首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Early Paleozoic magmatism of the Tannuola terrane located in the northern Central Asian Orogenic Belt is important to understanding the transition from subduction to post-collision settings. In this study, we report in situ zircon U-Pb ages, whole rock geochemistry, and Sr-Nd isotopic data from the mafic and granitic rocks of the eastern Tannuola terrane to better characterize their petrogenesis and to investigate changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal three magmatic episodes for about 60 Ma from ∼510 to ∼450 Ma, that can be divided into the late Cambrian (∼510–490 Ma), the Early Ordovician (∼480–470 Ma) and the Middle-Late Ordovician (∼460–450 Ma) stages. The late Cambrian episode emplaced the mafic, intermediate and granitic rocks with volcanic arc affinity. The late Cambrian mafic rocks of the Tannuola terrane may originate from melting of mantle source that contain asthenosphere and subarc enriched mantle metasomatized by melts derived from sinking oceanic slab. Geochemical and isotopic compositions indicate the late Cambrian intermediate-granitic rocks are most consistent with an origin from a mixed source including fractionation of mantle-derived magmas and crustal-derived components. The Early Ordovician episode reveal bimodal intrusions containing mafic rocks and adakite-like granitic rocks implying the transition from a thinner to a thicker lower crust. The Early Ordovician mafic rocks are formed as a result of high degree melting of mantle source including dominantly depleted mantle and subordinate mantle metasomatized by fluid components while coeval granitic rocks were derived from partial melting of the high Sr/Y mafic rocks. The latest Middle-Late Ordovician magmatic episode emplaced high-K calc-alkaline ferroan granitic rocks that were formed through the partial melting the juvenile Neoproterozoic sources.These three episodes of magmatism identified in the eastern Tannuola terrane are interpreted as reflecting the transition from subduction to post-collision settings during the early Paleozoic. The emplacement of voluminous magmatic rocks was induced by several stages of asthenospheric upwelling in various geodynamic settings. The late Cambrian episode of magmatism was triggered by the slab break-off while subsequent Early Ordovician episode followed the switch to a collisional setting with thickening of the lower crust and the intrusion of mantle-induced bimodal magmatism. During the post-collisional stage, the large-scale lithospheric delamination provides the magma generation for the Middle-Late Ordovician granitic rocks.  相似文献   

2.
The North China Craton (NCC) witnessed a prolonged subduction–accretion history from the early to late Palaeoproterozoic, culminating with final collision at ca. 1.85 Ga and assembling the continental blocks into the cratonic framework. Subsequently, widespread post-collisional magmatism occurred, particularly along the Trans-North China Orogen (TNCO) that sutures the Eastern and Western blocks of the NCC. Here we present petrological, geochemical, and zircon U–Pb geochronological and Lu–Hf data from a pyroxenite (websterite)–gabbro–diorite suite at Xinghe in Inner Mongolia along the northern segment of the TNCO. The internal structures and high Th/U values of the zircons from the gabbro–diorite suite suggest magmatic crystallization. LA-ICP-MS U–Pb age data on three gabbros and one diorite from the suite yield emplacement ages of 1786.1 ± 4.8, 1783 ± 15 ,1754 ± 16 and 1767 ± 13 Ma, respectively. The εHf(t) shows mostly positive values (up to 5.8), with the lowest value at –4.2, suggesting that the magma was derived from dominantly juvenile sources. The generally low SiO2 and high MgO values, and other trace element features of the Xinghe suite are consistent with fractionation from a mantle-derived magma with a broadly E-MORB affinity, with no significant crustal contamination. Recent studies clearly establish that the major magmatic pulse associated with rifting of the NCC within the Columbia supercontinent occurred in the late Mesoproterozoic at ca. 1.3–1.2 Ga associated with mantle plume activity. This, together with the lack of robust geochemical imprints of rift-related magmatism in the Xinghe suite, prompts us to suggest a tectonic model that envisages magma genesis associated with post-collisional extension during slab break-off, following the westward subduction of the Eastern Block and its collision with the Western Block. The resulting asthenospheric upwelling and heat input might have triggered the magma generation from a heterogeneous, subduction-modified sub-lithospheric mantle source for the Xinghe rocks, as well as for similar late Palaeoproterozoic suites in the TNCO.  相似文献   

