首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow.  相似文献   

2.
王志明  李森 《铀矿地质》1991,7(5):257-264
在水文地球化学找矿研究中,采用稳定同位素和放射性同泣素方法判别放射性水异常及其成圈是一个重要的课题。在宝昌盆地采用氢氧同位素及氚的研究确定了3种类型的地下水异常。它们是:(1)局部淋滤富集和蒸发浓缩作用形成;(2)铀矿化引起的异常水;(3)深部与浅部水的混合作用形成。异常水的补给高程估计为1796m。异常地下水中~(234)U的过剩显示了矿化存在的可能性。同位素水文学的研究为水文地球化学找铀提出了一个新的方向。  相似文献   

3.
在大同口泉沟南寒武-奥陶系碳酸盐岩地下水资源勘探研究中,应用了铀放射系不平衡方法.由地下水中234U与238U放射性活度比的不平衡对相邻泉域作出区别,划分出岩溶地下水的3种类型,相应于强、中、弱径流条件和不同的含水层环境.利用234U盈亏指标识别了本区各岩溶地下水子系统、相互关系、补给源和混合比及其与侧向补给和侧向排泄的关系.地下水中铀含量和活度比有较大变幅,神头泉有罕见的小于久期平衡的铀放射性活度比.  相似文献   

4.
王洪作  王丹  张云龙  张鸿  舒徐洁  程成 《地质学报》2021,95(12):3828-3841
目前,沙特阿拉伯西北部Jabal Twalah地区铀钍资源勘查程度较低,对该地区的铀成矿机制研究相对薄弱.本文主要对该地区新发现的伟晶岩型和花岗岩热液型铀矿化带的矿化特征和成矿机制开展研究.区内与铀钍矿化相关的伟晶岩和围岩花岗岩中锆石LA-ICP-MS U-Pb年龄分别为638.6±3.2 Ma和632.5±1.5 Ma,两者时代基本一致.综合岩相学、地球化学以及扫描电镜能谱分析等研究结果,发现矿化伟晶岩强烈富集U、Th、稀土及稀有金属元素,复杂的高温蚀变矿物组合特征暗示可能经历了岩浆期后热液的改造,改造前后矿化伟晶岩中的铀和钍未发生分离,以副矿物形式存在而无独立铀矿物,具岩浆矿物组合的特征,如金红石、锆石、氟碳铈矿、磷钇矿、钍石等.花岗岩热液型单铀矿化带的地表样品中铀矿物主要为硅铅铀矿和硅钙铀矿,脉石矿物主要为赤铁矿、萤石、石英以及少量方解石,铀矿化受控于高铀含量的碱性花岗岩、强烈硅化构造破碎带以及晚期酸性基性脉岩活动等因素.强烈硅化的构造破碎带及其转折部位或者与脉岩交汇部位是今后重要的找矿方向.  相似文献   

5.
Groundwater processes and sedimentary uranium deposits   总被引:8,自引:0,他引:8  
 Hydrologic processes are fundamental in the emplacement of all three major categories of sedimentary uranium deposits: syngenetic, syndiagenetic, and epigenetic. In each case, the basic sedimentary uranium-enrichment cycle involves: (1) leaching or erosion of uranium from a low-grade provenance; (2) transport of uranium by surface or groundwater flow; and (3) concentration of uranium by mechanical, geochemical, or physiochemical processes. Although surface flow was responsible for lower Precambrian uranium deposits, groundwater was the primary agent in upper Precambrian and Phanerozoic sedimentary uranium emplacement. Meteoric or more deeply derived groundwater flow transported uranium in solution through transmissive facies, generally sands and gravels, until it was precipitated under reducing conditions. Syndiagenetic uranium deposits are typically concentrated in reducing lacustrine and swamp environments, whereas epigenetic deposits accumulated along mineralization fronts or tabular boundaries. The role of groundwater is particularly well illustrated in the bedload fluvial systems of the South Texas uranium province. Upward migration of deep, reducing brines conditioned the host rock before oxidizing meteoric flow concentrated uranium and other secondary minerals. Interactions between uranium-transporting groundwater and the transmissive aquifer facies are also reflected in the uranium mineralization fronts in the lower Tertiary basins of Wyoming. Similar relationships are observed in the tabular uranium deposits of the Colorado Plateau. Received, May 1998 · Revised, July 1998 · Accepted, September 1998  相似文献   

