首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   

2.
Autogenic cycles of channelization, terminal deposit formation, channel backfilling and channel abandonment have been observed in the formation of fans and deltas. In subcritical flow, these terminal deposits are characterized as mouth bars that lead to flow bifurcation, backwater and eventual channel backfilling. Similar, although less well characterized, cycles also take place on supercritical subaerial and submarine fans. This study investigates the hydraulics and morphodynamics of autogenic incision and backfilling cycles associated with supercritical distributive channel flow in alluvial fans. The research questions of the study are: (i) how are supercritical autogenic cycles on alluvial fans different from the subcritical cycles; (ii) what are the hydraulic and sediment transport characteristics at the various stages of autogenic feedback cycles; and (iii) what role do the cycles play in the overall fan evolution? These questions are investigated in the laboratory, and emphasis is placed on measuring the hydraulic and topographic evolution of the systems during the cycles. The cycles arise quasi‐periodically under constant water and sediment discharge. Periods of sheet‐like flow are competent to move sediment () but not competent enough to carry the full imposed load. The net result is preferential deposition near the inlet, resulting in fan steepening and an increase in flow competency with time. At a sediment supply to capacity ratio of , the sheet‐like flow is unstable to small erosional events near the inlet, resulting in the collapse of the distributed flow to a strong channelized state. During channelization, a graded () supercritical (Fr > 1) channel develops and transports eroded and fed sediment up to and through the fan front – extending the fan, initiating a lobe shaped deposit and reducing the local slope. The slopes defined by a sheet‐like flow with and channelized flow with set the maximum and minimum slopes on the fan, respectively. Once formed, graded channels act as bypass conduits linking the inlet with the terminal deposit. On average, deposits are up to six channel depths in thickness and have volumes approximately five times that of the excavated channel. The main distinctive characteristics of the supercritical cycles relate to how the flow interacts with the terminal deposit. At the channel to deposit transition, the flow undergoes a weak hydraulic jump, resulting in rapid sedimentation, dechannelization and lateral expansion of the flow, and deposition of any remaining sediment on top of the channel fill and floodplain. This process often caps the channel as the deposit propagates up channel erasing memory of the excavated channel.  相似文献   

3.
Autocyclic behaviour of fan deltas: an analogue experimental study   总被引:1,自引:0,他引:1  
Fan deltas are excellent recorders of fan‐building processes because of their high sedimentation rate, particularly in tectonically active settings. Although previous research focuses mainly on allogenic controls, there is clear evidence for autogenically produced storage and release of sediment by flume and numerical modelling that demands further definition of characteristics and significance of autogenically forced facies and stratigraphy. Analogue experiments were performed on fan deltas with constant extrinsic variables (discharge, sediment supply, sea‐level and basin relief) to demonstrate that fan‐delta evolution consists of prominent cyclic alternations of channellized flow and sheet flow. The channellized flow is initiated by slope‐induced scouring and subsequent headward erosion to form a channel that connected with the valley, while the removed sediment is deposited in a rapidly prograding delta lobe. The resulting decrease in channel gradient causes a reduction in flow strength, mouth‐bar formation, flow bifurcation and progressive backfilling of the channel. In the final stage of channel filling, sheet flow coexists for a while with channellized flow (semi‐confined flow), although in cycle 1 this phase of semi‐confined flow was absent. Subsequent autocyclic incisions are very similar in morphology and gradient. However, they erode deeper into the delta plain and, as a result, take more time to backfill. The duration of the semi‐confined flow increases with each subsequent cycle. During the period of sheet flow, the delta plain aggrades up to the ‘critical’ gradient required for the initiation of autocyclic incision. This critical gradient is dependent on the sediment transport capacity, defined by the input conditions. These autogenic cycles of erosion and aggradation confirm earlier findings that storage and release of sediment and associated slope variation play an important role in fan‐delta evolution. The erosional surfaces produced by the autocyclic incisions are well‐preserved by the backfilling process in the deposits of the fan deltas. These erosional surfaces can easily be misinterpreted as climate, sea‐level or tectonically produced bounding surfaces.  相似文献   