3.
华南板块发育有巨量新元古代岩浆岩,因而是研究罗迪尼亚(Rodinia)超大陆演化期间华南板块地幔属性、地壳演化和壳幔相互作用最理想的场所。虽然在扬子西缘新元古代镁铁质和酸性岩浆作用方面已有大量的研究,但是在系统研究中酸性花岗岩类所代表的不同深部动力学意义的方面还较为薄弱。文章基于团队近期对于扬子板块西缘新元古代典型花岗岩类的研究成果,系统揭示不同深度层次的岩浆作用。最新研究支持扬子西缘新元古代受控于俯冲构造背景,除发生俯冲流体和板片熔体交代地幔作用外,最新识别的ca.850~835 Ma高Mg#闪长岩指示俯冲沉积物熔体也参与了地幔交代作用。Ca.840~835 Ma过铝质花岗岩的发现说明扬子西缘新元古代时期不仅存在新生镁铁质下地壳的熔融,也发生了俯冲背景下成熟大陆地壳物质的重熔。Ca.780 Ma Ⅰ型花岗闪长岩-花岗岩组合揭示了俯冲阶段后期板片回撤断离后软流圈地幔瞬时上涌引发的不同地壳层次的岩浆响应。从ca.800 Ma的增厚下地壳来源的埃达克质花岗岩到ca.750 Ma的酸性地壳来源的A型花岗岩的出现,表明扬子西缘新元古代时期经历了俯冲有关的地壳增厚到俯冲后期弧后扩张背景下的区域性地壳减薄。   相似文献   

4.
The Carpathian–Pannonian Region contains Neogene to Quaternary magmatic rocks of highly diverse composition (calc-alkaline, shoshonitic and mafic alkalic) that were generated in response to complex microplate tectonics including subduction followed by roll-back, collision, subducted slab break-off, rotations and extension. Major element, trace element and isotopic geochemical data of representative parental lavas and mantle xenoliths suggests that subduction components were preserved in the mantle following the cessation of subduction, and were reactivated by asthenosphere uprise via subduction roll-back, slab detachment, slab-break-off or slab-tearing. Changes in the composition of the mantle through time are evident in the geochemistry, supporting established geodynamic models.Magmatism occurred in a back-arc setting in the Western Carpathians and Pannonian Basin (Western Segment), producing felsic volcaniclastic rocks between 21 to 18 Ma ago, followed by younger felsic and intermediate calc-alkaline lavas (18–8 Ma) and finished with alkalic-mafic basaltic volcanism (10–0.1 Ma). Volcanic rocks become younger in this segment towards the north. Geochemical data for the felsic and calc-alkaline rocks suggest a decrease in the subduction component through time and a change in source from a crustal one, through a mixed crustal/mantle source to a mantle source. Block rotation, subducted roll-back and continental collision triggered partial melting by either delamination and/or asthenosphere upwelling that also generated the younger alkalic-mafic magmatism.In the westernmost East Carpathians (Central Segment) calc-alkaline volcanism was simultaneously spread across ca. 100 km in several lineaments, parallel or perpendicular to the plane of continental collision, from 15 to 9 Ma. Geochemical studies indicate a heterogeneous mantle toward the back-arc with a larger degree of fluid-induced metasomatism, source enrichment and assimilation on moving north-eastward toward the presumed trench. Subduction-related roll-back may have triggered melting, although there may have been a role for back-arc extension and asthenosphere uprise related to slab break-off.Calc-alkaline and adakite-like magmas were erupted in the Apuseni Mountains volcanic area (Interior Segment) from15–9 Ma, without any apparent relationship with the coeval roll-back processes in the front of the orogen. Magmatic activity ended with OIB-like alkali basaltic (2.5 Ma) and shoshonitic magmatism (1.6 Ma). Lithosphere breakup may have been an important process during extreme block rotations (60°) between 14 and 12 Ma, leading to decompressional melting of the lithospheric and asthenospheric sources. Eruption of alkali basalts suggests decompressional melting of an OIB-source asthenosphere. Mixing of asthenospheric melts with melts from the metasomatized lithosphere along an east–west reactivated fault-system could be responsible for the generation of shoshonitic magmas during transtension and attenuation of the lithosphere.Voluminous calc-alkaline magmatism occurred in the Cãlimani-Gurghiu-Harghita volcanic area (South-eastern Segment) between 10 and 3.5 Ma. Activity continued south-eastwards into the South Harghita area, in which activity started (ca. 3.0–0.03 Ma, with contemporaneous eruption of calc-alkaline (some with adakite-like characteristics), shoshonitic and alkali basaltic magmas from 2 to 0.3 Ma. Along arc magma generation was related to progressive break-off of the subducted slab and asthenosphere uprise. For South Harghita, decompressional melting of an OIB-like asthenospheric mantle (producing alkali basalt magmas) coupled with fluid-dominated melting close to the subducted slab (generating adakite-like magmas) and mixing between slab-derived melts and asthenospheric melts (generating shoshonites) is suggested. Break-off and tearing of the subducted slab at shallow levels required explaining this situation.  相似文献   

