首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European Water Framework Directive requires that member states assess all their surface waters based on a number of biological elements, including macroinvertebrates. Since 1989, the Flemish Environment Agency has been using the Belgian Biotic Index for assessing river water quality based on macroinvertebrates. Throughout the years, the Belgian Biotic Index has proven to be a reliable and robust method providing a good indication of general degradation of river water and habitat quality. Since the Belgian Biotic Index does not meet all the requirements of the Water Framework Directive, a new index, the Multimetric Macroinvertebrate Index Flanders (MMIF) for evaluating rivers and lakes was developed and tested. This index was developed in order to provide a general assessment of ecological deterioration caused by any kind of stressor, such as water pollution and habitat quality degradation. The MMIF is based on macroinvertebrate samples that are taken using the same sampling and identification procedure as the Belgian Biotic Index. The index calculation is a type-specific multimetric system based on five equally weighted metrics, which are taxa richness, number of Ephemeroptera, Plecoptera and Trichoptera taxa, number of other sensitive taxa, the Shannon-Wiener diversity index and the mean tolerance score. The final index value is expressed as an Ecological Quality Ratio ranging from zero for very bad ecological quality to one for very good ecological quality. The MMIF correlates positively with dissolved oxygen and negatively with Kjeldahl nitrogen, total nitrogen, ammonium, nitrite, total phosphorous, orthophosphate and biochemical and chemical oxygen demand. This new index is now being used by the Flemish Environment Agency as a standard method to report about the status of macroinvertebrates in rivers and lakes in Flanders within the context of the European Water Framework Directive.  相似文献   

2.
Studies investigating the effects of human activities on the functional organization of macroinvertebrate communities in tropical streams and rivers are very limited, despite these areas witnessing the greatest loss of natural forests globally. We investigated changes in taxon richness, numerical abundance and biomass of macroinvertebrate functional feeding groups (FFGs) in streams draining different land-use types in the Sosiani-Kipkaren River in western Kenya. Twenty-one sites in river reaches categorized as forested, mixed, urban or agricultural were sampled during the dry and wet seasons. Collected macroinvertebrates were identified to the lowest taxon possible (mainly genus) and classified into five major FFGs; collector-gatherers, collector-filterers, scrapers, predators and shredders. There were significant (p < 0.05) spatial variation in habitat quality, organic matter standing stocks, total suspended solids, electrical conductivity, dissolved oxygen, temperature and nutrient concentrations across land-uses, with forested sites recording lowest values in mean water temperature, electrical conductivity and nutrients while recording highest levels in dissolved oxygen concentrations. Responses in macroinvertebrates to changes in land-use varied with richness, abundance and biomass showing differences within FFGs. Biomass-based metrics responded more strongly to change in land-use while taxon richness was the least predictive, indicating replacement of taxa within FFGs across land-use types. Higher shredder abundance, biomass and richness were recorded in forested streams which were cooler with protected riparian areas and high biomass of coarse particulate organic matter. Collector-gatherers dominated agricultural and urban streams owing to an abundance of particulate organic matter and nutrients, while scrapers responded positively to increased nutrient levels and open canopy in mixed and agricultural streams where primary production and algal biomass was likely increased. Overall, this study provides further evidence of the effects of agricultural and urban land-uses on tropical streams and rivers and contributes to the use of macroinvertebrate FFGs as indicators of ecological health.  相似文献   

3.
The quality of the river Chienti (eastern‐central Apennines, Italy) has been evaluated according to the Water Framework Directive 2000/60/EC, taking into consideration both biotic (animal and vegetable) and chemical parameters. In studying the biotic component, two indices were used: the E.B.I, Extended Biotic Index (version adapted to the Italian rivers), based on macroinvertebrates, and the EPI‐D, the Eutrophication and/or Pollution Index, based on diatoms. For both macroinvertebrates and diatoms, two samplings were conducted, one in June and the other in October 2003. Instead, according to the Italian Law 152/99 the chemical and bacteriological analyses were conducted monthly for the entire year. The results of biomonitoring and chemical‐bacteriological analyses unanimously demonstrated a good ecological situation for the upper section of the Chienti, though the situation tends to worsen as the river continues its descent and undergoes increased anthropogenic pressure. Data obtained were correlated with Spearman's coefficients and principal component analysis. Both statistical calculations showed clear, direct correlation between the two biotic indices and an inverse correlation between these and the chemical and bacteriological parameters. However, a few differences of judgement that emerged among the various indices highlight the importance of using them simultaneously in order to obtain a more accurate diagnosis of the ecological status of the watercourses.  相似文献   

