首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
Differential effective medium (DEM) theory is applied to determine the elastic properties of dry rock with spheroidal pores. These pores are assumed to be randomly oriented. The ordinary differential equations for bulk and shear moduli are coupled and it is more difficult to obtain accurate analytical formulae about the moduli of dry porous rock. In this paper, we derive analytical solutions of the bulk and shear moduli for dry rock from the differential equations by applying an analytical approximation for dry-rock modulus ratio, in order to decouple these equations. Then, the validity of this analytical approximation is tested by integrating the full DEM equation numerically. The analytical formulae give good estimates of the numerical results over the whole porosity range. These analytical formulae can be further simplified under the assumption of small porosity. The simplified formulae for spherical pores (i.e., the pore aspect ratio is equal to 1) are the same as Mackenzie's equations. The analytical formulae are relatively easy to analyze the relationship between the elastic moduli and porosity or pore shapes, and can be used to invert some rock parameters such as porosity or pore aspect ratio. The predictions of the analytical formula for the sandstone experimental data show that the analytical formulae can accurately predict the variations of elastic moduli with porosity for dry sandstones. The effective elastic moduli of these sandstones can be reasonably well characterized by spheroidal pores, whose pore aspect ratio was determined by minimizing the error between theoretical predictions and experimental measurements. For sandstones the pore aspect ratio increases as porosity increases if the porosity is less than 0.15, whereas the pore aspect ratio remains relatively stable (about 0.14) if the porosity is more than 0.15.  相似文献   

2.
李宏兵  张佳佳 《地球物理学报》2014,57(10):3422-3430
经典的微分等效介质(DEM)理论可用于确定多孔介质的弹性性质,但由于缺乏多重孔DEM方程,其估计的多重孔岩石的等效弹性模量依赖于包裹体(即不同孔隙纵横比的孔或缝)的添加顺序.本文首先从Kuster-Toksöz理论出发建立了Zimmermann和Norris两种形式的多重孔DEM方程.Norris形式的多重孔DEM方程预测的等效弹性模量总是位于Hashin-Shtrikman上下限内,而Zimmermann形式的多重孔DEM方程有时会越界.然后,通过使用干燥岩石模量比的解析近似式,对两个相互耦合的Norris形式DEM方程进行解耦得到干燥多重孔岩石的体积和剪切模量解析式.用全DEM方程的数值解对解析近似式的有效性进行了测试,解析公式的计算结果在整个孔隙度分布区间与数值解吻合良好.对实验室测量数据在假设岩石含有双重孔隙的情形下用双重孔DEM解析公式对岩石的弹性模量进行了预测,结果表明,解析式准确地预测了弹性模量随孔隙度的变化.双重孔(即软、硬孔)DEM解析模型可用来反演各孔隙类型的孔隙体积比,它可以通过实验室测量与理论预测之间的平方误差最小反演得到.砂岩样品的反演结果揭示,软孔的孔隙体积百分比与粘土含量没有明显的相关性.  相似文献   

3.
This paper is concerned with numerical tests of several rock physical relationships. The focus is on effective velocities and scattering attenuation in 3D fractured media. We apply the so‐called rotated staggered finite‐difference grid (RSG) technique for numerical experiments. Using this modified grid, it is possible to simulate the propagation of elastic waves in a 3D medium containing cracks, pores or free surfaces without applying explicit boundary conditions and without averaging the elastic moduli. We simulate the propagation of plane waves through a set of randomly cracked 3D media. In these numerical experiments we vary the number and the distribution of cracks. The synthetic results are compared with several (most popular) theories predicting the effective elastic properties of fractured materials. We find that, for randomly distributed and randomly orientated non‐intersecting thin penny‐shaped dry cracks, the numerical simulations of P‐ and S‐wave velocities are in good agreement with the predictions of the self‐consistent approximation. We observe similar results for fluid‐filled cracks. The standard Gassmann equation cannot be applied to our 3D fractured media, although we have very low porosity in our models. This is explained by the absence of a connected porosity. There is only a slight difference in effective velocities between the cases of intersecting and non‐intersecting cracks. This can be clearly demonstrated up to a crack density that is close to the connectivity percolation threshold. For crack densities beyond this threshold, we observe that the differential effective‐medium (DEM) theory gives the best fit with numerical results for intersecting cracks. Additionally, it is shown that the scattering attenuation coefficient (of the mean field) predicted by the classical Hudson approach is in excellent agreement with our numerical results.  相似文献   