5.
《International Geology Review》2012,54(11):1313-1339
ABSTRACT

The nature, magmatic evolution, and geodynamic setting of both inner and outer Makran ophiolites, in SE Iran, are enigmatic. Here, we report mineral chemistry, whole-rock geochemistry, and Sr–Nd–Pb isotope composition of mantle peridotites and igneous rocks from the Eastern Makran Ophiolite (EMO) to assess the origin and tectono-magmatic evolution of the Makran oceanic realm. The EMO includes mantle peridotites (both harzburgites and impregnated lherzolites), isotropic gabbros, diabase dikes, and basaltic to andesitic pillow and massive lava flows. The Late Cretaceous pelagic limestones are found as covers of lava flows and/or interlayers between them. All ophiolite components are somehow sheared and fragmented, probably in Cenozoic time, during the emplacement of ophiolite. This event has produced a considerable extent of tectonic melange. Tectonic slices of trachy-basaltic lavas with oceanic island basalt (OIB)-like signature seal the tectonic melange. Our new geochemical data indicate a magmatic evolution from fore-arc basalt (FAB) to island-arc tholeiite (IAT)-like signatures for the Late Cretaceous EMO lavas. EMO extrusive rocks have high εNd(t) (+8 to +8.9) and isotopically are similar to the Oman lavas. This isotopic signature indicates a depleted mid-ocean ridge basalt (MORB) mantle source for the genesis of these rocks, except isotopic gabbros containing lower εNd(t) (+5.1 to +5.7) and thus show higher contribution of subducted slab components in their mantle source. High 207Pb/204Pb and 208Pb/204Pb isotopic ratios for the EMO igneous rocks also suggest considerable involvement of slab-derived components into the mantle source of these rocks. The variable geochemical signatures of the EMO lavas are mostly similar to Zagros and Oman ophiolite magmatic rocks, although the Pb isotopic composition shows similarity to the isotopic characteristic of inner Zagros ophiolite belt. This study postulates that the EMO formed during the early stages of Neo-Tethyan subduction initiation beneath the Lut block in a proto-forearc basin. We suggest subduction initiation caused asthenospheric upwelling and thereafter melting to generate the MORB-like melts. This event left the harzburgitic residues and the MORB-like melts interacted with the surrounding peridotites to generate the impregnated lherzolites, which are quite abundant in the EMO. Therefore, these lherzolites formed due to the refertilization of mantle rocks through porous flows of MORB-like melts. The inception of subduction caused mantle wedge to be enriched slightly by the slab components. Melting of these metasomatized mantle generated isotropic gabbros and basaltic to andesitic lavas with FAB-like signature. At the later stage, higher contribution of the slab-derived components into the overlying mantle wedge causes formation of diabase dikes with supra-subduction zone – or IAT-like signatures. Trachy-basalts were probably the result of late-stage magmatism fed by the melts originated from an OIB source asthenospheric mantle due to slab break-off. This occurred after emplacement of EMO and the formation of tectonic melange.  相似文献   

