首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

2.
Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska   总被引:2,自引:0,他引:2  
The evolution, migration and deposits of a gravelly braid bar in the Sagavanirktok River, northern Alaska, are described in unprecedented detail using annual aerial photographs, ground‐penetrating radar (GPR) profiles, trenches and cores. Compound braid bars in the Sagavanirktok River form by chute cut‐off of point bars and by growth of mid‐channel unit bars. Subsequent growth is primarily by accretion of unit bars onto their lateral and downstream margins. The upstream ends of braid bars may be sites of erosion or unit bar deposition. Compound braid bar deposits vary in thickness laterally and are thickest in medial sections and near cut banks. Compound bar deposits are typically composed of three to seven sets of simple large‐scale inclined strata, each simple set formed by a unit bar. The simple large‐scale strata contain medium‐scale cross‐strata (from dune migration) and planar strata (from migration of bedload sheets). The upstream and medial parts of compound braid bar deposits show very little vertical variation in grain size, but downstream and lateral margins tend to fine upwards. The deposits are mostly poorly sorted sands and gravels, although sands tend to be deposited at the top of the braid bar, and open‐framework gravels preferentially occur near the top and base of the braid bar. The patterns of braid bar growth and migration, and the nature of the deposits, described from the Sagavanirktok River are generally similar to other sandy and gravelly braided rivers, and consistent with the theoretical braid bar model of Bridge (1993).  相似文献   

3.
The Kachchh Mainland Fault (KMF) is a major E–W trending seismically active fault of the Kachchh palaeorift basin whose neotectonic evolution is not known. The present study deals with the eastern part of the KMF zone where the fault is morphologically expressed as steep north facing scarps and is divisible into five morphotectonic segments. The Quaternary sediments occurring in a narrow zone between the E–W trending KMF scarps and the flat Banni plain to the north are documented. The sediments show considerable heterogeneity vertically as well as laterally along the KMF zone. (The Quaternary sediments for a northward sloping and are exposed along the north flowing streams which also show rapid decrease in the depth of incision in the same direction.) The deposits, in general, comprise coarse as well as finer gravelly deposits, sands and aeolian and fluvial miliolites. The Quaternary sediments of the KMF zone show three major aggradation phases. The oldest phase includes the colluvio-fluvial sediments occurring below the miliolites. These deposits are strikingly coarse grained and show poor sorting and large angular clasts of Mesozoic rocks. The sedimentary characteristics indicate deposition, dominantly by debris flows and sediment gravity flows, as small coalescing alluvial fans in front of the scarps. These deposits suggest pre-miliolite neotectonic activity along the KMF. The second aggradation phase comprises aeolian miliolites and fluvially reworked miliolites that have been previously dated from middle to late Pleistocene. The youngest phase is the post-miliolite phase that includes all deposits younger than miliolite. These are represented by comparatively finer sandy gravels, gravelly sands and sand. The sediment characteristics suggest deposition in shallow braided stream channels under reduced level of neotectonic activity along the KMF during post-miliolite time evidenced by vertical dips of miliolites and tilting of gravels near the scarps. The tectonically controlled incision and dissection of the Quaternary deposits is the result of neotectonic activity that continues at present day. The overall nature, sedimentary characteristics and geomorphic setting of the sediments suggest that the KMF remained neotectonically active throughout the Quaternary period.  相似文献   

4.

Holocene sediments from southern Spencer Gulf are cool‐water carbonate‐rich gravels and sands, dominated by molluscs and Bryozoa. Five sedimentary fades are recognized: (i) molluscan gravel; (ii) branching coralline‐algal gravel, associated with shallow partially protected environments; (iii) molluscan‐biyozoan sand; (iv) mixed bioclastic sand, representative of the deeper central region of the lower gulf; and (v) bryozoan gravel, an isolated fades developed in a semi‐protected micro‐environment. The southern gulf is characterized by complex oceanographic conditions together with variations in water depth and substrate. The sediments share the characteristics of both the southern shelf and upper Spencer Gulf. Grain‐size distribution and sedimentary facies are controlled by a combination of all the above processes. Past sea level fluctuations are recognized from sea floor strand‐line deposits. The relic component of the palimpsest sediments has eroded from the Pleistocene aeolianite dunes. The sediments, therefore, reflect both the modern marine and past environments.  相似文献   