4.
中国东部箕状断陷湖盆扇三角洲与辫状河三角洲对比研究   总被引:1,自引:0,他引:1  
刘磊  钟怡江  陈洪德  王峻 《沉积学报》2015,33(6):1170-1181
中国东部箕状断陷湖盆短轴方向,常常发育扇三角洲和辫状河三角洲,二者均可形成良好的油气储集体,但在岩芯以及地球物理资料的识别上常常容易混淆。通过对它们沉积特征、地球物理资料特征、含油气性和控制因素的对比研究和分析认为:扇三角洲是陡坡带冲积扇直接入湖形成,地震反射特征为楔形前积,沉积物成分成熟度和结构成熟度均低于辫状河三角洲,沉积特征反映重力流和牵引流双重作用;辫状河三角洲是缓坡带辫状河入湖形成的三角洲,向湖盆方向推进较远,地震反射特征为叠瓦前积,沉积特征反映牵引流作用。扇三角洲易形成构造-岩性油气藏和岩性油气藏,有利相带为扇三角洲前缘水下分流河道、席状砂以及前扇三角洲容易发育的滑塌浊积扇;辫状河三角洲易形成地层-岩性油气藏和岩性油气藏,有利相带为辫状河三角洲平原辫状分流河道,辫状河三角洲前缘水下分流河道、河口坝、席状砂以及半深湖中的浊积岩体。古气候变化、构造-古地貌以及湖平面变化速率三者共同作用于扇三角洲和辫状河三角洲的沉积特征,其中构造-古地貌是主控因素。结合二者沉积特征差异,建立了中国东部箕状断陷湖盆扇三角洲和辫状河三角洲沉积模式图,以期能对相似构造背景下扇三角洲和辫状河三角洲的分析与研究提供一定的指导作用。  相似文献   

5.
The morphodynamics of a river flood on a fan delta and its resultant stratigraphic and sedimentary signatures have been studied by means of a flume experiment under controlled boundary conditions. The experiment revealed that deposition was dominant in flood periods when the channels were highly loaded with sediments. In contrast, erosion was dominant in periods of low flow. Mouth bars were formed when a subaqueous channel began to backfill. The development of a mouth bar began with progradation in the down‐dip direction and proceeded by aggradation, then retrogradation and finally transverse growth. A channel bifurcated in multiple stages by sequentially forming mouth bars or by simultaneously forming arrays of mouth bars. During the bifurcation, the diffluent point moved upstream, which resulted in channel migration and the development of a delta lobe. Flood events triggered fan‐delta front slide‐slump deposits.  相似文献   

6.
正断层构造广泛发育于盆地内和造山带中,其对可容空间分配及沉积物分布具有明显的控制作用,从而影响了冲积扇形态。为进一步探究正断层构造对冲积扇沉积过程及其内部构型的控制作用,利用水槽实验对正断层构造发育背景下的冲积扇发育过程进行模拟再现。研究表明,携带大量沉积物的碎屑流优先在上盘近断层处泄载,后经牵引流的改造,形成沿断面垂向生长、尖端指向物源的三角形分水滩。水动力较强时碎屑流越过分水滩并在分水滩尾部发育越滩朵体,水动力较弱时碎屑流遇分水滩尖端分流后沿断面在分水滩两侧发育断面朵体。受控于断面及分水滩的阻挡,冲积扇表面不同位置的沉积物泄载过程差异较大,粒度差异明显,上盘扇体中分水滩沉积物偏粗,越滩朵体次之,断面朵体最细。冲积扇的发育过程依据分水滩砂体厚度和断距大小之间的差异,共分为3个阶段。断距大小还会影响冲积扇沉积构型,断距越大,上盘可容空间越大,分水滩发育时间越长,扇体内部砂体叠置样式越复杂。受控于正断层的冲积扇内部构型在垂直物源剖面上从近端至远端,分别发育纵向沙坝、分水滩及碎屑流朵体,在平行物源剖面上以复合水道主控、分水滩叠复体主控、多期朵体叠复体主控为主。  相似文献   