4.
A large number of restoration projects aims to improve the ecological quality of streams and rivers by focusing on the stream structure. However, improved habitat heterogeneity often does not lead to natural recolonization by sensitive freshwater macroinvertebrate communities, particularly when the recolonization potential is low and source populations are absent. In preliminary studies we tested whether natural substrate exposures could be used to sample and transport benthic macroinvertebrates. In this pilot study we used these previously tested natural substrate exposures to sample freshwater invertebrates in a donor stream in order to actively (re-)colonize a recipient stream. In the course of three reintroduction campaigns, we were able to accumulate over 350,000 benthic invertebrates, including 25 indicator taxa of the orders Ephemeroptera, Plecoptera and Trichoptera and 30 taxa scoring positive in the German Fauna Index. In total, 45 taxa, which did not occur in the recipient stream before, were reintroduced. They were transported gently within natural substrate exposures and released on a stream bottom area of 500 m2 in the recipient stream. We intended to study if an increase of benthos fauna in a recipient stream is possible, and if this increase will eventually improve the ecological status. So far, the natural substrate exposure-method demonstrated to be an adequate tool to accumulate and transport benthic macroinvertebrates and, in general, has the potential to increase the biodiversity of streams when used as assisted migration measure.  相似文献   

5.
In order to assess and compare the ecological impacts of channelization and shallow lowland reservoirs, macroinvertebrate communities of a lowland metapotamal river below reservoirs with epilimnial release were studied. The study was carried out in the Dyje River (Czech Republic) at five sites located from 1.5 to 22.5 km downstream of the reservoir outfall. The five sites differed in the degree of channel modification from natural muddy banks to riprap regulation. Seven samples were collected during the years 1998 and 1999 at each site using a semiquantitative method. The data were processed using multivariate analyses and methods for assessing the ecological and functional structure of communities. Altogether, 261 species of benthic macroinvertebrates were recorded including several rare and threatened taxa. Based on the results of principal component analysis (PCA), most of the variability within the species data (the first PCA axis) was explained by the degree of channel modification, from natural muddy banks with aquatic vegetation to a man-made riprap. The second axis was strongly correlated with current velocity. The sites differed in species richness, total abundances, proportion of individual functional feeding groups, pattern of the distribution of the current preference groups, and values of several biotic indexes, all of which also corresponded to the degree of channel modification. Thus, the morphological man-made modifications of the river channel were found to be the main factor affecting lowland river macroinvertebrates and their biodiversity. Our results suggest that the biggest threat to benthic macroinvertebrate diversity of lowland rivers comes from channelization. The impact of reservoirs can be completely overwhelmed by the impact of channelization, especially when muddy banks with aquatic vegetation present a substantial part of habitat diversity and significantly contribute to the total species pool.  相似文献   

6.
The Rwenzori Mountains and Albertine Rift region of southwestern Uganda are part of a globally recognized biodiversity hotspot, but are currently facing pressures from intensified agriculture, mineral exploitation and hydroelectric power generation. This study was undertaken to assess the ecological water quality of Rwenzori rivers using biomonitoring metrics to determine the major factors shaping macroinvertebrate community structure in disturbed and undisturbed sites. We sampled macroinvertebrates at 66 sites along headwater tributaries and downstream areas of the Nyamwamba, Mubuku and Nyamugasani rivers, supplemented by five sites along the Kazinga channel and Lake George wetland, and identified a total of 32,579 macroinvertebrates to family level. Insecta was the most diverse taxon (45 families). Based on Average Score Per Taxon (ASPT) scores, sites were classified into four ecological water quality groups as excellent (40 sites), good (16), fair (7) and poor (8). Upstream sites had the highest abundance of pollution-sensitive families such as Caenidae and Hydropsychidae, while downstream sites had high numbers of Chironomidae. Lorenz curves revealed a low degree of evenness with Gini coefficient values ranging from 0.75 to 0.94. Ordination analysis revealed that total phosphorus, specific conductivity, chloride and chemical oxygen demand were key environmental variables contributing to variation among the sites. The majority of sites did show little to no anthropogenic influence with the exception of downstream sites. The results of this study provide useful baseline reference data, to assess and better manage the impacts of anthropogenic activities on the ecological integrity of the region’s aquatic systems. Furthermore, these datasets will advance the development of a regional family-level biotic index.  相似文献   

