首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

2.
A laboratory study of the rheology of mudflows in Hangzhou Bay, China, is reported in this paper. Both the steady and oscillatory (dynamic) rheological properties are studied using RMS-605 rheometer. A Dual-Bingham model is proposed for analyzing flow curves and compared with Worrall-Tuliani model. It is found that Dual-Bingham plastic rheological model is easier to implement than Worrall-Tuliani model and can provide satisfactory representations of the steady mudflows in Hangzhou Bay and other published data. The dependence of the yield stress and viscosity on sediment concentration is discussed based on the data from Hangzhou Bay mud and other published data. For the dynamic rheologieal properties of Hangzhou Bay mud, empirical expressions for elastic modulus and dynamic viscosity are provided in the form of exponential functions of sediment volume concentration, and comparisons with other published data also discussed.  相似文献   

3.
The current study proposes a novel framework for the numerical model for estimating the temporal scour considering unsteady sediment inflow and the sediment sorting process. The framework was applied to local scour upstream of a slit weir. The scour model is based on an ordinary nonlinear differential equation derived from sediment continuity and scour rate equations. A one-dimensional(1-D)Boussinesq-type model coupled with nonequilibrium sediment transport was incorporated in the scour model to...  相似文献   

4.
The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents, bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics of a 1-km long reach of the River Klar?lven, located in the north of the county of V?rmland, Sweden.  相似文献   

5.
A two-phase model for fast geomorphic shallow flows   总被引:1,自引:0,他引:1  
The paper introduces a 2D shallow water model based on a two-phase formulation for the analysis of fast geomorphic transients occurring in the context of river morphodynamics.Mass and momentum conservation principles are separately imposed for both phases.The model naturally accounts for non-equilibrium solid transport,since neither instantaneous adaptation hypothesis nor any lag equation is employed to represent sediment dynamics.The hyperbolic character of the proposed model is shown to be preserved independently on the flow conditions.Results from numerical simulations of both 1D and 2D test-cases are compared with literature experimental data and with available numerical solutions.  相似文献   

6.
The paper presents the development of a morphological model and its application to experimental model rivers.The model takes into account the key processes of channel migration,including bed deformation,bank failure and wetting and drying.Secondary flows in bends play an important role in lateral sediment transport,which further affects channel migration.A new formula has been derived to predict the near-bed secondary flow speed,in which the magnitude of the speed is linked to the lateral water level gradient.Since only non-cohesive sediment is considered in the current study,the bank failure is modelled based on the concept of submerged angle of repose.The wetting and drying process is modelled using an existing method.Comparisons between the numerical model predictions and experimental observations for various discharges have been made.It is found that the model predicted channel planform and cross-sectional shapes agree generally well with the laboratory observations.A scenario analysis is also carried out to investigate the impact of secondary flow on the channel migration process.It shows that if the effect of secondary flow is ignored,the channel size in the lateral direction will be seriously underestimated.  相似文献   

7.
Numerical modeling of gravitational erosion in rill systems   总被引:1,自引:0,他引:1  
A self-organizing model was developed for simulating rill erosion process on slopes with particular attention to the role of gravitational erosion.For a complete simulation circle,processes such as precipitation,infiltration,runoff,scouring,gravitational erosion and elevation variation were fully considered.Precipitation time(or runoff time) was regarded as iteration benchmark in the model.To specify the contribution of gravitational erosion to the process of rill formation and development,a gravitational erosion module was inserted into the model.Gravitational erosion in rill development was regarded as a Gaussian random process.A model was calibrated by our experimental data,and further validated satisfactorily with 22 runs of experimental results from different investigators. Systematic comparison was made between sediment yields with and without consideration of gravitational erosion module.It was demonstrated that the model could reasonably simulate the rill erosion process under a variety of slope gradients,rainfall intensities and soil conditions upon the gravitational erosion being considered.However,the role of gravitational erosion on sediment yields in rill systems varies significantly under different conditions,although it is of the utmost importance in steeper slopes.The process of gravitational erosion in rill development was studied by a newly-defined parameter a>,which is defined as the volume ratio of gravitational erosion over hydraulic-related erosion.The gravitational contribution to the total erosion could be over 50%for the rill systems with higher rainfall intensity and steeper slopes.  相似文献   

8.
Based on the common approach,the adaptation length in sediment transport is normally estimated astemporally independent.However,this approach might not be theoretically justified as the process of reaching the sediment transport equilibrium stage is affected by the flow conditions in time,especially for fast moving flows,such as scour-hole developing flows.In this study,the two-dimensional(2D) shallow water formulation together with a sediment continuity-concentration(SCC) model were applied to flow with mobile sediment boundary.A timevarying approach was proposed to determine the sediment transport adaptation length to simulate the sediment erosion-deposition rate.The proposed computational model was based on the Finite Volume(FV) method.The Monotone Upwind Scheme of Conservative Laws(MUSCL)-Hancock scheme was used with the Harten Lax van Leer-contact(HLLC) approximate Riemann solver to discretize the FV model.In the flow applications of this paper,a highly discontinuous dam-break,fast sediment transport flow was used to calibrate the proposed timevarying sediment adaptation length model.Then the calibrated model was further applied to two separate experimental sediment transport flow applications documented in the literature,i.e.a highly concentrated sediment transport flow in a wide alluvial channel and a sediment aggradation flow.Good agreement with the experimental data were obtained with the proposed model simulations.The tests prove that the proposed model,which was calibrated by the discontinuous dam-break bed scouring flow,also performed well to represent rapid bed change and steady sediment mobility conditions.  相似文献   