5.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

6.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

7.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

8.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

9.
The December 26, 2004 Sumatra tsunami caused severe damage at the coasts of the Indian ocean. We report results of a sedimentological study of tsunami run-up parameters and the sediments laid down by the tsunami at the coast of Tamil Nadu, India, and between Malindi and Lamu, Kenya. In India, evidence of three tsunami waves is preserved on the beaches in the form of characteristic debris accumulations. We measured the maximum run-up distance at 580 m and the maximum run-up height at 4.85 m. Flow depth over land was at least 3.5 m. The tsunami deposited an up to 30 cm thick blanket of moderately well to well-sorted coarse and medium sand that overlies older beach deposits or soil with an erosional unconformity. The sand sheet thins inland without a decrease of grain-size. The deposits consist frequently of three layers. The lower one may be cross-bedded with foresets dipping landward and indicating deposition during run-up. The overlying two sand layers are graded or parallel-laminated without indicators of current directions. Thus, it remains undecided whether they formed during run-up or return flow. Thin dark laminae rich in heavy minerals frequently mark the contacts between successive layers. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth. On the Indian shelf these depths are present at distances of up to 5 km from the coast. In Kenya only one wave is recorded, which attained a run-up height of 3 m at a run-up distance of ca. 35 m from the tidal water line at the time of the tsunami impact. Only one layer of fine sand was deposited by the tsunami. It consists predominantly of heavy minerals supplied to the sea by a nearby river. The sand layer thins landward with a minor decrease in grain-size. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth, reaching down potentially to ca. 80 m. The presence of only one tsunami-related sediment layer in Kenya, but three in India, reflects the impact of only one wave at the coast of Kenya, as opposed to several in India. Grain-size distributions in the Indian and Kenyan deposits are mostly normal to slightly positively skewed and indicate that the detritus was entrained by the tsunami from well sorted pre-tsunami deposits in nearshore, swash zone and beach environments.  相似文献   

10.
After the 2004 Sumatra?CAndaman tsunamigenic earthquake, waters from the ocean moved upstream along rivers, bays, harbors, and lagoons and inundated many coastal and inland locations in the southern, eastern, and northern parts of Sri Lanka. The tsunami waters were observed to move upwards inland and then recede downwards to the ocean after varying inundation periods in different coastal areas. Subsequent massive tsunami waves came with the wave height varying from 3 to 8?m inland with speed of about 30?C40?kmph. The oceanic waves carrying heterogeneous sediments with water deposited them in coastal as well as inland locations about 1?km from the present coastline. Given the chaotic nature of tsunami oceanic waves, pre-tsunami deposits, such as beach sands, debris from coral reefs and buildings, parts of vehicles and ships, and tree trunks are found incorporated in authentic tsunami sediments. Thus, the texture, structure, and composition of sediments deposited by tsunami waters differed from one location to another. Therefore, in identifying paleo-tsunami sediments, care was taken to compare them with diagnostic unmixed uncontaminated recent tsunami sediments having characteristic textures and marine microfossil assemblages, such as foraminifera, radiolarians, and diatoms where preserved in coastal depressions. The radiocarbon ages of the carbonate and the organic fractions of these sediments are stratigraphically inconsistent, indicating mixing of sediments by the tsunami waves. The concentrations of organic carbon and nitrogen and their isotopic signatures confirm marine origin of these sediments.  相似文献   

11.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

12.
The Sumatra–Andaman Tsunami left distinctive sedimentological and geomorphological signatures in the area of Khao Lak. Fine-grained sediments, predominantly layers of cohesive, carbonate-rich, fine-sandy silt with thicknesses of 1–10 cm, erosionally overlying pre-tsunami sandy soils and sediments, represent the most common tsunami deposits in the study area. Petrographically, they differ significantly from other coastal sediments and affiliated soils. Due to their grain size and corresponding clay mineral content, muddy shelf sediments (sub-wave base) are indicated as a main source. The present results suggest that indications of shelf influence, although varying regionally, might contribute to the identification of fine-grained tsunami sediments and their differentiation from storm sediments. However, the observed differences of tsunami sediments to soils and other coastal sediments, especially with respect to carbonate mineralogy, might disappear in short geological time under conditions of intensive weathering and bioturbation. At Cape Pakarang, hundreds of boulders with up to 24 tons were deposited on the foreshore and upper shoreface. Applying Nott’s (Earth Planet Sci Lett 210:269–276, 2003) formulas, minimum flow velocities of 3.9 m/s are required to transport the largest boulders. The devastating tsunami effect of both, onshore flow and backflow, is documented by damaged human constructions. Geomorphological effects include intensive widening of estuary mouths and the development of erosional channels. Now, estuary mouths are reduced, and erosional channels cut off from the sea due to the formation of a post-tsunami beach ridge.  相似文献   