4.
程卫  巴晶  马汝鹏  张琳 《地球物理学报》1954,63(12):4517-4527
地质成因和构造/热应力导致地壳岩石中的孔隙结构(裂隙和粒间孔)的变化.影响岩石黏弹性的因素包括压力、孔隙度、孔隙中包含的流体和孔隙几何形状等.相对于岩石中的硬孔隙,岩石黏弹性(衰减和频散)受软孔隙(裂隙)的影响更大.本文选取三块白云岩样本,进行了不同围压和流体条件下的超声波实验测量.利用CPEM(Cracks and Pores Effective Medium,裂隙和孔隙有效介质)模型获得了岩石高、低频极限的弹性模量,并通过Zener体(标准线性体)模型将CPEM模型拓展到全频带而得到CPEM-Zener模型,用该模型拟合岩石松弛和非松弛状态下的实验数据,本文得到平均裂隙纵横比和裂隙孔隙度以及纵波速度和品质因子随频率的变化关系.结果表明,饱水岩石的平均裂隙纵横比和裂隙孔隙度均高于饱油岩石,随着压差(围压和孔隙压力的差值)的增加,饱油岩石中的裂隙首先闭合.并且压差在70 MPa以内时,随着压差增大,岩石的平均裂隙纵横比和裂隙孔隙度在饱水和饱油时的差值增大,此时流体类型对于岩石裂隙的影响越来越显著,此外,对饱水岩石,平均裂隙纵横比随压差增加而增大,这可能是由于岩石中纵横比较小的裂隙会随压差增大而逐渐趋于闭合.在饱水和饱油岩石中,裂隙孔隙度和裂隙密度都随着压差增加而减小.通过对裂隙密度和压差的关系进行指数拟合,本文获得压差趋于0时的裂隙密度,且裂隙密度随孔隙度增大而增大,增大速率随压差增加而降低.针对饱水和饱油的白云岩样本,CPEM-Zener模型预测的纵波频散随压差增大而减小,此变化趋势和实验测得的逆品质因子随压差的变化关系基本一致,由此进一步验证了模型的实用性.本研究对岩石的孔隙结构和黏弹性分析以及声波测井、地震勘探的现场应用有指导意义.  相似文献   

5.
An approach to determining the effective elastic moduli of rocks with double porosity is presented. The double‐porosity medium is considered to be a heterogeneous material composed of a homogeneous matrix with primary pores and inclusions that represent secondary pores. Fluid flows in the primary‐pore system and between primary and secondary pores are neglected because of the low permeability of the primary porosity. The prediction of the effective elastic moduli consists of two steps. Firstly, we calculate the effective elastic properties of the matrix with the primary small‐scale pores (matrix homogenization). The porous matrix is then treated as a homogeneous isotropic host in which the large‐scale secondary pores are embedded. To calculate the effective elastic moduli at each step, we use the differential effective medium (DEM) approach. The constituents of this composite medium – primary pores and secondary pores – are approximated by ellipsoidal or spheroidal inclusions with corresponding aspect ratios. We have applied this technique in order to compute the effective elastic properties for a model with randomly orientated inclusions (an isotropic medium) and aligned inclusions (a transversely isotropic medium). Using the special tensor basis, the solution of the one‐particle problem with transversely isotropic host was obtained in explicit form. The direct application of the DEM method for fluid‐saturated pores does not account for fluid displacement in pore systems, and corresponds to a model with isolated pores or the high‐frequency range of acoustic waves. For the interconnected secondary pores, we have calculated the elastic moduli for the dry inclusions and then applied Gassmann's tensor relationships. The simulation of the effective elastic characteristic demonstrated that the fluid flow between the connected secondary pores has a significant influence only in porous rocks containing cracks (flattened ellipsoids). For pore shapes that are close to spherical, the relative difference between the elastic velocities determined by the DEM method and by the DEM method with Gassmann's corrections does not exceed 2%. Examples of the calculation of elastic moduli for water‐saturated dolomite with both isolated and interconnected secondary pores are presented. The simulations were verified by comparison with published experimental data.  相似文献   