9.
A depth-averaged 2-D numerical model for unsteady flow, salinity and cohesive sediment transport in estuaries is established using the finite volume method on the non-staggered, curvilinear grid. The convection terms are discretized by upwind schemes, the diffusion terms are by the central difference scheme, and the time derivative terms are by the three-time-level implicit scheme. The coupling of flow velocity and water level in the 2-D shallow water equations is achieved by the SIMPLEC algorithm with the Rhie and Chow‘s momentum interpolation method. The sediment model calculates the settling, deposition, erosion and transport of cohesive sediment, taking into account the influence of sediment size, sediment concentration, salinity and turbulence intensity on the flocculation of cohesive sediment. The flow model is first tested against the measurement data in the Tokyo Bay and San Francisco Bay, showing good agreements. And then, the entire model of flow, salinity and sediment transport is verified in the Gironde Estuary. The water elevation, flow velocity, salinity and sediment concentration are well predicted.  相似文献   

10.
Modeling of suspended sediment particle movement in surface water can be achieved by stochastic particle tracking model approaches.In this paper,different mathematical forms of particle tracking models are introduced to describe particle movement under various flow conditions,i.e.,the stochastic diffusion process,stochastic jump process,and stochastic jump diffusion process.While the stochastic diffusion process can be used to represent the stochastic movement of suspended particles in turbulent flows,the stochastic jump and the stochastic jump diffusion processes can be used to describe suspended particle movement in the occurrences of a sequence of extreme flows.An extreme flow herein is defined as a hydrologic flow event or a hydrodynamic flow phenomenon with a low probability of occurrence and a high impact on its ambient flow environment.In this paper,the suspended sediment particle is assumed to immediately follow the extreme flows in the jump process(i.e.the time lag between the flow particle and the sediment particle in extreme flows is considered negligible).In the proposed particle tracking models,a random term mainly caused by fluid eddy motions is modeled as a Wiener process,while the random occurrences of a sequence of extreme flows can be modeled as a Poisson process.The frequency of occurrence of the extreme flows in the proposed particle tracking model can be explicitly accounted for by the Poisson process when evaluating particle movement.The ensemble mean and variance of particle trajectory can be obtained from the proposed stochastic models via simulations.The ensemble mean and variance of particle velocity are verified with available data.Applicability of the proposed stochastic particle tracking models for sediment transport modeling is also discussed.  相似文献   

11.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

12.
The horizontal accuracy of topographic data represented by digital elevation model (DEM) resolution brings about uncertainties in landscape process modeling with raster GIS. This paper presents a study on the effect of topographic variability on cell-based empirical estimation of soil loss and sediment transport. An original DEM of 10m resolution for a case watershed was re-sampled to three realizations of higher grid sizes for a comparative examination. Equations based on the USLE are applied to the watershed to calculate soil loss from each cell and total sediment transport to streams. The study found that the calculated total soil loss from the watershed decreases with the increasing DEM resolution with a linear correlation as spatial variability is reduced by cell aggregation. The USLE topographic factors (LS) extracted from applied DEMs represent spatial variability, and determine the estimations as shown in the modeling results. The commonly used USGS 30m DEM appears to be able to reflect essential spatial variability and suitable for the empirical estimation. The appropriateness of a DEM resolution is dependent upon specific landscape characteristics, applied model and its parameterization. This work attempts to provide a general framework for the research in the DEM-based empirical modeling.  相似文献   

13.
For the conservation and restoration of river environment,a sediment replenishment technique, which conveys a part of the sediments excavated and/or dredged from reservoirs to the river below dams is developed and has been implemented tentatively in several dams.Sediments placed as replenishment can be flushed out and transported downstream by floodwater or dam releases.The flushed sediments are expected to contribute to the control of degradation and the variation of the low-flow channel.However,this technique is in the development stage because there are many unknown factors.Therefore,systematic investigations are necessary for practical management of the technique.In this study,the effects of the location of replenishment sediment on sediment flushing and on control of degradation were investigated by means of flume experiments.A two-dimensional numerical model was also developed to further investigate the effects of sediment augmentation on river restoration.The numerical model treats bank erosion and sediment transport over fixed beds. The simulation results were verified against the experimental results.The flushing process of replenishment sediment was investigated first,and then its effect as a countermeasure for river bed degradation was analyzed.Results are summarized as follows:(1) Augmentation at upper riffles is effective for flushing of replenishment sediment and variation of low-flow channel.(2) Amelioration of degradation can be found in the cases of two types of placement.The amelioration effect of upper riffle placement was larger than that of lower riffle placement(3) Aggradation rate of the bed near the replenishment site in the fixed bed is large in the lower riffle placement compared with the upper riffle placement.(4) The numerical model was found to be generally successful as a predictive tool.  相似文献   