7.
Normal fault structures are widely developed in basins and orogenic belts,which control the accommodation space and the distribution of sediments and thus affecting the morphology of alluvial fans. A flume tank experiment was carried to simulate and clarify the control of normal faults on the sedimentary process and internal architecture of alluvial fans.The results show that the large amount of sediments carried by debris flow tend to be unloaded near the hanging wall of faults and are subsequently reworked by traction current,which result in a triangular distributary gravel bar grows vertically on fault plane with the tip pointing to the source area. When the hydrodynamic force is strong,debris flow goes across distributary gravel bar and forms over-bar lobe at the tail of the distributary gravel bar. When the hydrodynamic force is weak,debris flow forms fault plane-dominated lobe along fault plane and is located on both sides of the distributary gravel bar. Under the control of normal faults and the barrier of distributary gravel bar,the unloading process of sediments varies greatly at different positions on the surface of alluvial fan. The particle size varies greatly among different facies,with coarsest grains developed on the fans of hanging wall,finer grained on over-bar lobe and finest sediments on fault plane-dominated lobe. The development process of alluvial fan can be divided into three stages,according to the sandbody thickness and fault throw of distributary gravel bar. The fault throw also affects the sedimentary architecture of alluvial fan,with larger the fault throw generating larger the accommodation space of hanging wall,longer development time of distributary gravel bar and more complex of the superposition pattern of the sand bodies inside the fan. The internal architecture of alluvial fan that is controlled by normal faults includes longitudinal sandbar,distributary gravel bar and debris flow lobe in the profile vertical perpendicular to the sediment source direction from the proximal to the distal end. Along sediment longitudinal section,composite channel,superimposed distributary gravel bar complex and superimposed bodies of multi-phased lobes are dominant facies.  相似文献   

8.
Two Palaeogene fluvial fan systems linked to the south‐Pyrenean margin are recognized in the eastern Ebro Basin: the Cardona–Súria and Solsona–Sanaüja fans. These had radii of 40 and 35 km and were 800 and 600 km2 in area respectively. During the Priabonian to the Middle Rupelian, the fluvial fans built into a hydrologically closed foreland basin, and shallow lacustrine systems persisted in the basin centre. In the studied area, both fans are part of the same upward‐coarsening megasequence (up to 800 m thick), driven by hinterland drainage expansion and foreland propagation of Pyrenean thrusts. Fourteen sedimentary facies have been grouped into seven facies associations corresponding to medial fluvial fan, channelized terminal lobe, non‐channelized terminal lobe, mudflat, deltaic, evaporitic playa‐lake and carbonate‐rich, shallow lacustrine environments. Lateral correlations define two styles of alluvial‐lacustrine transition. During low lake‐level stages, terminal lobes developed, whereas during lake highstands, fluvial‐dominated deltas and interdistributary bays were formed. Terminal lobe deposits are characterized by extensive (100–600 m wide) sheet‐like fine sandstone beds formed by sub‐aqueous, quasi‐steady, hyperpycnal turbidity currents. Sedimentary structures and trace fossils indicate rapid desiccation and sub‐aerial exposure of the lobe deposits. These deposits are arranged in coarsening–fining sequences (metres to tens of metres in thickness) controlled by a combination of tectonics, climatic oscillations and autocyclic sedimentary processes. The presence of anomalously deeply incised distributary channels associated with distal terminal lobe or mudflat deposits indicates rapid lake‐level falls. Deltaic deposits form progradational coarsening‐upward sequences (several metres thick) characterized by channel and friction‐dominated mouth‐bar facies overlying white‐grey offshore lacustrine facies. Deltaic bar deposits are less extensive (50–300 m wide) than the terminal lobes and were also deposited by hyperpycnal currents, although they lack evidence of emergence. Sandy deltaic deposits accumulated locally at the mouths of main feeder distal fan streams and were separated by muddy interdistributary bays; whereas the terminal lobe sheets expand from a series of mid‐fan intersection points and coalesced to form a more continuous sandy fan fringe.  相似文献   

