首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated set of different measurements has been used to study the behavior of groundwater in an observation well in a fractured rock formation, the UK Chalk, under pumped and ambient conditions. Under pumped conditions, the response of the open borehole was relatively straightforward with flow mainly concentrated along four discrete flow horizons. Furthermore, excellent correspondence was observed between the three methods of borehole flow velocity measurement: impeller flowmeter, heat-pulse flowmeter and dilution testing. Under ambient conditions, the system appeared more complicated. Specifically, in the upper half of the borehole, the impeller flowmeter exhibited substantial downward flow and the heat-pulse flowmeter exhibited almost negligible upward flow, whilst dilution testing indicated significant dilution. It was concluded that this was due to cross-flow occurring over the upper 29 m. Analysis of drawdown data, recovery data and a Drost analysis of the ambient cross-flow data yielded aquifer transmissivity estimates of 2,049, 2,928 and > 4,388 m2/day respectively. The discrepancy between the drawdown and recovery estimates was attributed to non-linear head-losses associated with turbulence and inertial effects. The difference between the pumping test and Drost results was explained by the flow during the pumping test bypassing this aforementioned 29 m region of rock.  相似文献   

2.
In fractured-rock aquifers, the geometric and hydraulic properties of the fractures commonly have a dominant influence on transport. Tracer tests are often used to estimate directly the gross transport properties of a fractured rock mass. The prospects for understanding characteristics of the heterogeneities in a fractured porous medium were explored from evidence provided by tracer experiments. The approach was to simulate flow and transport on a large set of prescribed fracture networks in a two-dimensional homogeneous permeable medium, thus generating synthetic tracer test data. The fracture orientation, aperture, spacing and network geometry were systematically altered from one case to the next. A classification scheme was devised for the tracer breakthrough curves using principal component analysis and this classification was linked to the fracture pattern properties. Even under highly simplified and controlled conditions, quite different fracture patterns can produce very similar breakthrough curves. The classification scheme thus demonstrates that a single breakthrough curve cannot reveal the fracture geometry with any precision. However, the scheme provided a methodology for rejecting geometric properties that do not belong to the fracture pattern under investigation, thus reducing the uncertainty in fracture geometry.  相似文献   

3.
4.
孙蓉琳  梁杏  靳孟贵 《岩土力学》2006,27(9):1490-1494
在金沙江溪洛渡水电站坝区玄武岩中,进行了3种水力试验,探讨玄武岩渗透性及其尺度效应。平硐渗水试验的试验尺度为1~2 m,渗透系数为10-4~101 m/d,非常离散;地下水示踪试验的尺度为70~145 m,渗透系数为10-0.5~100.5 m/d,非常集中;压水试验的试验尺度为4~7 m,渗透系数值10-2~100 m/d。试验结果显示渗透系数随着试验尺度的增加而增大,笔者认为产生尺度效应的原因在于非均质性。小尺度试验常作用在局部基质段或单条裂隙上,而大尺度试验常穿越几条大裂隙,所获得的渗透系数值要大于前者。在进行裂隙岩体地下水渗流研究时,针对不同尺度的研究对象,应选择不同尺度的野外水力试验来求取渗透系数。  相似文献   

5.
认识深部裂隙岩体中的地下水渗流特征(流速、渗流路径等),是深部地质工程开发建设的重要前提。近年来,分布式光纤测温技术作为识别深部裂隙岩体地下水渗流特征的有效方法,在国外开展了大量的研究,但在国内鲜少见在实际场地开展的相关工作。本研究以我国首个地下实验室场址甘肃北山新场花岗岩岩体中的两个钻孔(BSQ02及BSQ03)为试验对象,开展基于分布式光纤测温(Fiber-Optic Distributed Temperature Sensing,FO-DTS)的现场温度-水力试验,实现了对钻孔地下水温度的高精度、连续性观测。通过分析现场试验获取的钻孔温度-深度剖面随时间的变化,推断BSQ02在试验过程中存在外源地下水的流入,然后结合钻孔柱状图对钻孔中的入流导水裂隙进行了定位;基于现场观测数据建立了钻孔的渗流-传热耦合数值模型,反演估算出钻孔中地下水平均流速为0.01 m·s-1,通过裂隙流入地下水温度小于钻孔中原地下水温度,两者之间的温度差为0.7 ℃,通过裂隙流入的地下水流速为1×10-5 m·s-1,获取了地下水的渗流特征。该项工作可为基于分布式光纤测温技术的裂隙介质地下水渗流规律研究提供借鉴与指导。  相似文献   