14.
Sediment deposition in reservoirs is an important research topic in engineering practice. Reservoir sedimentation has the potential to affect ood levels, drainage for agricultural land, pump station and hydropower operation as well as navigation. This paper describes the development of a coupled fully three-dimensional (3D) numerical model for the prediction of the local sediment ushing scour upstream of the bottom outlet. The presented numerical model solves the Navier-Stokes equations in conjunction with the k- turbulence model which includes both sediment transport and hydrodynamic parameters. The proposed coupled fully 3D numerical model is used to simulate experimental tests based on non-cohesive sediment. The geometric features of the scour hole (temporal and spatial hole devel- opment) upstream of the bottom outlet were reasonably well predicted compared to the experimental data. Furthermore, the velocity eld upstream of the bottom outlet was in good agreement with mea- surements. The proposed numerical model for bottom outlet ushing was, therefore, validated because of its ability to accurately predict the scour hole development during the ushing process. The proposed numerical model can be considered reliable provided that the model is correctly calibrated and set up to re ect the conditions of a particular case study.  相似文献   

15.
16.
Yangshan near-shore sea area is the multi-island and multi-channel area with strong flow velocity and high suspended sediment concentration. Based on the characteristics of tidal currents, waves, and sediment in the Yangshan area, a two-dimensional numerical model of tidal currents, sediment transport, and sea bed deformation is developed. In the model, the effects of tidal currents and wind waves on sediment transport are considered. According to characteristics of the study area, unstructured grids are applied to fit the boundaries of the near-shore sea area. The results show that the calculated values are in good agreement with the measured data. The field of tidal currents, suspended sediment concentrations, and the deformation of the seabed can be successfully simulated.  相似文献   

17.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

18.
Fine sediment carrying capacity of combined wave and current flows   总被引:1,自引:0,他引:1  
The so-called fine sediment in many coastal areas and estuaries in China is mostly referred to the mixture of cohesive sediment and non-cohesive sediment. To predict the mixed type time sediment transport, sediment carrying capacity formulae combined with the 2-D suspended sediment transport equation and morphologic equation have been widely used in China. In the present study, the sediment carrying capacity formula suggested by Dou et al. (1995) for wave conditions has been improved and implemented for the prediction of sediment transport in nearshore regions where wave activities are significant. The improvement is based on the wave energy dissipation principle inside and outside the surf zone. In the improved formula, sediment in suspension increases with the magnitude of the wave period and this feature complies with general observations. More than 300 laboratory and field measured data sets have been reviewed and 12 of them have been used to verify and determine the major coefficients in the improved formula. The application of the sediment carrying capacity model in combined wave and current situations shows that the model can faithfully reproduce the cross-shore sediment concentration distributions at the southwest coast of Bohai Bay.  相似文献   

19.
The purpose of this study is to investigate the capability of a newly developed process-based model for sediment transport under a wide variety of wave and current conditions.The model is based on the first-order boundary layer equation and the sediment advection-diffusion equation.In particular,a modified low Reynolds number k-e model is coupled to provide the turbulence closure.Detailed model verifications have been performed by simulating a number of laboratory experiments,covering a considerable range of hydrodynamic conditions such as sinusoidal waves,asymmetric waves and wave-current interactions.The model provides satisfactory numerical results which agree well with the measured results,including the time-averaged/dependent sediment concentration profiles and sediment flux profiles,as well as the time series of concentration at given elevations.The observed influences of wave orbital velocity amplitude,wave period and sediment grain size are correctly reproduced,indicating that the fundamental physical mechanisms of those processes are properly represented in the model.It is revealed that the present model is capable of predicting sediment transport under a wide range of wave and current conditions,and can be used to further study the morphodynamic processes in real coastal regions.  相似文献   

20.
Most of the studies on Artificial Neural Network (ANN) models remain restricted to smaller rivers and catchments. In this paper, an attempt has been made to correlate variability of sediment loads with rainfall and runoff through the application of the Back Propagation Neural Network (BPNN) algorithm for a large tropical river. The algorithm and simulation are done through MATLAB environment. The methodology comprised of a collection of data on rainfall, water discharge, and sediment discharge for the Narmada River at various locations (along with time variables) and application to develop a threelayer BPNN model for the prediction of sediment discharges. For training and validation purposes a set of 549 data points for the monsoon (16 June-15 November) period of three consecutive years (1996–1998) was used. For testing purposes, the BPNN model was further trained using a set of 732 data points of monsoon season of four years (2006–07 to 2009–10) at nine stations. The model was tested by predicting daily sediment load for the monsoon season of the year 2010–11. To evaluate the performance of the BPNN model, errors were calculated by comparing the actual and predicted loads. The validation and testing results obtained at all these locations are tabulated and discussed. Results obtained from the model application are robust and encouraging not only for the sub-basins but also for the entire basin. These results suggest that the proposed model is capable of predicting the daily sediment load even at downstream locations, which show nonlinearity in the transportation process. Overall, the proposed model with further training might be useful in the prediction of sediment discharges for large river basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号