6.
Uranium contents and234U/238U ratios have been determined on 29 water samples from the Taiyuan area, Shanxi Province. The results show that the same artesian aquifer has similar uranium contents and234U/238U activity ratios, and the deeper aquifers have higher A. R. values but lower uranium contents. The A. R. values increase slightly towards groundwater flow in the artesian aquifers dominated by oxidizing ground waters. The Lancun Spring and the famous Jinci Spring belong to two different karst groundwater systems, i.e., the east and west karst groundwater systems. The recharge area of the Lancun Spring should cover the wide limestone outcrops of middle Ordovician in the northeast. The Ordovician fissure-karst ground water to the Jinci Spring is extensively mixed with fissure water in Carboniferous-Jurassic formations and seepage water from the Fenhe River.  相似文献   

7.
A methodology for the determination of the rare earth elements in uranium oxides by ion microprobe has been set up on a Cameca ims-3f instrument. An uranium oxide reference material from a syn-metamorphic uranium deposit related to albitisation has also been developed for this type of analysis. Applications of the methodology are presented for a series of uranium oxides selected from some major uranium deposit types: from the world's highest grade unconformity-related uranium deposit from the Athabasca Basin (Saskatchewan, Canada; the Shea Creek and the McArthur River examples), a perigranitic vein-type deposit (Pen Ar Ran, Vendée, France) and a volcanic caldera-related deposit (Streltsovkoye, Transbaikalia, Russia). Each type of uranium deposit appears to have a specific REE signature. All REE patterns from the Shea Creek and the McArthur deposits are characterised by bell-shaped patterns centred on Tb-Dy and similar to those already published for uranium oxides from unconformity-related deposits from Australia. Such bell-shaped REE patterns centred on Tb-Dy may therefore be considered as a typical signature of uranium oxides from Mesoproterozoic unconformity-related deposits. A smoother bell shape pattern centred on Eu characterises the syn-metamorphic albitisation related deposit of Mistamisk selected for the reference material. The REE patterns from the Pen Ar Ran deposit show a fractionation from LREE to HREE with anomalously high abundances of Sm, Eu and Gd with respect to the other REEs, similar to the REE patterns of uranium oxides from the volcanic-related deposits of Streltsovkoye.  相似文献   

8.
Orca Basin, an anoxic, brine-filled depression at a depth of 2200 m in the Northwestern Gulf of Mexico continental slope, has been studied with respect to its uranium geochemistry. Uranium concentration profiles for four cores from within the basin were determined by delayed-neutron counting. Uranium concentrations ranged from 2.1 to 4.1 ppm on a salt-free and carbonate-corrected basis. The highest uranium concentrations were associated with the lowest percentage and δ13C organic carbon values.For comparison, cores frm the brine-filled Suakin and Atlantis II Deeps, both in the Red Sea, were also analyzed. Uranium concentrations ranged from 1.2 to 2.6 ppm in the Suakin Deep and from 8.0 to 11.0 ppm in the Atlantis II Deep. No significant correlation was found between uranium concentrations and organic carbon concentrations and δ13C values for these cores.Although anoxic conditions are necessary for significant uranium uptake by non-carbonate marine sediments, other factors such as dilution by rapidly depositing materials and uranium supply via mixing and diffusion across density gradients may be as important in determining uranium concentrations in hypersaline basin sediments.  相似文献   