6.
Mechanical and hydraulic properties of rocks related to induced seismicity   总被引:1,自引:0,他引:1  
Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23–55.The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass.In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid.However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable.  相似文献   

7.
A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.  相似文献   

8.
裂隙岩体渗透系数确定方法研究   总被引:3,自引:0,他引:3  
裂隙岩体渗透系数以及渗透主方向的确定对研究岩体渗透性大小及各向异性具有重要意义。高放废物地质处置库介质岩体的渗透性能将直接影响其使用安全性。本文运用离散裂隙网络模拟的方法对我国高放废物处置库甘肃北山预选区3#钻孔附近裂隙岩体进行了渗透性质分析。通过对3#钻孔171.5~178.0m段压水试验数据的反演,标定了离散裂隙网络渗流模型中的裂隙渗透参数(导水系数T)。利用标定的离散裂隙网络模型对场区裂隙岩体进行了渗流模拟,确定了该区域裂隙岩体的渗流表征单元体(REV)的尺寸大小以及渗透主值和主渗透方向。运用离散裂隙网络模型计算得出的渗透主值的几何均值与现场压水试验计算结果较接近,证明了计算结果的有效性。  相似文献   

9.
Deformation and fluid pressure during constant-rate pumping tests were characterized by sensitivity analyses using a theoretical model of a deformable fracture, and by conducting and analyzing field tests at a site underlain by fractured biotite gneiss in western South Carolina, USA. The sensitivity analysis indicates that displacement is a hysteretic function of fluid pressure during constant-rate pumping tests, and the signals are affected by properties of the fracture (normal stiffness, aperture, and heterogeneities in the fracture plane) and enveloping rock (elastic modulus and permeability). The field tests used a removable borehole extensometer to measure axial displacements in the pumping well. The field results are generally similar to simulations, and the hydraulic and mechanical properties obtained by inversion of the pumping test results are essentially the same as results from hydromechanical slug tests. The observed displacements early in the pumping tests are less than, whereas late in the test they are greater than predicted values assuming a uniform fracture. This difference can be explained as a consequence of preferential flow within the fracture. These results indicate that displacements in a wellbore are sensitive to details of fracture connectivity and preferential flow that are difficult to detect through the pressure signal alone.  相似文献   

10.
An attempt is made to identify and delineate the groundwater flow direction and rate in a fractured hard rock aquifer in Maheshwaram granite watershed in Andhra Pradesh using multiple tracers such as bromide, iodide and rhodamine-B under both natural and induced conditions. A main well in the center and three observation wells at 25 m in north-northwest, southeast and southwest directions respectively were constructed based on 222Rn anomalies and 4He measurements. Streaming potential survey was also carried out in the area before, during and after pumping test. The tracer tests indicated preferential groundwater flow in N-S direction. The groundwater flow velocity estimated based on arrival of tracer under natural and induced conditions are 0.52 m/d and 375 m/d respectively.  相似文献   

11.
Multi-borehole pumping and tracer tests on the 10 to 100-m scale were conducted in a fractured chalk aquitard in the Negev Desert, Israel. Outcrop and core fracture surveys, as well as slug tests in packed-off intervals, were carried out at this site to obtain the parameters needed for construction of a stochastic discrete fracture network (DFN). Calibration of stochastic DFNs directly to the multiple borehole test data was inadequate. Instead, two equivalent deterministic DFN flow models were used: the vertical-fractures (VF) model, consisting of only vertical fractures, and the fractures’ intersections (INT) model, consisting of vertical and horizontal fractures with enhanced transmissivity at their intersections. Both models were calibrated against the multi-borehole response of one pumping test and their predictions were tested against three other independent pumping tests. The average accuracies of all transient drawdown predictions of the VF and INT models were 65 and 66%, respectively. In contrast to this equality in average drawdown predictions of both models, the INT model predicted better important breakthrough curve features (e.g., first and peak arrival times), than the VF model. This result is in line with previously assumed channeled flow, derived from analytical analysis of these pumping and tracer tests. Ronit Nativ, deceased, may her memory be blessed.  相似文献   