6.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

7.
《Lithos》2007,93(1-2):149-174
Strong compositional variations are observed in the late-Miocene to Quaternary volcanic rocks of the eastern Trans-Mexican Volcanic Belt. Geochemical and isotopic analyses of samples well constrained in age indicate an abrupt change in magma composition in the late-Miocene (∼ 7.5 Ma), when calc-alkaline, subduction-related magmatism was replaced by mafic, alkaline, OIB-like volcanism. Afterwards, volcanism migrated toward the trench and the erupted lavas showed increasing contributions of subduction components reflected in higher Th/Nb, La/Sm(n), Ba/Nb, and Ba/Th ratios. Lavas from volcanic fields located closer to the trench show clearer, although strongly variable, arc signatures as well as evidence of subducted sediment contributions. Farther from the trench, only lavas emplaced in late-Pliocene time appear to be slightly modified by subduction components, whereas the youngest Quaternary lavas can be regarded as intraplate lavas modified by crustal assimilation.The sudden change in magma composition in the late-Miocene is related to detachment of the subducting slab, which allowed the infiltration of enriched asthenospheric mantle into the mantle wedge. After detachment, the subducting plate started to increase its dip because of the loss of slab pull. This caused (1) the migration of the arc toward the trench, (2) convection of enriched asthenosphere into the mantle wedge, and (3) an increasing contribution of slab components to the melts, in a process that resulted in a highly heterogeneous source mantle. The variable contribution of subduction-related components to the magmas is controlled by the heterogeneous character of the source, the depth of the subducting plate, and the previous magmatic history of the areas.  相似文献   

8.
Precambrian magmatism in the Biabanak-Bafq district represents an extensive sequence of mafic magmatic rocks. Major, trace and rare earth elements reveal that the low-Ti basement mafic rocks are magnesium tholeiite and low-Ti cover a mafic rock belongs to Fe-tholeiite, whereas, the high-Ti alkaline mafic rocks, as well as dolerites, show much more Fe–Ti enrichment. Primitive mantle normalized trace element patterns show a relative enrichment of LREE and LILE and depletion of HFSE, but have an equally distinct continental signature reflected by marked negative Nb, Sr, P, and Ti anomalies. The composition of the intrusive rocks is consistent with fractional crystallization of olivine ± clinopyroxene ± plagioclase, whereas variations in the Sr and Nd isotope compositions suggest heterogeneous sources and crustal contamination. Low-Ti group samples contain a crustal signature in the form of high La/Yb, Zr/Nb, and negative \(\varepsilon \hbox {Nd}\) values. In contrast, high-Ti mafic magmatic rocks display an increase in La/Yb with a decrease in Proterozoic alkaline rocks recognized across the central Iran. The presence of diverse mafic magmatic rocks probably reflects heterogeneous nature of sub-continental lithospheric mantle (SCLM) source. The mafic magmatism largely represents magmatic arc or rift tectonic setting. It is suggested that the SCLM sources were enriched by subduction processes and asthenospheric upwelling.  相似文献   

9.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

10.
The central–south domain of the Tibet Plateau represents an important part of the northern segment of Gondwana during the early Paleozoic. Here we present zircon U–Pb, Lu–Hf isotope, and whole–rock geochemical data from a suite of early Paleozoic magmatic rocks from the central Tibet Plateau, with a view to gain insights into the nature and geotectonic evolution of the northern margin of Gondwana. Zircon grains in four granitic rocks yielded ages of 532−496 Ma with negative εHf(t) values (−13.7 to −0.6). Zircon grains in meta–basalt and mafic gneiss yielded ages of 512 ± 5 Ma and 496 ± 6 Ma, respectively. Geochemically, the granitic rocks belong to high–K calc–alkaline and shoshonitic S–type granite suite, with the protolith derived from the partial melting of ancient crustal components. The mafic gneiss and meta–basalt geochemically resemble OIB (Oceanic Island Basalt) and E–MORB (Enriched Mid–Ocean Ridge Basalt), respectively. They were derived from low degree (∼5–10%) partial melting of an enriched mantle (garnet and spinel lherzolite) that was contaminated by upper crustal components. The parental magmas experienced orthopyroxene–dominated fractional crystallization. Sedimentological features of the Cambrian–Ordovician formations indicate that the depositional cycle transformed from marine regression to transgression leading to the formation of parallel/angular unconformities between the Cambrian and Ordovician strata. The hiatus associated with these unconformities are coupled with the peak of the early Paleozoic magmatism in Tibet Plateau, indicating a tectonic control. We conclude that the Cambrian–Ordovician magmatic suite and sedimentary rocks formed in an extensional setting, and we correlate this with the post–peak stage of the Pan–African orogeny. The post–collision setting associated with delamination, orogenic collapse or lithospheric extension along the northern margin of Gondwana, can account for the Cambrian–Ordovician magmatism and sedimentation, rather than oceanic subduction along the external margin. We thus infer a passive margin setting for the northern Gondwana during the Early Paleozoic.  相似文献   