6.
岩石的等效孔隙纵横比反演及其应用   总被引:4,自引:2,他引:2       下载免费PDF全文
通过融合Gassmann方程和由微分等效介质理论建立的干岩石骨架模型--DEM解析模型,本文提出根据纵波(和横波)速度反演岩石等效孔隙纵横比进行储层孔隙结构评价和横波速度预测的方法.首先,利用Gassmann方程和DEM解析模型建立岩石的纵、横波速度与密度、孔隙度、饱和度和矿物组分等各参数之间的关系;其次,将岩石孔隙等效为具有单一纵横比的理想椭球孔,应用非线性全局寻优算法来寻找最佳的等效孔隙纵横比使得理论预测与实际测量的弹性模量之间的误差最小;最后,将反演得到的等效孔隙纵横比代入到Gassmann方程和DEM解析模型中构建横波速度.实验室和井孔测量数据应用表明,反演得到的等效孔隙纵横比可准确反映储层的孔隙结构,对于裂缝型储层如花岗岩,其孔隙纵横比通常小于0.025,而对于孔隙型储层如砂岩,其孔隙纵横比通常大于0.08.只利用纵波与同时利用纵、横波反演得到的孔隙纵横比结果几乎完全一致,而且由纵波构建的横波与实测横波吻合良好,说明本文提出的等效孔隙纵横比反演及其横波速度预测方法是有效的.  相似文献   

7.
A critical porosity model establishes the empirical relationship between a grain matrix and a dry rock by the concept of critical porosity. The model is simple and practical and widely used. But the critical porosity in the model is a fixed value that cannot relate to pore structure. The aim of this paper is to establish the theoretical relationship between critical porosity and pore structure by combining Kuster–Toksöz theory with the critical porosity model. Different from the traditional critical porosity model, critical porosity is not an empirical value but varied with pore shape and the ratio of bulk modulus versus shear modulus of the grain matrix. The substitution of the theoretical relationship into Kuster–Toksöz theory will generate the formulae for the bulk and shear moduli of multiple-porosity dry rocks, which is named the multiple-porosity variable critical porosity model. The new model has been used to predict elastic moduli for sandstone and carbonate rock. We compare the modelling results for P- and S-wave velocities and elastic moduli with the experimental data. The comparison shows that the new model can be used to describe the elastic properties for the rocks with multiple pore types.  相似文献   

8.
Quantifying the effects of pore-filling materials on elastic properties of porous rocks is of considerable interest in geophysical practice. For rocks saturated with fluids, the Gassmann equation is proved effective in estimating the exact change in seismic velocity or rock moduli upon the changes in properties of pore infill. For solid substance or viscoelastic materials, however, the Gassmann theory is not applicable as the rigidity of the pore fill (either elastic or viscoelastic) prevents pressure communication in the pore space, which is a key assumption of the Gassmann equation. In this paper, we explored the elastic properties of a sandstone sample saturated with fluid and solid substance under different confining pressures. This sandstone sample is saturated with octadecane, which is a hydrocarbon with a melting point of 28°C, making it convenient to use in the lab in both solid and fluid forms. Ultrasonically measured velocities of the dry rock exhibit strong pressure dependency, which is largely reduced for the filling of solid octadecane. Predictions by the Gassmann theory for the elastic moduli of the sandstone saturated with liquid octadecane are consistent with ultrasonic measurements, but underestimate the elastic moduli of the sandstone saturated with solid octadecane. Our analysis shows that the difference between the elastic moduli of the dry and solid-octadecane-saturated sandstone is controlled by the squirt flow between stiff, compliant, and the so-called intermediate pores (with an aspect ratio larger than that of compliant pore but much less than that of stiff pores). Therefore, we developed a triple porosity model to quantify the combined squirt flow effects of compliant and intermediate pores saturated with solid or viscoelastic infill. Full saturation of remaining stiff pores with solid or viscoelastic materials is then considered by the lower embedded bound theory. The proposed model gave a reasonable fit to the ultrasonic measurements of the elastic moduli of the sandstone saturated with liquid or solid octadecane. Comparison of the predictions by the new model to other solid substitution schemes implied that accounting for the combined effects of compliant and intermediate pores is necessary to explain the solid squirt effects.  相似文献   