9.
Diaz  Hector  Mazzorana  Bruno  Gems  Bernhard  Rojas  Ivan  Santibañez  Nicole  Iribarren  Pablo  Pino  Mario  Iroumé  Andrés 《Natural Hazards》2022,111(3):3099-3120

Sudden avulsions, unexpected channel migrations and backfilling phenomena are autogenic phenomena that can considerably change the propagation patterns of sediment-laden flows on alluvial fans. Once the initial and boundary conditions of the hazard scenario with a given return period are determined, the assessment of the associated exposed areas is based on one numerical, essentially deterministic, process simulation which may not adequately capture the underlying process variability. We generated sediment-laden flows on an experimental alluvial fan by following a “similarity-of-process concept”. Specifically, we considered a convexly shaped alluvial fan model layout featuring a curved guiding channel. As loading conditions, we defined a reference, an increased and a reduced level for the released water volume and the predisposed solid fraction, respectively. Further, we imposed two different stream power regimes and accomplished, for each factor combination, eight experimental runs. The associated exposure areas were recorded by video and mapped in a GIS. We then analysed exposure data and determined exposure probability maps superposing the footprints of the eight repetitions associated with each experimental loading condition. The patterns of exposure referred to the specific loading conditions showed a noticeable variability related to the main effects of the total event volume, the solid fraction, the interactions between them, and the imposed stream power in the feeding channel. Our research suggests that adopting a probabilistic notion of exposure in risk assessment and mitigation is advisable. Further, a major challenge consists in adapting numerical codes to better reflect the stochastics of process propagation for more reliable flood hazard assessments.

  相似文献   

10.
Dredging the alluvial fans for repaving the international road located in the bottom of the Wadi Watir valley produced vertical cliff faces of different heights, and at different locations of the fans. The heights of the cliff faces resulted in considerable elevation differences between the surface of the dredged alluvial fans and the local base level provided by the Watir trunk valley. The principal geomorphic response to this anthropogenic intervention is triggering upstream channel incision waves at different intensities in the fluvial systems of the downstream reaches of the Watir drainage basin. The channel incision processes resulted in subsequent geomorphic adjustment scenarios that vary from widening the active channels on the surface of the dredged fans, triggering rockfalls from the adjacent hillslopes, and transporting coarse alluvial deposits from the main sediment sources of the fluvial systems, and eventually re-depositing them as sheetform gravel, channelform gravel, and new fan lobes. The major outcome of the various geomorphic adjustment processes was changing the role of the alluvial fans within the fluvial systems from buffer zones where fan aggradation was dominant into dynamic coupled zones. Being coupled zones, the dredged alluvial fans allowed high potential of mass transmission from the feeder catchment areas into the Watir trunk valley. Under such conditions, it could be stipulated that considerable changes in the morphology of landscapes are highly anticipated in response to flash flood events that intermittently occur in the Watir drainage basin.  相似文献   

11.
Alluvial fans are relatively simple depositional systems, due to the direct coupling of sediment sources and adjacent accumulation areas. Nonetheless, general models of alluvial‐fan evolution and stratigraphy remain elusive, due to the great sensitivity of such systems to allogenic controls and their strongly case‐specific responses. Autogenic processes intrinsic to alluvial‐fan dynamics can complicate stratigraphic architectures, with effects not easily distinguishable from those of allogenic forcing. A distinction is made here between lateral autogenic dynamics, tied to spatial sediment distribution over fan surfaces, and vertical autogenic dynamics, related to independent incision‐aggradation cycles. Autogenic mechanisms have been highlighted recently by modelling studies, but remain poorly constrained in field‐based studies. Examples are presented here from the margins of the Cenozoic Teruel and Ebro basins (Spain), where alluvial fans accumulated thick successions during phases of basin topographic closure and endorheic drainage which promoted forced aggradation. Fan successions consist of conformable architectures of stacked clastic sheets, laterally continuous and with no evidence of internal unconformities, inset architectures, fan segmentation or preserved incised channels. Continuous aggradation in these closed basins strongly inhibited ‘vertical’ autogenic dynamics in the form of fan head and through fan incision, due to the forced rise in geomorphic base level and the creation of positive accommodation. Furthermore, the lack of incised channels favoured widespread sediment transport and aggradation over broad fan sectors in relatively short time spans, in contrast to the typical occurrence of active lobes and abandoned fan surfaces caused by ‘lateral’ autogenic dynamics. Stratigraphic records of alluvial fans developed in endorheic basins are essentially complete and largely unaffected by autogenic processes. The latter characteristic implies that they can be more unambiguously interpreted in terms of allogenic forcing, because stratigraphic signatures are not complicated by the effects of complex fan autodynamics.  相似文献   