11.
Zircon U–Pb ages and geochemical and isotopic data for Late Ordovician granites in the Baoshan Block reveal the early Palaeozoic tectonic evolution of the margin of East Gondwana. The granites are high-K, calc-alkaline, metaluminous to strongly peraluminous rocks with A/CNK values of 0.93–1.18, are enriched in SiO2, K2O, and Rb, and depleted in Nb, P, Ti, Eu, and heavy rare earth elements, which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed at ca. 445 Ma. High initial 87Sr/86Sr ratios of 0.719761–0.726754, negative ?Nd(t) values of –6.6 to –8.3, and two-stage model ages of 1.52–1.64 Ga suggest a crustal origin, with the magmas derived from the partial melting of ancient metagreywacke at high temperature. A synthesis of data for the early Palaeozoic igneous rocks in the Baoshan Block and adjacent Tengchong Block indicates two stages of flare-up of granitic and mafic magmatism caused by different tectonic settings along the East Gondwana margin. Late Cambrian to Early Ordovician granitic rocks (ca. 490 Ma) were produced when underplated mafic magmas induced crustal melting along the margin of East Gondwana related to the break-off of subducted Proto-Tethyan oceanic slab. In addition, the cession of the mafic magmatism between late Cambrian-Early Ordovician and Late Ordovician could have been caused by the collision of the Baoshan Block and outward micro-continent along the margin of East Gondwana and crust and lithosphere thickening. The Late Ordovician granites in the Baoshan Block were produced in an extensional setting resulting from the delamination of an already thickened crust and lithospheric mantle followed by the injection of synchronous mafic magma.  相似文献   

12.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   

13.
李艳芳  邱检生  王睿强  徐航  洪宇飞 《地质学报》2019,93(12):3020-3046
本文选取冈底斯带东段加查县东北部丝波绒曲复式岩体为对象,对其进行了岩相学、地质年代学、岩石地球化学以及Sr-Nd-Hf同位素组成的综合研究,据此探讨了该复式岩体的成因及其对构造演化的启示。研究结果表明,该复式岩体由早侏罗世辉长岩-花岗岩杂岩(188~185Ma)和始新世花岗质岩石(~47Ma)构成,两期花岗质岩石中普遍发育塑变形态的镁铁质包体。早侏罗世杂岩由角闪辉长岩和英云闪长岩组成,角闪辉长岩中的主要铁镁矿物为角闪石,它们为一套钙碱性弧岩浆岩组合,具有亏损的Sr-Nd-Hf同位素组成。始新世花岗质岩石主要为二长花岗岩-花岗闪长岩,它们较早侏罗世英云闪长岩更为富碱,属钙碱性-高钾钙碱性I型花岗岩,其同位素组成也较早侏罗世英云闪长岩富集。综合分析表明,该区早侏罗世复合辉长岩-花岗岩的形成受控于新特提斯洋板片北向俯冲的构造背景,角闪辉长岩起源于受俯冲板片脱水交代的上覆地幔楔的部分熔融,共生的英云闪长岩则为同期幔源岩浆底侵诱发初生地壳部分熔融产生的长英质岩浆与幔源岩浆不同程度混合的产物。始新世花岗岩的形成受控于新特提斯洋板片断离的构造背景,是由具"弧"型地球化学特征的初生地壳再造的产物,并有少量印度陆壳富集组分参与成岩。  相似文献   