9.
复杂孔隙储层往往同时发育孔缝洞等多种孔隙类型,这种孔隙结构的复杂性使得岩石的速度与孔隙度之间的相关性很差.经典的二维岩石物理模版只研究弹性参数与孔隙度和饱和度之间的定量关系,而不考虑孔隙结构的影响,用这样的模版来预测复杂孔隙储层的物性参数时带来很大偏差.本文首先证明多重孔隙岩石的干骨架弹性参数可以用一个等效孔隙纵横比的单重孔隙岩石物理模型来模拟;进而基于等效介质岩石物理理论和Gassmann方程,建立一个全新的三维岩石物理模版,用它来建立复杂孔隙岩石的弹性性质与孔隙扁度及孔隙度和饱和度之间的定量关系;在此基础上,预测复杂储层的孔隙扁度、孔隙度以及孔隙中所包含的流体饱和度.实际测井和地震反演数据试验表明,三维岩石物理模版可有效提高复杂孔隙储层参数的预测精度.  相似文献   

10.
Wyllie's time-average equation and subsequent refinements have been used for over 20 years to estimate the porosity of reservoir rocks from compressional (P)-wave velocity (or its reciprocal, transit time) recorded on a sonic log. This model, while simple, needs to be more convincingly explained in theory and improved in practice, particularly by making use of shear (S)-wave velocity. One of the most important, although often ignored, factors affecting elastic velocities in a rock is pore structure, which is also a controlling factor for transport properties of a rock. Now that S-wave information can be obtained from the sonic log, it may be used with P-waves to provide a better understanding of pore structure. A new acoustic velocities-to-porosity transform based on an elastic velocity model developed by Kuster and Toksöz is proposed. Employing an approximation to an equivalent pore aspect ratio spectrum, pore structure for reservoir rocks is taken into account, in addition to total pore volume. Equidimensional pores are approximated by spheres and rounded spheroids, while grain boundary pores and flat pores are approximated by low aspect ratio cracks. An equivalent pore aspect ratio spectrum is characterized by a power function which is determined by compressional-and shear-wave velocities, as well as by matrix and inclusion properties. As a result of this more sophisticated elastic model of porous rocks and a stricter theory of elastic wave propagation, the new method leads to a more satisfactory interpretation and fuller use of seismic and sonic log data. Calculations using the new transform on data for sedimentary rocks, obtained from published literature and laboratory measurements, are presented and compared at atmospheric pressure with those estimated from the time-average equation. Results demonstrate that, to compensate for additional complexity, the new method provides more detailed information on pore volume and pore structure of reservoir rocks. Examples are presented using a realistic self-consistent averaging scheme to consider interactions between pores, and the possibility of extending the method to complex lithologies and shaly rocks is discussed.  相似文献   

