首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
BDS与GPS/GLONASS星载原子钟性能的比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
针对北斗卫星导航系统(BDS)在轨卫星原子钟的评估问题,从三个性能指标即准确度、漂移率和稳定性出发进行了评估,并利用同一时段的GPS/GLONASS星载原子钟性能评估结果做了比较。算例采用GPS 1751-1758共8周的数据,评估结果发现:BDS在轨卫星的准确度在10-11量级,漂移率在10-15量级,与GPS/GLONASS星载原子钟的水平相当,但钟的稳定性方面由于BDS存在着几颗天稳较大的钟,所以其天稳的平均值在10-13量级,比GPS和GLONASS卫星略差。  相似文献   

2.
通过引入拉格朗日方程,重构了定点坐标系下的对地静止(GEO)卫星摄动运动方程。继而把地球引力位在GEO卫星的定点邻域内泰勒展开,并采用拉普拉斯变换,得到了一类改进的中间轨道。5天的外推结果表明,改进的中间轨道精度相对于同类型的中间轨道精度提高了4个量级,且形式简单,可以很好地用于GEO卫星的定轨协方差分析中。同时,也可为GEO卫星轨道设计、地面观测站配置等工作提供参考。  相似文献   

3.
为研究满足HY-2B星载GPS定轨要求的EGM2008重力场模型合理阶次和HY-2B卫星简化动力学定轨精度,采用HY-2B卫星14天星载GPS观测数据及不同阶次EGM2008重力场,进行简化动力学轨道确定。结果表明:采用120阶及以上阶次的EGM2008重力场模型,能够获得厘米级高精度定轨结果。同时,检核结果显示:采用简化动力学法定轨时,载波相位残差结果稳定在6.2~6.8 mm之间,重叠轨道对比结果在轨道径向、切向、法向上均优于0.6 cm, SLR检核整体轨道精度优于4 cm。定轨结果满足测高卫星需求,可为后续我国海洋系列卫星精密轨道确定等相关科学研究提供借鉴。  相似文献   

4.
利用CHAMP卫星星载GPS实测数据,通过非差简化动力学定轨的方法,计算了CHAMP卫星2008年3月3日~10日的轨道,并以GFZ的快速轨道作为参考标准,评价了本文简化动力法轨道精度.结果表明,CHAMP卫星非差简化动力学轨道1D位置精度可达到7cm,1D的速度精度可达到0.1mm/s.  相似文献   

5.
卫星测高术是70年代发展起来的一项新技术,到目前为止国外已陆续发射了七颗载有高度计的卫星。高度计卫星定轨的精度对测高数据的应用有很大影响.本文概述了卫星高度计测高数据在海洋应用上的一些结果、影响轨道的因素、测轨方法和轨道精校正方法。最后根据现有卫星轨道校正数据得到卫星轨道误差与校正精度的关系式,据此分析了轨道计算误差对卫星高度计测高数据在海洋应用中的影响  相似文献   

6.
程芦颖 《海洋测绘》2012,32(6):63-67
从地球重力场测量要素出发,按照局部重力场模型、区域重力场模型、全球重力场模型求解的发展思路,分析了对地球重力场测量技术手段的要求。根据高-低卫星跟踪卫星的距离和距离变率开展定轨研究的概念,梳理了卫星跟踪卫星重力测量系统的发展。针对卫星跟踪卫星重力测量技术的内涵,分析了高-低卫星跟踪卫星测量模式(SST-hl)和高-低低卫星跟踪卫星测量模式(SST—hll)的地球重力场测量本质。  相似文献   

7.
根据下行L波段轨道法时间比对的基本原理,详细推导了其在地心非旋转坐标系中的基本计算模型,并以静止地球同步轨道卫星为例,分析了该计算模型中的距离改正项时延对星地间相对钟差的影响量级。  相似文献   

8.
《海洋测绘》2014,(3):59-59
<正>据印度dnaindia网站2014年3月31日报道,印度期望在2015年第一季度前能拥有自己的卫星导航系统,该导航系统将有4颗卫星在轨运行。印度空间研究组织(ISRO)于4月4日发射其第二颗导航卫星"印度区域导航卫星系统"-1B(IRNSS-1B)。该卫星重1 432kg,由印度"极轨卫星运载火箭"(PSLV)发射升空。IRNSS-1B卫星设计使用寿命10年。首颗导航卫星IRNSS-1A已于2013年发射升空。  相似文献   