7.
Decomposition incorporates organic material delivered by Pacific salmon (Oncorhynchus spp.) into aquatic and terrestrial ecosystems of streams where salmon spawn. We hypothesized that salmon tissue decomposition would be faster, and macroinvertebrate abundance and biomass higher, in terrestrial compared to aquatic habitats, and this would be reflected in the nutritional quality of the tissue. Salmon tissue in coarse-mesh bags was placed in four habitats [terrestrial: riparian (RIP), gravel bars (GRA); aquatic: stream sediment surface (STR), buried in sediments (BUR)] in four southeast Alaska watersheds. After 2 (RIP, GRA) or 4 (STR, BUR) weeks of decomposition, tissue dry mass, macronutrient content, and macroinvertebrate colonizer abundance and biomass were determined. Overall, tissue decomposition was rapid (mean k = 0.088 day?1), while nutritional quality remained high based on elemental ratios (mean C:N = 4.9; C:P = 140; N:P = 30), and differed among habitats (Linear-mixed effects model p < 0.05). Macroinvertebrate assemblages colonizing carcasses were unique to each habitat, although Diptera generally dominated. In terrestrial habitats, the dominant macroinvertebrates were Sphaeroceridae (96 % of invertebrate abundance in RIP habitat) and Calliphoridae larvae (98 % in GRA habitat). In aquatic habitats, the dominant macroinvertebrates were Chironomidae (48 % in STR habitat) and Chloroperlidae (72 % in BUR habitat). Macroinvertebrate colonizer abundance and biomass were higher in RIP (mean 286 individuals and 22 mg g?1) than in other habitats (mean 4 individuals and 3 mg g?1) (Friedman p < 0.05). Rapid decomposition rates and high invertebrate biomass, combined with the high nutritional quality of tissue, suggest rapid incorporation of critical salmon nutrients and energy into both aquatic and terrestrial ecosystems.  相似文献   

8.
Benthic macroinvertebrate communities from the middle of Zayandeh Rud River were analyzed monthly during 1 year at 8 stations, in order to assess changes in their diversity and richness in relation to water quality. Two major groups of sites based on similarity between macroinvertebrate communities were identified by cluster analysis. The performances of the original and revised BMWP score systems were assessed by comparing the community structure indices of benthic macroinvertebrates along with physico-chemical parameters of the water. The biotic indices (BMWP, ASPT, revised BMWP and ASPT) showed better correlation with water quality parameters than that of the richness and diversity indices. The revised ASPT had the highest correlation with water quality parameters. It seems that the application of the revised BMWP score system could be useful for assessment of the water quality in Zayandeh Rud River.  相似文献   

9.
黄河为世界上最长的多沙河流,全河段水沙异质性及其生态健康的空间差异明显。本文基于黄河干流全河段44个断面春秋两季(2019年)底栖动物的系统调查数据,构建黄河底栖动物生物完整性评价体系。该体系融入指示水沙过程变化的ASPT指数及EPT分类单元个体相对丰度,且参照点与受损点得分差异显著,适用于多沙河流生态健康评价。评价结果显示:黄河干流亚健康及以上状态的断面占比为秋季(75.0%)高于春季(54.5%);自源区沿河而下,底栖动物生物完整性指数值呈下降趋势;库区断面底栖动物生物完整性指数低于临近自然河段。回归分析表明,黄河干流底栖动物生物完整性指数与盐度、总氮、城镇及农田用地占比呈显著负相关,与林地及草地占比呈显著正相关。本研究结果可为黄河生态保护与管理提供科学依据。  相似文献   