11.
Characterizing the pore space of rock samples using three‐dimensional (3D) X‐ray computed tomography images is a crucial step in digital rock physics. Indeed, the quality of the pore network extracted has a high impact on the prediction of rock properties such as porosity, permeability and elastic moduli. In carbonate rocks, it is usually very difficult to find a single image resolution which fully captures the sample pore network because of the heterogeneities existing at different scales. Hence, to overcome this limitation a multiscale analysis of the pore space may be needed. In this paper, we present a method to estimate porosity and elastic properties of clean carbonate (without clay content) samples from 3D X‐ray microtomography images at multiple resolutions. We perform a three‐phase segmentation to separate grains, pores and unresolved porous phase using 19 μm resolution images of each core plug. Then, we use images with higher resolution (between 0.3 and 2 μm) of microplugs extracted from the core plug samples. These subsets of images are assumed to be representative of the unresolved phase. We estimate the porosity and elastic properties of each sample by extrapolating the microplug properties to the whole unresolved phase. In addition, we compute the absolute permeability using the lattice Boltzmann method on the microplug images due to the low resolution of the core plug images. In order to validate the results of the numerical simulations, we compare our results with available laboratory measurements at the core plug scale. Porosity average simulations for the eight samples agree within 13%. Permeability numerical predictions provide realistic values in the range of experimental data but with a higher relative error. Finally, elastic moduli show the highest disagreements, with simulation error values exceeding 150% for three samples.  相似文献   

12.
孔隙纵横比是描述多孔岩石微观孔隙结构特征的重要参数,目前用于获取岩石完整孔隙纵横比分布的经典模型为David-Zimmerman(D-Z)孔隙结构模型,该模型假设岩石由固体矿物基质、一组纵横比相等的硬孔隙以及多组纵横比不等的微裂隙构成,并认为固体矿物基质和硬孔隙均不受压力影响,在此基础上,利用超声纵横波速度的压力依赖性反演岩石硬孔隙和各组微裂隙的孔隙纵横比及孔隙度.该方法的关键点在于以累积裂隙密度为桥梁,借助等效介质理论建立了岩石弹性模量和孔隙纵横比之间的内在联系.但在D-Z模型中,多重孔隙岩石累积裂隙密度的计算直接由单重孔隙裂隙密度公式实现,这种近似导致该模型在许多情况下难以获得良好的反演精度.为了完善经典D-Z模型,本文提出了一种基于虚拟降压的孔隙纵横比分布反演策略,通过多个假想降压过程实现累积裂隙密度的准确计算,并将基于DEM和MT的经典D-Z模型推广到KT和SCA中,结合四种等效介质理论建立了一套完整的反演流程.采用一系列砂岩和碳酸盐岩样品,测试了反演流程在实际岩芯孔隙纵横比提取中的应用效果,研究结果表明:与D-Z模型相比,本文方法的模拟结果与实际数据吻合更好,并同时适用于砂岩和碳酸盐岩;此外,通过分析四种等效介质理论的模拟结果发现,本文方法并不十分依赖于等效介质理论的选择,这些理论获得的孔隙结构参数随压力的变化趋势基本一致,数值上仅存在略微差异,且这种差异随着压力的增大逐渐消失.本文方法是经典D-Z孔隙结构模型的重要补充,对岩石孔隙结构表征、流体饱和岩石速度预测以及孔间喷射流效应的模拟具有十分重要的意义.  相似文献   

13.
In impure chalk, the elastic moduli are not only controlled by porosity but also by contact‐cementation, resulting in relatively large moduli for a given porosity, and by admixtures of clay and fine silica, which results in relatively small moduli for a given porosity. Based on a concept of solids suspended in pore fluids as well as composing the rock frame, we model P‐wave and S‐wave moduli of dry and wet plug samples by an effective‐medium Hashin–Shtrikman model, using chemical, mineralogical and textural input. For a given porosity, the elastic moduli correspond to a part of the solid (the iso‐frame value) forming the frame of an Upper Hashin–Shtrikman bound, whereas the remaining solid is modelled as suspended in the pore fluid. The iso‐frame model is thus a measure of the pore‐stiffness or degree of cementation of the chalk. The textural and mineralogical data may be assessed from logging data on spectral gamma radiation, density, sonic velocity and water saturation in a hydrocarbon zone, whereas the iso‐frame value of a chalk may be assessed from the density and acoustic P‐wave logs alone. The iso‐frame concept may thus be directly used in conventional log‐analysis and is a way of incorporating sonic‐logging data. The Rigs‐1 and Rigs‐2 wells in the South Arne field penetrate the chalk at the same depth but differ in porosity and in water saturation although almost the entire chalk interval has irreducible water saturation. Our model, combined with petrographic data, indicates that the difference in porosity is caused by a higher degree of pore‐filling cementation in Rigs‐1. Petrographic data indicate that the difference in water saturation is caused by a higher content of smectite in the pores of Rigs‐1. In both wells, we find submicron‐size diagenetic quartz.  相似文献   