12.
In order to protect public supply wells from a wide range of contaminants, it is imperative to understand physical flow and transport mechanisms in the aquifer system. Although flow through fractures has typically been associated with either crystalline or carbonate rocks, there is growing evidence that it can be an important component of flow in relatively permeable sandstone formations. The objective of this work is to determine the role that fractures serve in the transport of near-surface contaminants such as wastewater from leaking sewers, to public supply wells in a deep bedrock aquifer. A part of the Cambrian aquifer system in Madison, Wisconsin (USA), was studied using a combination of geophysical, geochemical, and hydraulic testing in a borehole adjacent to a public supply well. Data suggest that bedrock fractures are important transport pathways from the surface to the deep aquifer. These fractured intervals have transmissivity values several orders of magnitude higher than non-fractured intervals. With respect to rapid transport of contaminants, high transmissivity values of individual fractures make them the most likely preferential flow pathways. Results suggest that in a siliciclastic aquifer near a public supply well, fractures may have an important role in the transport of sewer-derived wastewater contaminants.  相似文献   

13.
Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21?m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.  相似文献   

14.
As part of the Swedish site investigations and research associated with the disposal of spent nuclear fuel, tracer experiments in deep boreholes have been employed in order to characterize solute transport and hydraulic connectivity in the fractured bedrock at two sites??Forsmark and Laxemar-Simpevarp. Performance and analytical results are presented from a suite of tracer experiments in varying scales, from single-hole injection-withdrawal tests, intermediate-scale tests with sorbing tracers, to large-scale connectivity tests over distances up to several hundred meters in major fracture zones or networks of zones. In addition to demonstrating transport connectivity over large distances, a general result is that the single-hole tests, as well as the cross-hole tests with sorbing tracers, have clearly demonstrated the process of solute retention of water-conductive features in the rock at different scales.  相似文献   

15.
Visualization of the El Berrocal granite: application to rock engineering   总被引:6,自引:0,他引:6  
This paper outlines the visualization of the El Berrocal granite using a computer-based geological modelling system, EarthVision, and discusses the application of this visualization to engineering aspects of waste disposal in crystalline rocks. The El Berrocal Project was an international study with the aim of understanding and modelling the migration processes which have controlled the distribution of naturally occurring radionuclides in a fractured granitic environment. EarthVision was used to provide three-dimensional geological models of the site structure and properties. Modelling of the site structure concentrated on the development of visualizations of the main discontinuities in the granite. These included a model of the main mineralized structures, a model of the regional fracture network, models of local fracture networks between borehole clusters and a visualization of the mineralogy of the fractures in individual boreholes. These fracture models were visualized with the boreholes and access gallery to the mine. In addition, the fracture network in the region of a large scale tracer test was visualized with the injection and extraction zones for the tracer test. Three-dimensional interpolations of the rock and fluid structure were undertaken. A model of the hydraulic conductivity illustrated large-scale variations in hydraulic conductivity and channelling effects in the tracer test zone. A model of the sulphate concentrations in the groundwater illustrated the interpolation of spatial data based on structural domains. The visualizations of the geology of the El Berrocal granite illustrate that, despite limitations, geological modelling can be a powerful and graphic tool in rock engineering. The use of computer visualizations can be provide the three-dimensional structural framework for computations, can aid decision making during the construction phase of waste repositories and can be useful in understanding and analysing the results of numerical calculations.  相似文献   

16.
Double Porosity Finite Element Method for Borehole Modeling   总被引:2,自引:0,他引:2  
Summary. This paper considers the mechanical and hydraulic response around an arbitrary oriented borehole drilled in a naturally fractured formation. The formation is treated as a double porosity medium consisting of the primary rock matrix as well as the fractured systems, which are each distinctly different in porosity and permeability. The poro-mechanical formulations that couple matrix and fracture deformations as well as fluid flow aspects are presented. A double porosity and double permeability finite element solution for any directional borehole drilled in the fractured porous medium is given. Compared with conventional single-porosity analyses, the proposed double-porosity solution has a larger pore pressure in the matrix and a smaller tensile stress in the near-wellbore region. The effects of time, fracture, mud weight, and borehole inclination in the double-porosity solution are parametrically studied to develop a better understanding of physical characteristics governing borehole problems.  相似文献   

17.

Borehole geophysical logging of four production wells completed in Precambrian metagranite in Fauquier County, Virginia (USA), was conducted to characterize stratigraphy, collect water-bearing fracture orientations and describe vertical hydraulic gradients in the vicinity of each borehole. Long-term (48–90 h) single-well pump test data were reevaluated for each well to better characterize this locally important aquifer system. Single-well aquifer test analyses indicate mid-to-late-time infinite acting radial flow conditions within the fractured rock aquifer, followed by increasing late-time contribution of stored groundwater from recharge boundaries. Later-time pump test results are believed to indicate that water-bearing fractures within the metagranite are ultimately recharged by groundwater stored within the regolith. Assumptions about the presence of a recharge boundary sourced by the regolith were tested with a simple groundwater flow model that was calibrated to observed drawdown data associated with one of the long-term pump tests. This study identifies fracturing associated with shear-related metamorphic fabrics in the wellbore and demonstrates the significance of these fractures as mechanisms for accessing groundwater. Results from this investigation indicate that shear-related metamorphic fabrics can be important structures for integrating transmissive fracture networks within the Marshall Metagranite and possibly within other Blue Ridge basement rocks possessing similar metamorphic history.