9.
还原体(体系)与富铀矿的形成   总被引:1,自引:1,他引:1  
余达淦 《铀矿地质》1989,5(6):343-349
铀是变价元素,还原体(体系)在铀富集过程中起着相当重要的作用。还原体(体系)可分两类:一类为自还原体(体系),这是指还原体(剂)是热液本身的还原体系,还原剂和铀在同一热液体系中搬运、迁移,然后在变化了的物理化学条件下,铀依靠热液本身的还原性能而被还原沉淀。另一类为外部还原体系,这是指铀的沉淀的还原作用是依靠围岩中的还原剂或地球化学场。两类还原体(体系)对铀的富集成矿具有不同方式,从而有不同的地质环境要求。  相似文献   

10.
The 234U/238U alpha activity ratio (AR) was determined in 47 samples of variably uraniferous groundwater from the vicinity of a uranium mill near Cañon City, Colorado. The results illustrate that uranium isotopes can be used to determine the distribution of uranium contamination in groundwater and to indicate processes such as mixing and chemical precipitation that affect uranium concentrations. Highly to moderately contaminated groundwater samples collected from the mill site and land immediately downgradient from the mill site contain more than 100?μg/l of dissolved uranium and typically have AR values in the narrow range of 1.0–1.06. Other samples from the shallow alluvial aquifer farther downgradient from the mill contain 10–100?μg/l uranium and plot along a broad trend of increasing AR (1.06–1.46) with decreasing uranium concentration. The results are consistent with mixing of liquid mill waste (AR≈1.0) with alluvial groundwater of small, but variable, uranium concentrations and AR of 1.3–1.5. In the alluvial aquifer, the spatial distribution of wells with AR values less than 1.3 is consistent with previous estimates of the probable distribution of contamination, based on water chemistry and hydrology. Wells more distant from the area of probable contamination have AR values that are consistently greater than 1.3 and are indicative of little or no contamination. The methodology of this study can be extended usefully to similar sites of uranium mining, milling, or processing provided that local geohydrologic settings promote uranium mobility and that introduced uranium contamination is isotopically distinct from that of local groundwater.  相似文献   

11.
花岗岩型铀矿中铀的来源问题,长期以来是铀矿床学研究的热点问题之一。大多数学者认为其成矿物质主要来源于花岗岩本身的含铀副矿物,然而对于含铀副矿物热液蚀变行为研究较少。鹿井铀矿田位于诸广山复式岩体的中部,是华南最主要花岗岩型铀矿田之一,碎裂蚀变岩型铀矿化在该矿田内占主导地位。小山铀矿床位于鹿井矿田中部,是近些年新发现的碎裂蚀变岩型矿床。本文以钻孔ZK1-1为研究对象,对热液蚀变带开展了精细矿物学研究。研究表明:蚀变带中发育有晶质铀矿、铀石—钍石、独居石、磷钇矿、锆石、磷灰石、金红石等含铀副矿物。晶质铀矿、铀石—钍石中铀含量高,热液蚀变条件不稳定,铀容易释放;独居石蚀变为直氟碳钙铈矿和磷钇矿蚀变为次生磷灰石过程中容易释放出铀;锆石因结构稳定,铀难以释放;磷灰石、金红石中铀含量较低,供铀能力差。综合分析认为花岗岩中晶质铀矿、铀石—钍石是主要铀源矿物,独居石、磷钇矿为次要铀源矿物。  相似文献   

12.
对弯段温差剪切分层流的断面环流微细结构与掺混强度特征进行了试验研究。选取45°、90°、1 80°三种不同弯曲度水槽,探求了密度分层流从明显分层到强混合状态下断面环流结构的演变过程,发现了明显分层与强混合两种不同状态下3个环流结构的区别,捕捉到了从分层态向混合态转捩过程中临界情况下四环流结构存在的现象,揭示了明显分层与强混合状态不同断面环流结构的根本机理;同时也对不同弯曲强度情况下掺混强度的沿程变化规律进行探讨与研究。  相似文献   