10.
We assessed water quality using physical, chemical, and biological characteristics in 37 streams between Puerto Maldonado and Cusco in Peru. Study sites ranged from ∼200 to 4000 m in elevation, with streams selected as pairs (control/natural vs. human impacted) along this gradient. In general, temperature decreased (R2 = 0.82) and other parameters increased [dissolved oxygen (R2 = 0.19), conductivity (R2 = 0.17), pH (R2 = 0.37)] with elevation. Macroinvertebrates were hand collected by professional entomologists and using leaf packs implemented by conservation workers. The professionals identified 213 unique taxa from the hand collections, with 80 species collected only one time. Data from control streams showed that as elevation increased, total richness (p = 0.008) and EPT richness (p = 0.050) decreased whereas Diptera richness increased (p = 0.002). NMS ordination indicated significant differences in macroinvertebrate assemblages when control streams from low and high elevations were contrasted. Hand collections also revealed significant differences between control and impact streams for total richness, EPT richness and % Diptera, but not for % EPT, % EPT richness, or % Diptera richness. The majority of the deployed leaf packs were successfully retrieved and contained many macroinvertebrates (Avg. = 141 individuals per pack). There were 98 unique taxa (family level or higher) identified from the leaf packs by the trained conservation workers. Fourteen of 15 macroinvertebrate community metrics (at the family level) were able to detect significant differences between control and impact sites. All of the family level metrics responded similarly across the elevation gradient except total richness, EPT richness, EPT count, and % Hydropsychids. Both the Costa Rica and the Virginia Save Our Stream Indexes were able to differentiate control from impacted streams using leaf pack data. Although the diversity of macroinvertebrates was higher for hand collections relative to leaf packs (due to greater habitats sampled and higher taxonomic resolution), leaf pack samples were better able to distinguish control from impacted streams. Specifically, leaf packs were able to discern impacts in streams at low elevation better than those at high elevation. Generally, macroinvertebrates indicated impact from urbanization to be worse than impacts from other human activities (i.e., gold mining and agriculture). Overall, hand collections will serve as an important reference of species diversity going forward while leaf packs processed by trained conservation workers are a viable method to monitor stream water quality in Peru and perhaps elsewhere.  相似文献   

11.
Benthic macro-invertebrates are vital components of river ecosystems.The effects of fluvial processes and human activities on the distribution of macro-invertebrates were studied through field investigations and experiment.Sixty-one sampling sites on 31 rivers in China were selected to investigate the structures of macro-invertebrate assemblages.The rivers,according to their fluvial conditions,are classified as streams with a stable channel bed,degrading channel bed,aggrading channel bed,and intensive bed load motion.The structures of macro-invertebrate fauna for the four types of rivers are very different.Stable rivers have a large number of individuals,abundant fauna, and high biodiversity;while the density and taxa richness for degrading rivers are small,and those for aggrading rivers are much less;whereas the ecology of rivers with intensive bed load motion are the worst.This paper proposes that streambed stability is the primary influential factor shaping the structure of benthic macro-invertebrate communities.Organic pollution can obviously result in the decrease of biodiversity,in the simplification of macro-invertebrate structures,and in the distortion of functional feeding group composition.In a river with high total nitrogen content,the relative abundance of collector-gatherers is high,and that of collector-filterers,scrapers,shredders,and predators are low.Scrapers,shredders,and predators disappear in severely polluted rivers.The isolation of aquatic habitat results in a distinct decrease of individual numbers and taxa richness.This result demonstrates that the connectivity of aquatic habitat significantly affects macro-invertebrate assemblages.A practical method to calculate a Habitat Suitability Index(HSI) is proposed,integrating the effects of the primary physical(including biotic and abiotic) and chemical factors.The biodiversity and taxa richness increase non-linearly with HSI.  相似文献   