  相似文献   

18.
Feasibility of storing LNG in a lined rock cavern was evaluated using a pilot cryogenic rock cavern constructed in Daejeon, Korea. The pilot program included hydrogeological and engineering characterization of the rock mass around the cavern, design and construction of a drainage system, and pilot operation of the cryogenic cavern. An appropriate drainage system is most important to protect the containment system of LNG from thermal shocks due to ice lenses and hydrostatic pressure of groundwater. As a part of the pilot program, this study focused on the evaluation of hydraulic and engineering properties of the rock mass around the cavern. For this purpose, engineering logging of the rock cores, single and cross-hole hydraulic tests, and recharge/drainage tests were performed using seven drilled holes with different trends and plunges. Three main joint sets were found from the logging of the rock cores, acoustic borehole televiewer, and window mapping. The orientations of the three major joint sets were 60/209, 40/171, and 29/331, which can provide the main groundwater flow paths. Mean RQD values ranged from 56 to 88, which were classified as fair and good, although varying with depth along single boreholes. Hydraulic conductivity from the single and cross-hole hydraulic tests estimated in the order of 10−6 or 107 m/s and corresponding transmissivity ranged between 105 and 106 m2/s. Permeable intervals identified from the hydraulic tests were mostly located above the cavern roof. Below the roof, the permeable zone was difficult to observe. According to the hydraulic communication tests performed for some designated intervals, hydraulic connection between boreholes was highly varied with depth or location, which indicated a very different distribution of water conducting joint sets along the boreholes. When water was injected at R1 with constant or varying flow rates, monotonous and stable seepage was observed at observation boreholes. From this, some stable drainage was expected even in relatively heavy rainfalls. When designing the drainage system of the cavern, the drainage holes should be orientated to maximize frequency of encountering the major joint sets and the permeable intervals identified from this study.  相似文献   

19.
Groundwater movement and availability in crystalline and metamorphosed rocks is dominated by the secondary porosity generated through fracturing. The distributions of fractures and fracture zones determine permeable pathways and the productivity of these rocks. Controls on how these distributions vary with depth in the shallow subsurface (<300 m) and their resulting influence on groundwater flow is not well understood. The results of a subsurface study in the Nashoba and Avalon terranes of eastern Massachusetts (USA), which is a region experiencing expanded use of the fractured bedrock as a potable-supply aquifer, are presented. The study logged the distribution of fractures in 17 boreholes, identified flowing fractures, and hydraulically characterized the rock mass intersecting the boreholes. Of all fractures encountered, 2.5% are hydraulically active. Boreholes show decreasing fracture frequency up to 300 m depth, with hydraulically active fractures showing a similar trend; this restricts topographically driven flow. Borehole temperature profiles corroborate this, with minimal hydrologically altered flow observed in the profiles below 100 m. Results from this study suggest that active flow systems in these geologic settings are shallow and that fracture permeability outside of the influence of large-scale structures will follow a decreasing trend with depth.  相似文献   

20.
The combined use of pumping and tracer test data enabled the derivation of equivalent average hydraulic conductivities (Kavg) for each test in a heterogeneous channelized alluvial aquifer, whereas K values of the preferential flow paths were two orders of magnitude higher. Greater and earlier drawdown was generally observed along preferential flow lines in a pumping test, within an array of 21 wells. The study aim was to characterize hydraulic properties of a channelized aquifer system in New Zealand by combining tracer and pumping test data. Estimates were able to be made of the percentage of highly permeable channels within the profile (~1.2%), effective porosity that reflected the maximum fraction of highly permeable channels within the aquifer (?eff–pc ~0.0038), and flows through highly permeable channels (~98%) and the sandy gravel matrix material (~2%). Using ?eff–pc, a tracer test Kavg value (~93 m/day) was estimated that was equivalent to pumping test values (~100 m/day), but two orders of magnitude smaller than K calculated solely from transport through permeable channels (Kpc ~8,400 m/day). Derived K values of permeable and matrix material were similar to values derived from grain size distribution using the Kozeny-Carman equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号