12.
江苏盐阜拗陷晚白垩世浦口组沉积相与沉积演化   总被引:11,自引:4,他引:11  
为系统探讨区内晚白垩世浦口组沉积相类型、沉积特征,深入研究了浦口组各亚段沉积相平面分布及盆地沉积演化规律。研究表明,浦口组主要发育冲积扇、扇三角洲和湖泊三种主要沉积相类型。从盆地边缘到盆地中心,沉积相由冲积扇沉积逐渐变为扇三角洲或滨湖、浅湖、半深湖或盐湖相沉积;自下而上由冲积扇沉积逐渐变为扇三角洲或滨湖,至浅湖、半深湖或盐湖相,再到浅湖相沉积。晚白垩世浦口组沉积时期,盆地演化过程可划分为初、早、中和晚四个时期。不同时期、不同地区的沉积特征表现各异,但总体表现出拗陷具有由小到大,再缩小的发育特点。  相似文献   

13.
Alluvial fans are usually constructed through episodic flood events. Despite the significance of these ephemeral floods on the morphodynamics of alluvial fans, depositional responses to the variations in flood conditions are still poorly documented. This greatly limits the ability to interpret ancient sedimentary successions of fans and the associated flood hydrodynamics. The Quaternary Poplar Fan from endorheic Heshituoluogai Basin provides an optimal case for addressing this issue. Based on the variations in facies associations and flood conditions, three depositional stages – namely; lobe building stage, channel building stage and the abandonment stage – are identified. During the lobe building stage the Poplar Fan is predominately constructed through incised channel flood, sheetflood and unconfined streamflood, with coeval development of distal surficial ephemeral ponds. The channel building stage is characterized by the development of gravelly braided rivers. However, only scour pool fill deposits are preferentially preserved in the Poplar Fan. During the abandonment stage, erosional lags and aeolian sands randomly occur throughout the fan, while gully deposits can only be found in the distal fan. The distinctive facies architecture of the Poplar Fan is likely to be the result of periodicity of climate fluctuations between wetter and drier conditions during the Late Pleistocene to Holocene. The ephemeral floods formed under wetter conditions usually show high discharge and sediment concentrations which facilitate the lobe building processes. During the drier periods, only gravelly braided rivers can be developed through ephemeral floods as the intensity and frequency in precipitation, discharge and sediment concentrations of the flood flows significantly decrease. The abandonment stage of the fan may occur between recurring flood episodes or during the driest periods. Furthermore, the long-term (105 to 106 year) geomorphic evolution of the Poplar Fan shows the influence of tectonic activities. The ongoing thrust uplift tectonic activities have caused destruction of the fan but can also facilitate the fan-head trench/incision of the fan, which in turn facilitate the progradation of the fan. This study proposes a new depositional model for alluvial fans constructed through episodic flood events, which shows the character of both sheet-flood dominated and stream-flow dominated end members of alluvial fans. These findings supplement the understanding of the variability of the alluvial fans and provide means to characterize rock record of alluvial fans and their associated flood and climate conditions.  相似文献   