14.
—The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.¶The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.¶In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.¶For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief’s velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.¶The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.¶This difference is explained by the fact that the BM model predicts the fully relaxed moduli, wherein the fluid can move freely between sand and clay regions. In contrast, the CG scheme predicts the no-flow or unrelaxed moduli. Our analysis reveals that due to the extremely low permeability of clays, at seismic and higher frequencies the fluid has no time to move between sand and clay regions. Thus, the CG scheme is more appropriate for clay-rich rocks.  相似文献   

15.
The modelling of elastic waves in fractured media with an explicit finite‐difference scheme causes instability problems on a staggered grid when the medium possesses high‐contrast discontinuities (strong heterogeneities). For the present study we apply the rotated staggered grid. Using this modified grid it is possible to simulate the propagation of elastic waves in a 2D or 3D medium containing cracks, pores or free surfaces without hard‐coded boundary conditions. Therefore it allows an efficient and precise numerical study of effective velocities in fractured structures. We model the propagation of plane waves through a set of different, randomly cracked media. In these numerical experiments we vary the wavelength of the plane waves, the crack porosity and the crack density. The synthetic results are compared with several static theories that predict the effective P‐ and S‐wave velocities in fractured materials in the long wavelength limit. For randomly distributed and randomly orientated, rectilinear, non‐intersecting, thin, dry cracks, the numerical simulations of velocities of P‐, SV‐ and SH‐waves are in excellent agreement with the results of the modified (or differential) self‐consistent theory. On the other hand for intersecting cracks, the critical crack‐density (porosity) concept must be taken into account. To describe the wave velocities in media with intersecting cracks, we propose introducing the critical crack‐density concept into the modified self‐consistent theory. Numerical simulations show that this new formulation predicts effective elastic properties accurately for such a case.  相似文献   

16.
This paper discusses and addresses two questions in carbonate reservoir characterization: how to characterize pore‐type distribution quantitatively from well observations and seismic data based on geologic understanding of the reservoir and what geological implications stand behind the pore‐type distribution in carbonate reservoirs. To answer these questions, three geophysical pore types (reference pores, stiff pores and cracks) are defined to represent the average elastic effective properties of complex pore structures. The variability of elastic properties in carbonates can be quantified using a rock physics scheme associated with different volume fractions of geophysical pore types. We also explore the likely geological processes in carbonates based on the proposed rock physics template. The pore‐type inversion result from well log data fits well with the pore geometry revealed by a FMI log and core information. Furthermore, the S‐wave prediction based on the pore‐type inversion result also shows better agreement than the Greensberg‐Castagna relationship, suggesting the potential of this rock physics scheme to characterize the porosity heterogeneity in carbonate reservoirs. We also apply an inversion technique to quantitatively map the geophysical pore‐type distribution from a 2D seismic data set in a carbonate reservoir offshore Brazil. The spatial distributions of the geophysical pore type contain clues about the geological history that overprinted these rocks. Therefore, we analyse how the likely geological processes redistribute pore space of the reservoir rock from the initial depositional porosity and in turn how they impact the reservoir quality.  相似文献   

