs that were top-killed by fire, resprouted one month post-burn. Fire had no effect on abundance and species richness of rodents. There were fewer wolf spider, Geolycosa spp. burrows in burned areas than in unburned grassland. The area and volume of soil in termite galleries and sheeting were significantly larger in the unburned grassland than in the burned areas.  相似文献   

5.
《自然地理学》2013,34(6):519-533
In the Midwest, the oak savanna is a unique plant community located between the western prairies and northern forests, but, once the most common plant community in Wisconsin, it is now one of the region's rarest plant communities. To assess the success of varying intensities of management practices, standard dendrochronology and vegetation surveying methods were used to determine the age structure and species composition in oak savanna sites that varied from intensely managed to unmanaged. Size and age distributions revealed that the number of distinct cohorts of oaks increased in less managed sites. Seedlings and saplings were present in high frequencies in all sites; however, management practices such as fire applications that were too frequent apparently decreased oak survivorship, as did the competition in the closed canopies of the unmanaged sites. A fire frequency of 2-3 years eliminates competition, but a frequency of 4-6 years, typical of fire-adapted forest communities, allows for slower-growing species and younger oaks to survive, while still maintaining a low density. In these conditions, where growth rates vary in time, the use of dendrochronology is necessary to obtain an accurate canopy structure for fire-adapted forest communities. Quercus macrocarpa was dominant in the more managed sites, but shade-tolerant species were dominant in the unmanaged site. At present, the canopy composition in the managed sites represented an oak savanna assemblage; however, the unmanaged composition was shifting to a woodland assemblage. Thus, remnant oak savanna can be over- or under-managed, and unmanaged oak savanna can be overlooked as woodlands.  相似文献   

6.
Grasslands dominated by Stipa tenacissima are important ecosystems in the arid and semiarid climates of western Mediterranean, where they have originated by degradation of open dry forests and shrublands. At present, although the level of exploitation in these ecosystems is very low, succession processes seem to have stopped. In this study, we explore the role of microsite and post-dispersal seed predation on the seedling emergence of two species from advanced successional stages (Rhamnus lycioides, Quercus coccifera), three species from degraded stages (Cistus clusii, Helianthemum violaceum, Anthyllis terniflora), and of the dominant species (Stipa tenacissima). Seeds of these species were sown in plots divided into two microsites: (i) under tussocks of S. tenacissima and (ii) in the bare soil between tussocks. Soil moisture was significantly higher in the tussock microsites. The interaction observed between microsite and time, reflected the slower drying process under tussocks. Seed predation was in general high and differed significantly between species but not between microsites. Q. coccifera was especially affected by predation. The only germination detected in gap areas was that of H. violaceum. The results pointed to a direct facilitative effect of tussock grass on the germination in R. lycioides (20.4±8.0%) and S. tenacissima (41.3±5.7%) while the corresponding figures for bare ground were 0%. These results suggest that the recovery of potential vegetation in this ecosystem is not possible or, at least, is very slow because the residual shrub patches do not generate a sufficient number of seeds able to disperse to favorable germination microsites. S. tenacissima may act as facilitator of seedling recruitment if there is a supply of diaspores.  相似文献   

7.
Allometric equations and community biomass stocks are presented for Guiera senegalensis J.F. Gmel (Gs) and Piliostigma reticulatum (DC.) Hochst (Pr) – two native shrub species in the Sahel. These shrubs are of interest because they dominate semi-arid sub-Sahalien Africa but have been largely overlooked as a key biomass component and regulator of ecosystem composition and function in this landscape. In Year 1, best predictors of aboveground biomass were height and number of stems (Gs) and crown diameter (Pr); and for belowground biomass were height and basal diameter (Gs) and basal diameter (Pr). In Year 2, height and crown diameter were the best predictors of aboveground biomass (R2 = 0.90 for Gs and 0.87 for Pr), whereas basal diameter and number of stems (Gs) and basal diameter (Pr) were best predictors of belowground biomass. Peak-season biomass estimates ranged from 0.44 to 4.58 ton ha?1 (mean = 2.38 ton ha?1) in the Gs sites and from 0.33 to 7.38 ton ha?1 (mean = 3.71 ton ha?1) in the Pr communities. Both species exhibited unusually large root:shoot ratios (4.5:1 for Gs and 10.2:1 for Pr). Although models differ between years, allometric relationships provide reasonable biomass estimates for Gs and Pr.  相似文献   