12.
Excessive mobilization and delivery of fine sediments to water bodies has detrimental impacts on those biotic elements used for waterbody status classification, including macroinvertebrates, fish and macrophytes. The relationship between fine sediment and diatoms is a reciprocal one, with diatoms influencing the production and retention of fine sediments, as well as being impacted by fine sediment derived from the catchment. Diatoms can increase the retention of fine sediments in benthic environments as a result of various mechanisms, including shear stress modification, surface adhesion and bed clogging. Enhanced retention of fines can have important implications for the transfer and fate of sediment‐associated nutrients and contaminants. Excessive fine sediment loadings impact diatom assemblages via shading, burial and scouring. Indirect impacts of increased fine sediment stress can result from changes in habitat availability, herbivory or predator changes, which cascade down the food chain. Indices based on the relative abundance of motile species have been proposed for using diatoms to assess waterbody status. However, disentangling the potential confounding impacts of alternative environmental stressors on these simplistic indices remains a significant challenge. Coupling sediment pressure models, capable of predicting the potential impact of mitigation, with meaningful diatom‐based indices, remains a challenge for catchment planning for sediment abatement and the attainment of improved, or protection of, ecological status. Existing targets for sediment management in river catchments are largely based on relationships between sediment stress and impacts on fish, but these thresholds have been widely criticized. There remains a need to develop generic modelling toolkits coupling sediment stress and impacts on a range of biological quality elements to support a weight‐of‐evidence approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Assessment and monitoring of biodiversity is critical for conservation planning. Considering the cost and time associated to monitoring, selecting proper bio-indicators is important, particularly in countries where financial resources are limited. The objectives of this study were to investigate community congruence of macroinvertebrates and wetland birds in natural wetlands of southwest Ethiopia, exposed to different levels of human disturbance and to identify important environmental variables related to these bio-indicators. Data on macroinvertebrates, birds, physico-chemical water quality, human disturbance and vegetation cover were collected from 54 sampling sites distributed over 12 wetlands during dry and wet season of 2015. Procrustes analysis was used to quantify community congruence between the two assemblages across different disturbance levels. The congruence of macroinvertebrates and wetland dependent birds was higher for low disturbed wetlands (R2 = 0.60) than for moderately disturbed wetlands (R2 = 0.31). Moderately disturbed wetlands showed no significant congruence between macroinvertebrates and wetland birds and between wetland dependent and wetland associated birds. A significant and positive relation between richness of macroinvertebrates and wetland dependent birds was observed when the full data set was used, whereas no significant relation was observed when the data was split according to the different levels of human disturbance. Vegetation cover, dissolved oxygen, water depth, total nitrogen, total phosphorus and conductivity were significantly correlated with both macroinvertebrate and wetland bird occurrence. Based on our study we suggest to monitor both bio-indicators as they provide important complementary information on the status of the wetlands.  相似文献   

14.
15.
为了解河流大型底栖动物对环境压力的响应关系,以人类干扰程度不同的太湖流域和巢湖流域为研究区,系统调查区域内河流大型底栖动物,结合水体、沉积物理化数据及生境质量状况,运用空间分析和多元统计分析等方法,探讨了大型底栖动物多样性及典型物种对关键环境因素的响应规律.结果表明,太湖流域和巢湖流域的环境质量和大型底栖动物群落结构均差异较大,巢湖流域的生境质量优于太湖流域,巢湖流域平原区部分点位的水体营养盐(特别是氮浓度)高于太湖流域平原区.巢湖流域丘陵区的敏感型物种(主要为水生昆虫)密度远高于太湖流域丘陵区,太湖流域丘陵区的耐污型物种(寡毛纲)平均密度稍高于巢湖流域丘陵区,而巢湖流域平原区的寡毛纲霍甫水丝蚓(Limnodrilus hoffmeisteri)和苏氏尾鳃蚓(Branchiura sowerbyi)平均密度远高于太湖流域平原区.广义加性模型建立的响应关系曲线表明,栖境多样性和总氮浓度可以作为生物多样性的指示因子.铜锈环棱螺(Bellamya aeruginosa)、椭圆萝卜螺(Radix swinhoei)、河蚬(Corbicula fluminea)、霍甫水丝蚓、苏氏尾鳃蚓、黄色羽摇蚊(Chironomus flaviplumus)等特征物种与特定环境因子的响应关系显著,这些物种也可以作为环境监测的指示物种.底栖动物环境梯度的响应曲线能够定量地描述底栖动物群落对环境因子的响应关系,有利于深入了解水体水质、营养状态及生境质量与大型底栖动物群落结构的相关关系,进而预测不同人为干扰下大型底栖动物群落结构的变化趋势和演替过程.  相似文献   