13.
The presence of coarse-grained sediment can potentially reduce the effectiveness of conventional sampling methods in recovering fluvial sediments. A modification to freeze-core technology was used to collect fine to coarse sands, silts, and clays in fluvial deposits that contain significant amounts of gravels, cobbles, and boulders for the purpose of characterizing the extent of heavy metal contamination. This modification uses either a 2.5 or 2.9 cm diameter by 30-cm- long finned mechanical or hand-driven samplers. The sediment is frozen to the outside of the sampler by injecting liquid CO2 into the sampler. The fins protect the sample from coarse material upon removal. Field testing and laboratory testing of the method were completed to establish a methodology and assess possible cross contamination of the sediment layers during the driving of the sampler. The results indicated that this method is effective for recovering non-cohesive sediment samples at depths up to 6 m for the purpose of characterizing the extent of heavy metal contamination.  相似文献   

14.
Quaternary sands and gravels form important, yet often highly heterogeneous economic deposits. Detailed 3-D analysis of the sedimentary structure and stratigraphy of these deposits allows for an accurate estimation of exploitable material. This paper presents a case study in SW Germany reconstructing the 3-D distribution of glacial sediments based on a high-resolution, process-orientated sedimentary facies classification and lithostratigraphy integrated within the geo-modelling package gOcad. Situated along the maximal ice-extent of the Rhine glacier during the last glaciation, the study area is characterised by a morphologically prominent terminal moraine and its associated sandur, which form the stratigraphically youngest sediments of a glacial basin, partially exposed in two gravel pits. These outcrops helped to reconstruct the complex sedimentary architecture of the northern part of the glacial basin. The regional analysis is based on core data, as well as geoelectric and geomagnetic surveys. All data were integrated into km-scale, high-resolution geological 3-D models, depicting the large-scale dynamics of multiple glacier advances and retreats during the Early to Late Pleistocene. These models allow quantifying the thickness and volume distribution of exploitable sandy gravel and help to evaluate the occurrence of non-exploitable interbedded diamicton horizons. The high quality and quantity of gravels particularly north of the terminal moraine classifies the investigated area as very prospective for raw materials exploitation in the future.  相似文献   

15.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   

16.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

17.
Geological Indicators of Large Tsunami in Australia   总被引:1,自引:0,他引:1  
Bryant  E. A.  Nott  J. 《Natural Hazards》2001,24(3):231-249
Tsunami waves can produce four general categories of depositional and erosional signatures that differentiate them from storm waves. Combinations of items from these categories uniquely define the impact of palaeo-tsunami on the coastal landscape. The largest palaeo-tsunami waves in Australia swept sediment across the continental shelf and obtained flow depths of 15–20 m at the coastline with velocities in excess of 10 m -1. In New South Wales, along the cliffs of Jervis Bay, waves reachedelevations of more than 80 m above sea-level with evidence of flow depths in excess of 10 m. These waves swept 10 km inland over the Shoalhaven delta. In northern Queensland, boulders more than 6 m in diameter and weighing 286 tonnes were tossed alongshore above cyclone storm wave limits inside the Great Barrier Reef. In Western Australia waves overrode and breached 60 m high hills up to 5 km inland. Shell debris and cobbles can be found within deposits mapped as dunes, 30 km inland. The array of signatures provide directional information about the origin of the tsunami and, when combined with radiocarbon dating, indicate thatat least one and maybe two catastrophic events have occurred during the last 1000 years along these three coasts. Only the West Australian coast hashistorically been affected by notable tsunami with maximum run-up elevations of 4–6 m. Palaeo-tsunami have been an order of magnitude greater than this. These palaeo-tsunami are produced most likely by large submarine slides on the continental slope or the impactof meteorites with the adjacent ocean.  相似文献   

18.
19.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

20.
哈拉湖湖滨沉积物的粒度分布特征及其环境意义   总被引:2,自引:0,他引:2  
武安斌 《沉积学报》1985,3(2):141-150
哈拉湖盆地是祁连山西部的一个山间盆地。哈拉湖位于盆地中心,属高山内陆湖泊。湖面海拔高度4077米,最大水深65米,平均274米[1]。湖泊呈北西西-南东东延伸,长32公里,平均宽度13公里,面积为580平方公里。哈拉湖盆地北部有疏勒南山巍峙,海拔在5000米以上,南为哈拉湖南山,平均海拔不到5000米。盆地东西两侧的分水岭均系低平的丘陵地带。南北二山由上泥盆统、石炭系和三叠系地层组成,盆地内部除零星出露第三纪地层外,余为第四系洪积、冰水冲积物覆盖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号