14.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

15.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

16.
《地学前缘(英文版)》2020,11(5):1651-1667
The Spanish Central System(SCS) contains several suites of Palaeozoic mafic igneous intrusions with contrasting geochemical affinity:Ordovician tholeiitic metabasites,Variscan calc-alkaline gabbros(Gb1) and microdiorites(Gb2),shoshonitic monzogabbros(Gb3) and alkaline diabases and lamprophyres(Gb4).Not all of these rocks are accurately dated,and several aspects of their genesis are still poorly understood.We present new whole-rock geochemical data(major and trace elements,and Sr-Nd isotopes),U-Pb and Lu-Hf isotopic ratios on magmatic zircons and 40 Ar/~(39)Ar amphibole geochronology results in order to establish a precise chronology for the successive events of magmatism in the SCS,and discuss the nature of their mantle sources.Accurate ages have been determined for the Variscan gabbros(305-294 Ma),the microdiorites(299 Ma) and the accompanying felsic porphyries(292 Ma),the shoshonitic monzogabbros(285 Ma),and the alkaline diabases(274 Ma) and monzosyenites(271-264 Ma).According to this information,the Variscan mafic magmatism would be mainly concentrated in the range of 305-294 Ma,with a final manifestation represented by the minor shoshonitic dykes.The alkaline magmatism proved to be slightly older than previously thought and yielded at least two distinct pulses:diabases and lamprophyres-monzosyenites.Zircon Hf isotopes evidence the involvement of depleted and slightly enriched mantle sources.The bulk of the eHf values are in the broad range of-8 to+11,indicative of melting both depleted and enriched mantle regions.The high within-sample Hf isotope variation(up to-11 epsilon units) shown by samples from the Variscan series(gabbros,microdiorites and monzogabbros) could be explained mainly by hybridisation of magmas derived from heterogeneous lithospheric mantle sources.Pressure estimates indicate that the Variscan mafic magmas were extracted from the lithosphere.The Nd-Hf isotopic composition of these suites of rocks suggests the recycling of pelitic sediments during the Cadomian orogeny.Deeper(asthenospheric) mantle levels were involved in the generation of the alkaline suite,whose anomalous negative eHf values(moderately decoupled with respect to radiogenic Nd) could be associated with subducted oceanic components raised by mantle upwelling associated with lithosphere thinning and extension during the Permian.  相似文献   

17.
Silurian plutonic suites in the Newfoundland Appalachians include abundant gabbro, monzogabbro and granite to granodiorite and lesser quartz diorite and tonalite. Most are medium- to high-K, but included are some low-K and shoshonitic mafic compositions. Felsic rocks are of both alkaline (A-type or within-plate granite (WPG)) and calc-alkaline volcanic arc granite (VAG) affinity. Mafic rocks include both arc-like (Nb/Th < 3) calc-alkaline and non-arc-like (Nb/Th > 3) transitional calc-alkaline basalt to continental tholeiitic affinity compositions. εNd(T) values range from − 9.6 to + 5.4 and δ18O (VSMOW) values range from + 3.1 to + 13.2‰.

A rapid progression from exclusively arc-type to non-arc-like mafic and then contemporaneous WPG plus VAG magmatism has been documented using precise U–Pb zircon dating. Earlier arc-like plutonism indicates subduction, while asthenosphere-derived mafic magmas support slab break-off, due to subduction of a young, warm back-arc basin. Contemporaneous mafic magmas with arc and non-arc geochemical signatures may reflect tapping of asthenospheric and subcontinental lithospheric mantle (SCLM) sources and/or contamination of asthenosphere-derived magmas by SCLM or crust.

The brevity (< 5 Ma) of the mafic magmatic pulse agrees with the transient nature of magmatism associated with slab break-off. The subsequent ca. 1 to 2 m.y. period of voluminous WPG and VAG plutonism likely reflects mafic magma-driven partial melting of both SCLM and crustal sources, respectively. Continuation of VAG-like magmatism for an additional 2 to 5 m.y. may reflect lower solidus temperatures of crustal materials, enabling anatexis to continue after mantle melting ceased. East to west spatial variation of εNd and (La/Yb)CN in Silurian plutons suggests a transition from shallow melting of juvenile sources proximal to the collision zone to deeper melting of old source materials in the garnet-stability field further inboard.