8.
Studies were conducted in the central Mojave Desert to quantify how creosote bushes (Larrea tridentata) respond to physical damage during large-scale military training exercises. Creosote bush possesses a resilient growth form that recovers from repeated physical damage via resprouts arising from meristems in stem bark below severed or crushed canopy units. At high levels of disturbance by heavy vehicles, nearly all individuals showed measurable breakage, but without additional damage each plant can regain a full canopy within 5 years under arid field conditions. Resprouts exhibited more vigorous growth and doubled the biomass accumulation stimulated by high rainfall of 1998, an El Niño year, vs. a normal year. New shoots of resprouted individuals were markedly different in morphological traits than canopy old growth and had slightly higher predawn shoot water potentials. The natural ability of this evergreen species to recover from cutting and crushing bodes well for re-establishment of creosote bush desert scrub communities following episodes of severe damage by vehicles.  相似文献   

9.
The Royal Belum forest reserve is one of the oldest tropical rainforests in the world and it is one of the largest virgin forest reserves in Malaysia. However, not many studies have been conducted to understand the ecology of this forest. In this study we estimated the aboveground biomass (AGB) of the forest using diameter at breast height (DBH) and height of trees (h ), tree species and hemispherical photographs of tree canopy. We estimated AGB using five allometric equations. Our results demonstrated that the AGB given by the one tree species specific allometric equation does not show any significant differences from the values given by the non‐tree species specific allometric equations at tree and plot levels. The AGB of Intsia bijuga species, Koompassia malaccensis species and Shorea genera were comparatively higher, owing to their greater wood density, DBH and h. This has added importance because some of these species are categorized as threatened species. Our results demonstrated that mean AGB values in this forest (293.16 t ha‐1) are the highest compared to some studies of other areas in Malaysia, tropical Africa and tropical Bazilian Amazonia, implying that the Royal Belum forest reserve, is an important carbon reservoir.  相似文献   

10.
为研究植物残体干扰对黄河河口高潮滩盐沼芦苇生长的影响,在黄河河口高潮滩盐沼中分别选择典型的植物残体干扰斑块和未受干扰的自然群落,调查了其中芦苇(Phragmites australis)的形态特征及其种群的密度和生物量,并取样测定了土壤盐度、含水量、容重等土壤物理、化学性质,运用方差分析方法研究了植物残体干扰对芦苇的形态特征及其种群的密度和生物量的影响以及对土壤性质的影响。结果表明,植物残体干扰斑块中芦苇种群的密度、生物量等明显高于未受干扰的自然群落,芦苇的形态特征也明显优于未受干扰的自然群落。这说明植物残体干扰对芦苇生长产生了明显的促进作用。在植物残体干扰斑块中,土壤盐度、容重显著低于自然群落,说明植物残体干扰对黄河河口高潮滩盐沼芦苇的生长起到的促进作用,可能是通过改善土壤环境,缓解物理胁迫而产生的。  相似文献   

11.
The short-term (2 years) influence of fire burning with the wind (head fire) and against the wind (back fire) on the productivity (above-ground phytomass and litter) and fire behaviour were determined over seven growing seasons (1995/96–2001/02) in a semi-arid rangeland. The results showed that head fires had significantly greater flame height and rate of spread than back fires. Fire caused a decrease of 40.5% and 22.5% in basal cover for the first and second seasons after burning respectively. The seasonal above-ground phytomass production and litter were significantly decreased by fire over all growing seasons. Seasonal production losses due to fire varied between 225 and 430 kg ha−1. The relation between above-ground phytomass production loss due to fire, and two independent variables namely seasonal rainfall and fuel load (above-ground phytomass plus litter) before burning, were investigated. The multiple linear regression equations obtained for one (r=0.89) and 2 years (r=0.86) after a fire, can be used with great success in estimating seasonal production losses due to fire in semi-arid rangeland.  相似文献   