9.
提出了一种快速的卫星过顶预报方法,该方法采用MSGP对卫星轨道递推,相对于高精度的轨道递推方法,在精度上不仅可以满足预报的要求,而且速度比较快。在卫星俯仰角和方位角的计算模型中,针对岁差、章动和极移的影响相对于卫星位置是二阶小量,因此在坐标系转换过程中忽略岁差、章动和极移的影响。还进一步论述了两种不同方式的轨道递推方法之间的结果差异,并就轨道递推精度对预报时间和卫星俯仰角、方位角的影响进行了讨论。最后,我们根据对比STK软件的仿真结果,验证该方法是有效的。  相似文献   

10.
对3颗高度计卫星TOPEX/POSEIDON(TP),Jason-1(J1),Jason-2(J2)自1992—2011年683个重复周期,共18.6年的数据进行分析,得到全球海洋潮汐调和常数,并重点分析了采用不同样本大小的卫星高度计数据对潮汐信息提取的准度和精度所带来的影响。研究结果表明,参与分析的卫星高度计数据观测样本数的增加可以降低其反演潮汐各分潮振幅时的误差。观测时间为18.6年的高度计数据调和分析所得的主要半日分潮与实测比较,其振幅差相比于利用10年数据的计算结果减小约0.5cm;但是由于忽略了卫星更替过程所带来的观测时间差来进行调和分析,将会对计算分析过程中产生的迟角误差造成影响,主要全日分潮的迟角误差增加约2°,而半日潮迟角误差的改变则比较小。本文进一步用理想化实验解释了造成这种迟角计算误差变化的原因,比较了轨道交叉点上,由卫星在升轨和降轨2个轨道上各自的观测数据计算得到的调和常数,发现随着参与分析的高度计观测样本数的增加,调和分析计算潮汐调和常数时的内符精度也会显著提高。利用18.6年数据比利用10年数据进行调和分析时,主要半日潮调和常数的精度提高了约7%。  相似文献   

11.
对顾及系统误差的地球静止轨道(GEO)卫星几何法定轨做了初步探讨,给出顾及系统误差的GEO卫星几何法定轨数学模型,推导了参数解算公式,提出PDOP值加权的几何法定轨方法,并讨论了权函数的选取。最后以卫星钟差为例进行模拟计算。结果表明:顾及系统误差的GEO卫星几何法定轨,可大大减弱系统误差对定轨结果的影响;基于PDOP值加权的几何法定轨,可进一步提高系统参数解算精度和定轨精度。  相似文献   

12.
We have used GPS carrier phase integer ambiguity resolution to investigate improvements in the orbit determination for the Jason-1 satellite altimeter mission. The technique has been implemented in the GIPSY orbit determination software developed by JPL. The radial accuracy of the Jason-1 orbits is already near 1 cm, and thus it is difficult to detect the improvements gained when the carrier phase ambiguities are resolved. Nevertheless, each of the metrics we use to evaluate the orbit accuracy (orbit overlaps, orbit comparisons, satellite laser ranging residuals, altimeter crossover residuals, orbit centering) show modest improvement when the ambiguities are resolved. We conservatively estimate the improvement in the radial orbit accuracy is at the 10–20% level.  相似文献   

13.
研究了GPS实时精密卫星钟差的估计方法,并将实时钟差应用于实时精密单点定位。采用自编软件,依据全球均匀分布的IGS参考站实测数据,基于非差消电离层组合载波和伪距观测量实现了GPS实时精密卫星钟差估计。试验结果表明,自主估计的实时卫星钟差与IGS发布的最终精密钟差具有较好一致性,互差优于0.2ns;用于实时精密单点定位,能够获得静态定位1~2cm、仿动态定位厘米级精度。  相似文献   

14.
GNSS观测量测量的是测站与卫星间的相对时间延迟,卫星钟差求解的是相对于基准钟的相对钟差,因此卫星钟差的精度评估方法不同于其他GNSS产品。分析了卫星钟差的精度评估方法,采用消除卫星钟系统偏差的方法进行钟差精度的评估,得到的各产品的精度评定结果与各产品公布的钟差精度基本一致,证明了此方法的有效性。  相似文献   

15.
海洋二号卫星厘米级定轨的实施建议   总被引:1,自引:0,他引:1  
针对海洋二号(HY-2)卫星如何实现厘米级定轨问题,提出下列建议:海洋二号卫星不必采用DORIS定轨;给海洋二号卫星装备无电功耗需求的激光后向反射镜阵列,以便对它进行多个SRL测站观测的激光厘米级定轨;给海洋二号卫星装备具有双频载波相位测量能力的GPS信号接收机,实现高精度的星载GPS测量定轨.  相似文献   

16.
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

17.
《Marine Geodesy》2013,36(3-4):399-421
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号