Previous work has demonstrated that geochemical discriminaton of post-collisional granitoid magmatism (PCGM) is difficult in the absence of other constraints. Our example should contribute to the understanding and identification of PCGM if it can be employed as a ‘fingerprint’ for slab break-off-related PCGM within the Paleozoic geological record.  相似文献   


18.
The SW Antalya Complex is an assemblage of Mesozoic carbonate platform, margin and ophiolitic rocks which record the formation and tectonic emplacement of a small Mesozoic ocean basin. The late Cretaceous ophiolitic rocks are located at two localities, namely the relatively intact Tekirova ophiolite to the east of Kemer zone and the dismembered Gödene ophiolite to the west of Kemer zone. The Tekirova (Antalya) ophiolite comprises harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and sheeted dikes. Numerous isolated dikes, ranging in thickness from 5 cm to 10 m, intruded the crustal rocks at different structural levels. The isotropic gabbros are represented by gabbro, diorite and quartz diorite rocks with granular to ophitic–subophitic textures. The isolated dikes are characterized by dolerite, diabase and microdiorite with ophitic, intersertal and microgranular textures. These rocks exhibit tholeiitic to alkaline compositions. New geochemical data presented in this paper from the isolated dikes and isotropic gabbros suggest that there are three main types of parental basic magmas that form the oceanic crustal rocks of the Tekirova (Antalya) ophiolite. These are (1) IAT series which can be referred to the Group I isolated dikes and isotropic gabbros; (2) low-Ti boninitic series characterized by the Group II isolated dike and isotropic gabbros; and (3) OIB-type including the Group III isotropic gabbros. The geochemical evidence suggests that the crustal rocks of the Tekirova (Antalya) ophiolite were generated from a progressive source depletion from island arc tholeiites (IAT) to boninites. Therefore, a fore-arc tectonic setting seems likely for the generation of the crustal rocks from the Tekirova (Antalya) ophiolite in the southern branch of Neotethys during the Late Cretaceous. The OIB-type alkaline isotropic gabbros are thought to have resulted from either (1) a late-stage magmatic activity fed by melts that originated within an asthenospheric window due to slab break-off or (2) subduction of a ridge system which generated OIB source across the asthenospheric window that has been no influence of fluids from the subducted slab into the overlying mantle wedge, shortly before the emplacement of the Tekirova (Antalya) ophiolite onto the Tauride platform.  相似文献   

19.
Mafic to felsic gneisses along the northern margin of the North China Craton (NMNCC), in western Liaoning province, China, were previously assumed to be part of Archean metamorphic basement but are here identified as younger (Permian–Early Triassic) intrusions. LA–ICP–MS zircon U–Pb isotopic dating reveals that the magmatic precursors of the mafic gneisses were emplaced from 295 ± 3 to 259 ± 2 Ma and that the magmatic precursors of the dioritic and monzogranitic gneisses were emplaced at 267 ± 1 and 251 ± 2 Ma, respectively, thus recording a continuum of Permian to Early Triassic magmatism. The mafic and dioritic rocks exhibit zircon εHf(t) values from ?20.7 to ?3.3, suggesting they were mainly derived from a metasomatized lithospheric mantle source, possibly involving some crustal contamination. The monzogranitic rocks display their zircon εHf(t) values of +0.9 to +4.7, indicating the acidic magma was derived from partial melting of juvenile crustal materials from the depleted mantle source. Crustal model ages (T DM C ) obtained from zircon Hf isotopes of these monzogranitic rocks range from 976 to 1,215 Ma, with an average of 1,074 ± 32 Ma, possibly implying an episode of Grenvillian crustal growth in western Liaoning province. These new lines of evidence show that the NMNCC witnessed abundant magmatic activity and interaction of the crust and mantle during the Permian and Early Triassic and that the mafic magmatism was earlier than the monzogranitic activity. These findings indicate that the monzogranitic activity was the result of underplating of mafic magma with an enriched mantle source. In the context of regional Late Paleozoic to Early Mesozoic magmatic activity, the Permian magmatism occurred in an Andean-style continental margin setting when the Paleo-Asian oceanic plate was subducted beneath the NMNCC, and in this context, the Late Permian to Early Triassic magmatism may have been linked to post-collisional extension and asthenospheric upwelling, suggesting that the western Liaoning province in the NMNCC may be an eastward extension of the Late Paleozoic to Early Mesozoic active continental margin.  相似文献   

20.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号