12.
为了阐明滨海湿地不同密度柽柳(Tamarix chinensis)林的生长动态,探索滨海湿地柽柳林的密度合理性,在黄河三角洲莱州湾南岸的山东昌邑海洋生态特别保护区内,利用标准木树干解析法,对10a生的3种密度(2400株/hm2、3 600株/hm2和4400株/hm2)的柽柳林地上生物量、林木生长动态和基径分布特征进行研究.结果表明,3种密度林分的地上生物量、树高生长量和林木基径生长过程差别较大.随着林分密度增大,林木单株生物量和基径减小,但单位面积林分生物量增加;树高、基径的速生期都出现滞后现象.3种密度林分基径分布的偏度系数(SK)差别较大;密度为3 600株/hm2林分的SK值为0.085,接近正态分布,林分密度结构和基径分布较为合理;密度为2 400株/hm2和4 400株/hm2林分的SK值分别为-0.842和0.303,偏离正态分布,林分密度结构不合理.密度为2 400株/hm2林分的峰度系数(K)为0.017,林木生长相对整齐;密度为3 600株/hm2和4 400株/hm2林分的K值相差不大;密度因素对林木分化作用较小.若不考虑10a间的林木间伐利用,该区柽柳人工造林合理的初植密度建议为3 600株/hm2(株行距约2.0 m×2.0 m).  相似文献   

13.
A method for mapping of forest biomass using black-and-white aerial photographs and nondestructive field sampling is described through a case study of Ladhiya subcatchment in Kumaun Himalaya, India. Forest types were mapped using aerial photographs and field checks. Each forest type was divided into five crown cover classes. Mean crown cover for each class was determined in the field. Density and basal cover were measured on reference sites. Stand biomass was estimated by using biomass estimation equations, mean girth and mean density on the reference sites. Regression equations were developed between crown cover and basal cover, and between crown cover and stand biomass. Mean basal cover and mean stand biomass for each photo-interpreted crown cover class were estimated through these equations. Forest biomass values were substituted for crown cover classes on the interpreted map.  相似文献   

14.
The growth and biomass production of six acacia species were studied in the field for 4 years. The species used were Acacia asak, A. negrii, A. seyal, A. karroo, A. ampliceps, and A. stenophylla. The first three species are indigenous while the others are exotic. The results showed both A. ampliceps and A. asak with 100% survival while all A. negrii died. Acacia ampliceps attained the greatest height, diameter, relative growth rate and above-ground biomass while A. asak had the least. Height and diameter growth of acacia species decreased between warm and cold periods of the year.  相似文献   

15.
A field trial on 3-year-old Prosopis alba growing on pH 8.5 soils in Argentina was conducted to identify mineral nutrients that were most limiting growth and to determine correlations among these nutrients. As applications of nutrients such as Zn, Cu and P would be soon rendered unavailable due to the high pH, combinations of elemental S to decrease the pH were examined along with macro and micronutrient soil additions. Thirty trees were selected with stem diameters ranging from 2.8 to 4.5 cm and divided into five treatments in a completely randomized design with 1 tree per replicate. The treatments were: (1) control, (2) addition of elemental S to lower the pH, (3) addition of S and triple superphosphate (P), (4) addition of S, P and a complete blend of micronutrients and (5) addition of S, P, micronutrients and K and Mg. Biomass increases were estimated using regression equations on stem diameter increases. A small non-significant decrease in pH of about 0.3 pH was obtained in the treatments with S, except for treatment which contained micronutrients in the form of strong base oxides. There was a significant increase in electrical conductivity due to the oxidation of the S. The best treatment containing S, P and micronutrients had a 42% increase significant biomass increase over the control. Growth was positively correlated with leaf levels (decreasing order of significance) of K, S, P, and Zn and negatively correlated with leaf Na and Ca. The leaf K, which had the highest positive correlation with growth, was highly significantly positively correlated with leaf S, P, N, and Zn and highly significantly but negatively correlated with leaf Ca, Mg and Mn. Leaf N was very highly correlated with leaf Zn, S and P concentrations. Indian workers have found that 20 years after establishment Prosopis juliflora changed the soil pH from 10.4 to 8.0. Since trees on 10 m×10 m spacings are suggested to be ultimate climax density for these ecosystems, apparently it will only necessary to add inexpensive small quantities of elemental S, Zn and K directly around 100 small trees ha−1 to effect a major soil reclamation over the entire ha.  相似文献   