13.
A study of seepage occurring in an adit at the Nopal I uranium mine in Chihuahua, Mexico, was conducted as part of an integrated natural analogue study to evaluate the effects of infiltration and seepage on the mobilization and transport of radionuclides. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage. Field observations recorded between April 2005 and December 2006 indicate that seepage is highly heterogeneous with respect to time, location, and quantity. Seepage, precipitation, and fracture data were used to test two hypotheses: (1) that fast flow seepage is triggered by large precipitation events, and (2) that an increased abundance of fractures and/or fracture intersections leads to higher seepage volumes. A few zones in the back adit recorded elevated seepage volumes immediately following large (>20 mm/day) precipitation events, with transit times of less than 4 h through the 8-m thick rock mass. In most locations, there is a 1?C6 month time lag between the onset of the rainy season and seepage, with longer times observed for the front adit. There is a less clear-cut relation between fracture abundance and seepage volume; processes such as evaporation and surface flow along the ceiling may also influence seepage.  相似文献   

14.
中国北方兴蒙地区发育多个中大型叠合盆地,盆地内均发现大型、特大型铀矿床,且最近又有许多新的找矿突破。兴蒙地区叠合盆地在铀成矿及勘查方法等方面具有很多共性。研究发现,铀成矿作用受特定的构造样式和构造演化阶段控制,有利的沉积相主要发育于盆地发展的坳陷期,局部为断陷期,在断陷期和断坳转换期形成了盆地内铀成矿的还原介质,在挤压隆升剥蚀期,构造反转、地层掀斜剥蚀形成剥蚀窗口,有利于含矿流体的运移。盆地内铀成矿作用的类型为:①潜水、潜水-层间和层间氧化作用;②同沉积成矿;③构造热事件叠加成矿;④多种流体混合作用成矿。根据这些成矿特征,盆地内的铀矿勘查可通过以下方式进行:①铀源体可通过源-汇系统进行厘定;②成矿流场和成矿通道通过反转抬升剥蚀窗口和有利沉积相厘定;③沉积建造、油气逸散场可利用其物性特征(电性、放射性等)进行厘定。地质及物化探方法组合可有效地完成上述勘查。  相似文献   

15.
江西省相山铀矿田成矿模式探讨   总被引:11,自引:1,他引:10  
本文在阐述相山矿田区域地质背景和成矿特征的基础上, 分析了成矿物质来源、成矿溶液来源及成矿物质迁移途径, 建立了相山矿田铀成矿模式。认为相山矿田铀成矿是受区域地质背景控制的特定时空域内的客观产物, 区域富铀地层是成矿的物质基础, 成矿溶液源自岩浆水和混入的雨水, 岩浆及期后热液是铀迁移的载体。铀成矿模式强调了火山岩成岩过程是成矿物质的富集过程, 火山岩浆期后成矿热液系统演化孕育了相山火山盆地50Ma的成矿过程, 流体降温、浓缩、混合等成矿机制的耦合, 促使了铀沉淀、成矿。   相似文献   

16.
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model’s potential applications using radium isotopes.  相似文献   

17.
《Applied Geochemistry》1994,9(3):271-278
The North and South Platte Rivers contribute sigficant concentrations of dissolved uranium to the Platte River system from the weathering of uraniferous rocks at their headwaters in Colorado and Wyoming. Uranium isotopes measured in three groups of samples collected from the Platte River and its major tributaries exhibted a wide range of concentrations (0.27–31.7 μg/l) and activity ratios (1.03–1.72) reflecting variations in the contributions of different sources under differing flow conditions. Locally elevated uranium concentrations and higher activity ratios were associated with groundwater sources during low flow periods. Uranium concentrations in surface runoff were lower than in baseflow and correlated significantly with dissolved solids. Uranium activity ratios in runoff were closer to equilibrium values than those in baseflow suggesting that dissolved uranium in runoff is less affected by disequilibrium processes. Mixing calculations using uranium concentrations and activity ratios indicate considerable variations in longitudinal and transverse mixing of tributary water with Plate River water, and temporal variations of groundwater contributions (baseflow and irrigation return flow) in the Plate River system.  相似文献   