16.
In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River (Guadalajara, Central Spain). Three sampling sites were selected: a well-preserved stream (site A), a stream with no wood riparian vegetation (site B), and a straightened and deforested reach (site C). Two habitats were selected in each site: unvegetated habitat (i.e., substrata without macrophytes) and macrophyte habitat (i.e., substrata covered by macrophytes). In each habitat, six macroinvertebrate samples (including all macrophytes or mineral particles) were collected using a Hess sampler. Diversity and density of major families were referred to the surface of the Hess sampler (=Hess surface method) and to the actual surface of either mineral particles or macrophytes (=actual surface method). In general, for the actual surface method, biomass, richness, dominance, and diversity metrics were higher in the mineral habitat than in the macrophyte habitat. This trend was different for the Hess surface method. In general, densities turned out to be higher in the unvegetated habitat than in the macrophyte habitat when using the actual surface method, but the reverse occurred when using the Hess surface method. This fact is relevant for river biomonitoring, especially when reaches with different dominant substrates (macrophytes vs mineral) are compared using just one of the methods. It is concluded that the macrobenthic metrics and density values are influenced by the method used to estimate the potential available surface for aquatic macroinvertebrates.  相似文献   

17.
Submerged macrophyte vegetation has been mapped in four calcareous groundwater-fed streams in Bavaria (southern Germany) in order to compare and assess two different methods of river bioindication. The first one, the trophic index of macrophytes (TIM), is a tool to assess the trophic status of running waters. In contrast, the reference index (RI) is an ecological index which evaluates the difference between a reference community and the actual submerged vegetation, depending on the river type, as required by the Water Framework Directive. Water nutrient concentrations were measured once at selected sites in all water courses.The TIM reflects water phosphorus concentrations, accounting also for nutrients enrichment in the sediment, and is not influenced by shading, depth, substrate and flow velocity of the water course. The TIM is very sensitive to small variations in P concentration when the P level is low, while the index tends to a maximum as soluble reactive phosphorus (SRP) and total phosphorus (Ptot) exceed a certain value.The RI indicates river ecological status which is not only influenced by trophic status but by every factor leading to a deviation of the actual macrophyte community from the reference community. In the investigated rivers the RI indicated reduced flow velocity caused by milldams and shading by riparian vegetation, in addition to trophic status.In rivers that are at the boundary between two different river types, classification of river type can play a crucial role for river status assessment. Incorrect classification of river type can lead to both, a “too good” and “too bad” assessment.  相似文献   

18.
Harpacticoids are an important component of meiofaunal assemblages in springs. No information so far has been available on harpacticoid assemblages of the Western Carpathian spring fens, unique biotopes of high conservation value which cover a very long gradient of mineral content of groundwater, due to the variable geological background setting. Spring fens are isolated habitats of different age which can be assessed by radiocarbon dating of their basal sediment layers. This enables to test a possible effect of habitat age on species composition and species richness. In this study, we examined harpacticoid assemblages in 50 permanent tree-less spring fens (helocrenes) in the Western Carpathians (Slovakia and Czech Republic) in terms of species composition, total abundance, species density, and species richness. We tested mainly the effect of 12 explanatory variables describing water chemistry and temperature, climatic conditions, amount of nutrients, organic carbon, sediment structure, habitat age and size, using Canonical Correspondence Analyses (CCA) with stepwise forward selection. For the computation of species richness rarefaction was used. In total, 20 harpacticoid species were recorded with the total median density of 950 individuals in m−2. Three significant explanatory variables, Ellenberg Indicator Values of plant community for nutrients, in situ measured pH, and average January temperature, explained together 19.0% (adj. 13.7%) of the total variance in the species composition data. The relationships of harpacticoids to these three explanatory variables were species specific and no uniform response of the total assemblage to the environmental variables was found (in terms of total abundance and number of species). The only exception was the influence of overall unfavourable conditions in the mineral-poor acidic Sphagnum-fens. Pilocamptus pilosus was significantly associated with a higher amount of nutrients and warmer climate. Nutrient enrichment was clearly indicated by a decrease or absence of crenophile Bryocamptus cuspidatus, and accompanied by an increase in ubiquitous Attheyella crassa. Moraria brevipes was confined to low pH, B. cuspidatus showed a high tolerance for low pH, whereas Bryocamptus echinatus preferred alkaline conditions. Despite a significant correlation between habitat age and species density we found no clear evidence that any colonisation driven process could influence the number of harpacticoid species within the tested time scale. We hypothesize that rather other habitat characteristics connected with age, i.e. habitat heterogeneity and stability, may be determinant for species richness. The occurrence of some species (e.g. P. pilosus, B. cuspidatus) was clearly geographically limited, but due to the spatial structuring of significant environmental variables no conclusion on dispersal limitations could be made.  相似文献   