16.
How drought and fire disturbance influence different levels of biological organization is poorly understood but essential for robust predictions of the effects of environmental change. During a year of severe drought, we conducted a prescribed fire in a Mediterranean-type coastal grassland near Irvine, California. In the weeks following the fire we experimentally manipulated rainfall in burned and unburned portions of the grassland to determine how fire and drought interact to influence leaf physiological performance, community composition, aboveground net primary productivity (ANPP) and component fluxes of ecosystem CO2 exchange and evapotranspiration (ET). Fire increased leaf photosynthesis (Anet) and transpiration (T) of the native perennial bunchgrass, Nassella pulchra and the non-native annual grass, Bromus diandrus but did not influence ANPP or net ecosystem CO2 exchange (NEE). Surprisingly, drought only weakly influenced Anet and T of both species but strongly influenced ANPP and NEE. We conclude that despite increasing experimental drought severity, prescribed fire influenced leaf CO2 and H2O exchange but had little effect on the component fluxes of ecosystem CO2 exchange. The differential effects of prescribed fire on leaf and ecosystem processes with increasingly severe drought highlight the challenge of predicting the responses of biological systems to disturbance and resource limitation.  相似文献   

17.
Rainfall partitioning by desert shrubs in arid regions   总被引:1,自引:0,他引:1  
We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions.  相似文献   

18.
Soil disturbance is a wildlife habitat management tool that retards succession and promotes early seral vegetation. Our objective was to determine responses of two invasive herbaceous species (Pennisetum ciliare and Salsola iberica) and native perennial grasses to disking on different soils. Two 10 ×40 m plots were delineated within each of 4 blocks on Ramadero loams and 4 blocks on Delmita fine sandy loams. On Delmita soils, canopy cover of P. ciliare, S. iberica, and native perennial grasses averaged across all years was not affected by disking (ANOVA, P>0.05). On Ramadero soils, P. ciliare canopy cover was similar (Tukey's, P>0.05) on control and disked plots for the first 4 years post-disturbance, but P. ciliare cover was 10-fold greater (Tukey's, P=0.02) the 5th year after disking on disked versus control plots. On Ramadero soils, S. iberica canopy cover averaged across all years was 221 times greater (ANOVA, P=0.05) on disked plots than on control plots. Disking did not affect native perennial grass canopy cover. Land managers should consider soil series when disking for wildlife management, as disking disturbance may exacerbate exotic plant ingress and establishment on certain soils.  相似文献   

19.
Forests are highly susceptible to dieback under ongoing climate warming. In degraded forests, dead standing trees, or snags, have become such prominent features that they should be taken into account when setting management interventions. This study investigated (1) the extent and spatial pattern of standing dead stems of Juniperus procera and Olea europaea subsp. cuspidata along an elevational gradient, and (2) the effect of dieback on forest stand structure. We quantified abundance, size, and spatial pattern of tree dieback in 57 plots (50 m × 50 m) established at 100 m intervals along five transects. The snag density and basal area (mean ± SE) of the two species combined were 147 ± 23 stems ha−1 and 5.35 ± 0.81 m2 ha−1, respectively. The percentages of snags were extremely high for both J. procera (57 ± 7%) and O. europaea subsp. cuspidata (60 ± 5%), but showed a decreasing trend with increasing elevation suggesting that restoration is even more urgent at the lower elevations. Snags of the two species accounted for 31 and 45% of total stand density and basal area, respectively. Living stems exhibited truncated inverse-J-shaped diameter and height class distributions, indicating serious regeneration problems of these foundation species in the study area. In addition to direct interventions to assist recruitment of climax tree species, sites with high dieback would probably benefit from snag reduction to prevent fire incidents in the remaining dry Afromontane forests in northern Ethiopia.  相似文献   

20.
Although Jatropha curcas, an important tropical biofuel crop, is reputed for its drought resistance, its ability to perform under dry conditions has hardly been investigated. In a greenhouse experiment we investigated the plant–water relationships of Jatropha seedlings from different accessions under different levels of drought stress. There was little difference in plant–water relations between accessions. Drought significantly reduced leaf area, biomass and relative growth rate, but had no effect on specific leaf area, daily range in leaf water potential, leaf water content, transpiration efficiency or aboveground biomass water productivity, corrected for atmospheric conditions. Stem wood density was equally low (0.26 g cm?3) for all treatments. Stem water content was lowest for dry treatment seedlings. Based on these results, Jatropha could be characterized as a stem-succulent tree. In contrast to other stem-succulent deciduous trees, leaves were not shed immediately after the seedlings were confronted with drought. Instead, at the onset of drought, leaves with a higher adaxial stomatal density were formed, after which leaves were only gradually shed. The role of the succulent stem in the water economy of Jatropha was confined to balancing the small water losses of the leaves during drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号