18.
The features and similarities in the geology of paleovalley-related uranium mineralizing systems in Australia and China can be used to refine strategies for exploration. Paleovalley-related uranium resources include sandstone-, lignite- and calcrete-style deposits that are developed within the host sediments deposited in paleovalleys. The paleovalleys incise either crystalline bedrock or older sedimentary rocks, and uranium was deposited and concentrated by the influx of oxidized/reduced groundwaters flowing in aquifers within the paleovalley fill. The critical features of paleovalley-related uranium deposits include sediment and uranium sources, geological setting, depositional environment, age and relative timing of mineralization, aquifer characteristics, availability and distribution of reductants, and preservation potential of the uranium mineral system. This set of information provides a basis to establish the uranium mineralization model, which can then be used to assist with generating targets for uranium exploration and prospectivity analysis of a region. With respect to Sino-Australian examples, paleovalley-related uranium deposits form mostly around the margins of sedimentary basins and the mineralization is commonly hosted within channel fills contained within paleovalleys developed upon, or proximal to, Precambrian crystalline rocks that contain primary uranium sources. The deposits that have been well studied show remarkably similar factors that controlled the formation of paleovalley-related uranium deposits. Basement/bedrocks with above-background (2.8 ppm U) levels of uranium (10–100 ppm) that are linked to, and/or, incised by paleovalleys are associated with these deposits and are the inferred source of the uranium. In these regions, extensive fluvial systems developed particularly during Mesozoic and Cenozoic times, uranium from the bedrock was first dispersed into the sediments, and then concentrated to form deposits through successive chemical remobilization, precipitation and concentration. The deposits formed in continental or marginal marine environments, and commonly are associated with reduced lithologies, containing pyrite and dispersed organic matter and/or seams of lignite, or show evidence of infiltrated hydrocarbons. The mineralization is developed where oxidizing fluids (carrying dissolved U) reacted with reductants in the sediments. Geological, geophysical and geochemical features of the paleovalleys and related uranium deposits are used to construct models to understand host sediment distribution, fluid flow and ore genesis that can assist exploration for paleovalley-hosted uranium deposits. Precise geometric definition of the basin margin and paleovalley architecture is important in identifying exploration targets and improving the effectiveness of drilling. Refinements in remote sensing, geophysical and data processing techniques, in combination with sedimentological and depositional interpretations, provide an efficient approach for outlining the principal drainage patterns and channel dimensions. To help reduce risk, an exploration strategy should combine these technologies with a detailed understanding of the physicochemical parameters controlling uranium mobilization, precipitation and preservation.  相似文献   

19.
The abundance and distribution of uranium in various continental and oceanic ultramafic inclusions and host basalts are reported. Uranium was determined by neutron activation (fission products, fission tracks and delayed-neutron methods) and alpha-particle autoradiography; data is also reported for the uranium content of various USGS standard rock powders. The concentration of uranium in both oceanic and continental samples is similar, levels are controlled by mineral compositions, and their relative abundance in different rock types. Highest levels are found in feldspathic and lowest in olivine rich inclusions. Uranium is enriched in mylonitised samples and along some inter-crystal boundaries. With the exception of some apatites, highest levels of uranium are in clinopyroxenes (chrome) and lowest in olivines; no enrichment of uranium in orthopyroxenes was observed. Attention is drawn to the problem of obtaining representative samples from the sea floor which have not been altered by saline solutions and the identification of uranium and daughter products present along inter-crystal boundaries. Differences in observed heat flow between continental and oceanic areas may reflect inadequate sampling of representative rock types present below the sea floor and lack of information for the true abundance and distribution of uranium in such rocks.  相似文献   

20.
中、新生代陆相沉积盆地砂岩型铀矿床流体作用研究   总被引:4,自引:0,他引:4  
通过对中、新生代陆相沉积盆地典型砂岩型铀矿床实例分析,本文阐述了砂岩型铀矿床的分类特征及其与盆地流体演化的关系,以及盆地流体演化史分析在砂岩型铀矿床找矿中的重要性,同时对铀在流体中活化、迁移、沉淀机制及砂岩型铀矿床流体作用研究方法进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号