14.
柴达木盆地处于古亚洲构造域和特提斯-喜马拉雅构造域的结合部,构造应力大而复杂,导致盆内地势起伏大,加上西南暖湿气流受喜马拉雅山系阻隔难以进入境内,盆内气候干旱,最终导致盆地内冲积扇极为发育。通过对大柴旦地区大头羊煤矿、鱼卡河、波门河和八里沟四个冲积扇的实地考察,共观测到3个亚相8个微相:扇根亚相沉积物最粗,分为古沟道、主水道和主水道间微相;扇中亚相沉积物偏细,成熟度增高,分为辫状水道、辫状水道间和纵坝微相;扇缘亚相沉积物最细,流体能量最低,分为水道径流和片流微相。不同沉积微相其沉积特征差异较大,认为古沟道、主水道和辫状水道微相具有较好的储集性能。勘探表明,冲积扇沉积与储层有着密切的关系,其内形成的油藏具有“自我保护”的能力;另外,冲积扇的形成很可能导致上覆地层形成扇背斜油藏,也可能导致下伏基岩形成基岩风化壳油藏。  相似文献   

15.
洪积扇相砂砾岩体储层构型研究方法探讨   总被引:6,自引:1,他引:5  
在厘定其不同层次界面成因的基础上,把Miall研究思路成功移植到洪积扇相复杂储层中,建立了与开发精度相匹配的洪积扇储层内部结构研究的层次分析法,即复合水道、单期水道和高渗透段3个层次。划分出洪积扇砂砾岩储层5级构型界面:5级界面为洪泛沉积发育稳定的泥岩,构成油田开发中的隔层;4级界面由厚度变化的泥岩、粉砂质泥岩组成,形成流体渗流屏障;3级界面为形成的支撑砾岩体与周围储集体的岩性突变面。总结了复合水道规模扇缘亚相单期条带状、扇中亚相多期交织的宽带状及扇顶亚相多期垂向叠加的厚层板状砂砾岩体的分布特点。提出了洪积扇单期水道研究方法,即分别从单期水道4个方面的垂向识别特征和4种单期水道的侧向界面识别标志入手,在3种单期水道空间组合模式指导下开展三维空间组合研究。2个典型井区的实例分析表明,扇顶亚相单期水道的边界沿着古水流方向近似呈直线分布,多期水道呈楔形叠瓦状前积叠加,垂直物源方向为垂向加积切割叠置关系;扇中亚相单期水道边界类似曲率较小的辫状河道边界,多期水道具有侧向叠置的特点。  相似文献   

16.
Alluvial fans can preserve historical records of sediment transport to middle and lower river systems or piedmont basins, which are considered to be sensitive recorders of climate change and tectonic activity. In this paper, the morphological characteristics, control factors and future development trend of alluvial fan are summarized and described. The main understanding is as follows: According to the gravity flow and traction flow process, fan can be divided into debris flow alluvial fan and fluvial fan. The former is formed under the action of debris gravity flow deposits, which is related to the occasional flood and burst flow in a short time. The latter is braided tributaries depositions which are gradually shallower and spread radially in the direction of fan toe under the traction water transport. The erodibility of underlying bedrock can affect the scale of downstream alluvial fan, which depends on the sediment production and store factors in the catchment. The easily eroded bedrock may produce more sediment, making the alluvial fan area larger. In the contrast, the erodibility of rocks in the source area can also affect the slope and hydrological characteristics of the valley so that more sediment is deposited in the upstream basin and the alluvial fan formed in the downstream is smaller. Tectonic activity is the pre-condition for the development of alluvial fans, which provides a space for alluvial fans depositions. Faulting in the piedmont can change the position and morphology of the ancient alluvial fan, and also cause deformation or distortion of the thick sedimentary sequence to record the regional tectonic activity. The quaternary alluvial fan sequence corresponds well to the climate change during the glacial-interglacial period. However, the influence of the flood events caused by extreme meteorological events on alluvial fan deposition should be focused on. The application of a series of new techniques and methods will help to carry out deep research on alluvial fan in the future, such as high-resolution observation technique, physical simulation experiment, and precise dating.  相似文献   