17.
页岩中的TOC(Total Organic Carbon,总有机碳)含量,对页岩的有效弹性模量以及与之相关的弹性波速度(P波和S波)有重要影响,建立弹性模量与TOC含量关系是页岩气甜点预测的重要手段之一.CS和SM两种固体置换理论主要针对孔隙度较大的砂岩,能否适用于孔隙度低、孔隙形态复杂和非均质性强的页岩目前尚未深入研究.鉴于目前已知的富有机质页岩的TOC赋存形态与裂缝以及孔隙形态类似,有关TOC含量对岩石弹性模量的影响可视为孔隙物质充填问题来研究.本文利用数字岩心技术,构造同一数字岩心不同TOC含量的样本群,基于CS和SM两种固体替换理论模型,通过有限元(FEM)数值模拟交叉验证,详细研究了两种固体替换方程对页岩的适用性和TOC含量对页岩弹性性质的影响.研究表明,由于实际岩心孔隙及TOC分布的非均质性,CS替换方程弹性模量预测值与FEM模拟结果存在差异,而SM替换方程预测值与FEM模拟结果基本一致,两种方程的预测差异揭示页岩非均质强度,利用SM替换方程中的参数α_1,α_2,β_1和β_2可详细分析实际岩心孔隙及TOC分布的非均质特征.  相似文献   

18.
地震地电阻率各向异性变化数值模拟   总被引:3,自引:1,他引:2  
阮爱国  卢军  符琼玉  吴振利 《华南地震》2004,24(3):M001-M010
将APE模式中差应力与裂隙的演化理论与前期研究中建立的张量形式的各向异性电性模型相结合,推导出了裂隙演化参数(密度、孔压、纵横比、闭合角)与电导率关系的动态方程,用数值模拟方法研究了饱水岩石在水平向应力作用下电阻率的各向异性变化.并结合实验和观钡5结果,讨论了电阻率各向异性变化的可能机理。  相似文献   

19.
储层砂岩微观孔隙结构特征不仅影响干燥岩石的弹性波传播速度,也决定了岩石介质中与流体流动相关的速度频散与衰减作用.依据储层砂岩微观结构特征及速度随有效压力变化的非线性特征,将其孔隙体系理想化为不同形状的硬孔隙(纵横比α0.01)与软孔隙(纵横比α0.01)的组合(双孔隙结构).基于孔弹性理论,给出软孔隙最小初始纵横比值(一定压力下所有未闭合软孔隙在零压力时的纵横比最小值)的解析表达式,并在此基础上利用岩石速度-压力实验观测结果给出求取介质中两类孔隙纵横比及其含量分布特征的方法.通过逐步迭代加入软孔隙的方法对基于特征纵横比的"喷射流"(squirt fluid)模型进行了扩展,以考虑复杂孔隙分布特征对岩石喷射流作用的影响及其可能引起的速度频散特征.相较于典型的喷射流作用速度频散模式,对于岩石中软孔隙纵横比及其对应含量在较宽的范围呈谱分布的一般情况,其速度频散曲线不存在明显的低频段和中间频段,速度随频率的增大呈递增趋势直至高频极限.这说明即使在地震频段,微观尺度下的喷射流作用仍起一定作用,同样会造成流体饱和岩石介质的地震速度与Gassmann方程预测结果有不可忽略的差异.本文是对现有喷射流模型的重要补充,也为利用实验数据建立不同频段间岩石弹性波传播速度的可能联系提供了理论依据.  相似文献   

20.
Elastic interactions between pores and cracks reflect how they are organized or spatially distributed in porous rocks. The principle goal of this paper is to understand and characterize the effect of elastic interactions on the effective elastic properties. We perform finite element modelling to quantitatively study how the spatial arrangement of inclusions affects stress distribution and the resulting overall elasticity. It is found that the stress field can be significantly altered by elastic interactions. Compared with a non‐interacting situation, stress shielding considerably stiffens the effective media, while stress amplification appreciably reduces the effective elasticity. We also demonstrate that the T‐matrix approach, which takes into account the ellipsoid distribution of pores or cracks, can successfully characterize the competing effects between stress shielding and stress amplification. Numerical results suggest that, when the concentrations of cracks increase beyond the dilute limit, the single parameter crack density is not sufficient to characterize the contribution of the cracks to the effective elasticity. In order to obtain more reliable and accurate predictions for the effective elastic responses and seismic anisotropies, the spatial distribution of pores and cracks should be included. Additionally, such elastic interaction effects are also dependent on both the pore shapes and the fluid infill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号