19.
Feeding interactions among functional feeding groups (FFGs) of macroinvertebrates are robust indicators of aquatic ecosystem interactions. They provide information regarding organic matter processing, habitat condition and trophic dynamics. In tropical rivers with pronounced wet and dry seasons, macroinvertebrate based ecological monitoring tools are explicitly focused on metrics and indices, while ignoring interactions of FFGs. Therefore, the objective of this study was to investigate the functional feeding type metrics, diversity indices and feeding interactions among FFGs of macroinvertebrates along the water pollution gradient in Gilgel Gibe watershed, Ethiopia. Water quality parameters and macroinvertebrate community attributes were assessed for samples collected from upstream sites (15 sites), urban-impacted stretches (12 sites) and wetland-affected river zones (7 sites) of the watershed during the rainy (July) and dry (February) seasons. To understand the effect of pollution on the feeding interactions, stable carbon and nitrogen isotopes were analyzed. Macroinvertebrate-based diversity indices and functional feeding type metric showed deterioration of ecological integrity at the urban-impacted sites and substantial recovery in the wetland-affected downstream sites. Omnivorous feeding behavior of macroinvertebrates was noted for the upstream sites, whereas clear trophic guilds of FFGs were suggested for the wetland-affected river zones by the stable isotope results. The results of pollution gradient analysis and feeding interactions among FFGs revealed that the urban-impacted sites showed weaker interactions when compared to upstream and wetland influenced sites. This affirms the potential importance of feeding interactions among FFGs of macroinvertebrates in water quality monitoring.  相似文献   

20.
One of the possible consequences of climatic change for streams and rivers in the pampean region of South America is an increment in nutrient loads. To analyze this possible perturbation on a biological scale, the response of oligochaetes to an experimental eutrophication of the La Choza Stream, Argentina was studied. We proposed that the addition of nutrients could increase the abundance, biomass, and species composition of the stream. Two stretches (Control and Treatment sites) were selected, with bimonthly samples being taken (March 2007 through February 2009) in two habitat types: the sediments and the aquatic vegetation. On each sampling occasion the environmental variables were measured. The nutrient addition consisted in the continuous dissolution of a commercial fertilizer. The oligochaete mean density and total biomass, the taxonomic richness, the Shannon diversity (H′), and the evenness (E) were calculated and the BACI ANOVA design used to compare the differences between the sites. Thirty-three species of the families Naididae (Naidinae, Pristininae, Tubificinae, and Rhyacodrilinae), Opistocystidae, Enchytraeidae plus Aphanoneura Aeolosomatidae were collected. The oligochaete abundance and biomass increased significantly in the sediments and on the aquatic vegetation, especially among the Naidinae and Pristininae during their asexual reproductive phase. The diversity and evenness varied significantly in the sediments with the nutrient addition. Significant differences in the species richness and diversity were found on the aquatic vegetation, with both increasing at the treatment site after the fertilization. A significant correlation (Spearman) was observed between the oligochaete density in the sediments and the NO3-N and NH4-N concentration in the water. The increment in the naidines resistant to the fertilizer throughout the experiment could be explained by the greater nutrient availability, their mode of reproduction, and their short life cycles. The results of our study suggested that the incorporation of nutrients modified the composition of the oligochaete assemblage in favor of herbivores and detrivores. The usefulness of these indicator organisms in monitoring freshwater systems is subsequently discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号