17.
刘艺萌  张藜  黄晓波  郑敬贵  徐伟 《沉积学报》2019,37(6):1280-1295
辽中凹陷北洼古近系东二下亚段发育14期湖底扇沉积。基于湖底扇类型划分,对不同类型湖底扇沉积控制因素、成因机制及不同类型湖底扇之间的时空演化规律进行了研究。结合深水重力流沉积学理论,依据湖底扇水道发育程度、重力流流体性质,将研究区湖底扇分为非水道化-砂质碎屑流型湖底扇、非水道化-浊流型湖底扇和水道化湖底扇3种类型。非水道化-砂质碎屑流型和非水道化-浊流型湖底扇无明显下切水道,其中非水道化-砂质碎屑流型湖底扇整体富砂,非水道化-浊流型湖底扇整体富泥。水道化湖底扇发育明显下切水道,水道中发育砂质碎屑流富砂,水道外发育浊流富泥。物源富砂性及坡折带规模共同决定湖底扇沉积类型,含砂率大于30%的富砂型物源易形成非水道化湖底扇,含砂率小于30%的富泥型物源易形成水道化湖底扇。在富砂型物源背景下,当坡折规模较大时,因搬运距离远,砂泥分异充分,沉积非水道化-砂质碎屑流型和非水道化-浊流型两种湖底扇;当坡折规模较小时,砂泥分异不充分,只发育非水道化-砂质碎屑流型湖底扇。富砂物源滑塌为非粘性体,搬运过程中易与水融合,对底部呈片状冲刷,不易形成单一水道;富泥物源滑塌为黏性体,搬运过程中对底部冲刷集中,强度更大,易形成水道。  相似文献   

18.
A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain, Kuqa Depression, Tarim Basin, Xinjiang province. Two types of fans occurred in the middle–late Paleogene Kumugeliemu and Suweiyi formations: one alluvial, and the other fan delta deposited in a lacustrine setting. Within the early Neogene Jidike Formation, coastal subaqueous fans developed, probably in a deeper water lacustrine setting. The three types of fans are stacked vertically in outcrop with the sequence in ascending order: bottom alluvial, middle fan-delta, and top subaqueous. The subaqueous is a typical coarse-fan deposit occurring in the glutinite member of the Jidike Formation in some wells. Laterally, from the foreland to the lacustrine settings, the distribution pattern of sedimentary facies represents the same three fan types sequentially. The spatial distribution of these fans was controlled by the Paleogene–Neogene Basin transformation, and evolution with different types of fans developed in the Kuqa Depression in response. In the Paleogene, the Kuqa Depression was a rift basin where an alluvial fan was deposited in the foreland setting, which, by early Neogene, became a foreland basin when the lake level changed. With any rise in lake level, fan-deltas migrated from lacustrine to foreland settings, whereas when the lake level fell, fan migration was reversed. In the early Neogene, with increasing slope and rising lake level, fans progressed and covered the previous fan-delta and lacustrine mudstone. Eventually, subaqueous fans developed, forming the present spatial configuration of these three fan types.  相似文献   

19.
松辽盆地十层断陷沉积特征与油气前景   总被引:4,自引:1,他引:4  
十屋断陷沉积特征表现为近物源、粗碎屑快速沉积、冲积扇、扇三角洲、湖底扇与深水湖组合构成了特有的“扇-湖”沉积面貌,正常三角洲缺乏。断陷沉积发展经历了早期充填、中期扩张、晚期萎缩3个阶段:早期充填阶段发育有冲积扇、辫状河及成煤沼泽;中期扩张阶段沉积特征为深水湖泊与湖底扇、扇三角洲组合;晚期萎缩阶段为浅湖与三角洲、湖岸洪泛平原组合。良好的沉积盆地类型决定了丰富的生油气物质基础,众多的沉积体系构成了多样化的复合圈闭,因此十屋断陷具有良好的找油气前景。  相似文献   

20.
A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain,Kuqa Depression,Tarim Basin,Xinjiang province. Two types of fans occurred in the middle-late Paleogene Kumugeliemu and Suweiyi formations:one alluvial,and the other fan delta deposited in a lacustrine setting.Within the early Neogene Jidike Formation,coastal subaqueous fans developed,probably in a deeper water lacustrine setting.The three types of fans are stacked vertic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号