首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Endo  Takahiro  Iizuka  Tomoki  Koga  Hitomi  Hamada  Nahoko 《Hydrogeology Journal》2023,31(5):1147-1163

Concern has grown regarding how public and private sectors should make effective use of local groundwater to alleviate negative impacts of water-supply cutoff following an earthquake event, which can be regarded as an emergency groundwater governance problem. Existing literature on groundwater governance, however, is based on the tacit assumption of groundwater utilization under normal social conditions, and scant consideration has been given to the role of groundwater following occurrence of a natural disaster. This study conducted questionnaire surveys to reveal how groundwater was used in three cities (Kumamoto, Sapporo, and Sendai) in Japan struck by large earthquakes between 2010 and 2020. Results revealed substantial differences between these cities in terms of groundwater utilization following earthquake occurrence. The time between the restoration of the electricity supply and restoration of the waterworks, and the social capital accumulated by local governments, are indicated as possible reasons for such differences. Analysis also identified policy challenges for improved groundwater governance in an emergency: (1) establishment of a strategy for emergency water supply through combined use of groundwater and other water sources, (2) enhancement of methods for timely inspection of groundwater quality following occurrence of a disaster, (3) maintenance of records of the number of registered disaster emergency wells (DEWs), (4) creation of methods for publicizing locational information on DEWs with adequate regard for the privacy of well owners, and (5) recognition of the importance of making DEWs part of overall disaster preparedness.

  相似文献   

2.
Koyna-Warna region of western India is an active seismic zone due to the Reservoir Triggered Seismicity (RTS). Earthquake precursor studies are carried out monitoring hydrochemical and stable isotope signatures in the groundwater from 15 bore wells since January 2005, for more than 12 years (January 2005 to February 2017). Depth of these boreholes ranges from 100 to 250 m. Cyclic or temporal variation in hydrochemistry is observed in few sensitive wells in Koyna region. The Govare well in Koyna is found to be most sensitive and the observed hydrochemical cycle is closely associated with local earthquakes of M > 5. The earthquakes M <5 occurring either in Warna cluster or close to the observation wells, did not generate hydrochemical precursory changes. The increase in hydrochemistry is hypothesized as mixing of two aquifer waters with different hydrochemistry. It is noted that a precursory hydrochemical cycle is observed during first quarter of 2015, but no earthquake M > 5.0 occurred till date. The cyclic changes in hydrochemistry, however, indicate on-going earthquake processes and an impending earthquake of M > 5 in the region.  相似文献   

3.
Hydrological and geochemical studies for earthquake prediction in Japan during the last two decades are reviewed. Following the 1995 Hyogo-ken Nanbu (Kobe) earthquake, the central approach to research on earthquake prediction was modified. Instead of precursory detection, emphasis was placed on understanding the entire earthquake cycle. Moreover, the prediction program for the anticipated Tokai earthquake was revised in 2003 to include the detection of preslip-related precursors. These changes included the promotion of the following hydrological and geochemical studies for earthquake prediction: (1) development and/or application of statistical methods to extract small fluctuations from hydrological/geochemical data, (2) evaluation of the detectability of preslip-related anomalies in terms of groundwater levels in wells in the Tokai region, and (3) establishment of a new groundwater and borehole strain observation network for Nankai and Tonankai earthquake prediction research. The following basic geochemical studies were carried out: (1) development of a new monitoring system using a quadrupole mass spectrometer, (2) experimental studies on hydrogen generation by the grinding of rock and crystal powders, (3) comprehensive monitoring of groundwater gas and precise crustal deformation, and (4) mantle-derivative helium observation to compare with seismic velocity structures and the distribution of non-volcanic tremors. Moreover, hydrological and geochemical investigations related to the evolution of fault zones were introduced within the framework of fault zone drilling projects.  相似文献   

4.
Lee  Soo-Hyoung  Lee  Jae Min  Moon  Sang-Ho  Ha  Kyoochul  Kim  Yongcheol  Jeong  Dan Bi  Kim  Yongje 《Hydrogeology Journal》2021,29(4):1679-1689

Hydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.

  相似文献   

5.
During the 2011 Great East Japan Earthquake, severe liquefaction occurred in reclaimed ground in Urayasu city, Chiba prefecture. This liquefaction provided important lessons for us to re-recognize the liquefaction mechanism. A distinct feature of the liquefaction in this earthquake is that severe liquefaction happened not only in the main shock but also in an aftershock with a maximum acceleration of 25 gal. In some areas, liquefaction happened in the aftershock is even more serious than that happened in the main shock. In this paper, focus is placed on the characteristic features in the occurrence of liquefaction and consequent ground settlement. Based on the observed data, a series of dynamic–static analyses, considering not only the earthquake loading but also static loading during the consolidation after the earthquake shocks, are conducted in a sequential way just the same as the scenario in the earthquake. The calculation is conducted with 3D soil–water coupling finite element–finite difference analyses based on a cyclic elasto-plastic constitutive model. From the results of analyses, it is recognized that small sequential earthquakes, which cannot cause liquefaction of a ground in an independent earthquake vibration, cannot be neglected when the ground has already experienced liquefaction after a major vibration. In addition, the aftershock has great influence on the long-term settlement of low permeability soil layer. The observed and predicted liquefaction and settlements are compared and discussed carefully. It is confirmed that the numerical method used in this study can describe the ground behavior correctly under repeated earthquake shocks.  相似文献   

6.
地震常引起分布于断层两盘观测井的水位同震响应动态变化特征不同。而研究断裂两盘观测井同震响应能力、水位变化特征的差异性及其控制因素,有助于揭示断裂带的渗透性演化过程、可深化地下水位对地震响应机理的认识,对于指导地震观测井网布局具有重要意义。本文尝试从北京八宝山断裂带中段(大灰厂)上下两盘井的水位同震响应次数、形态、幅度、记震能力等方面进行对比分析,通过去除趋势项,采用数字滤波求取井孔气压系数,采用Baytap-G程序求取潮汐参数,并反演出7次大地震对大灰厂区两口井所在含水层产生的体应变量,进而判别两盘震前震后渗透性的变化。结果显示,两口井同震响应特征具有明显差异,上盘井对大震的同震响应次数较多、能力较强;这不仅与断裂带起屏蔽作用有关,而且与井所处含水层渗透性呈不同规律变化密切相关。  相似文献   

7.
It is shown that temporal variation in hydrochemistry may be attributed, in part, to continuous seismotectonic activity occurring before the onset of the 1995 “Kobe” earthquake, Japan, challenging the “one earthquake–one signal” hypothesis with respect to potential precursory signals to this devastating event. A possible continuous seismotectonic influence on chloride and sulphate ion-concentration is evaluated with aggregate earthquake-information by transforming a multivariate earthquake time series (including coordinates and magnitude) into a one-dimensional time series (considering geometric relationships between earthquakes and the well-site). A piecewise analysis of ion-concentration and seismotectonic-activity time series compares trends and change points between the two time series: a positive correlation (before the proposed onset of the preparation stage) is followed by a negative correlation (during the proposed preparation stage) which, in turn, is succeeded by a positive correlation (after the heaviest aftershock sequences). This suggests that seismotectonic processes occurring before the Kobe earthquake dynamically influenced aquifer characteristics, leading to temporal variations in the hydrochemical time series. Accordingly, a dynamic change in the mixing ratios of waters with different hydrochemical characteristics is proposed as a mechanism for explaining observed variation. The research can be extended by considering vectors in the stress field that lead to changes in the aquifer-well system.The influence of seismotectonics on precursory changes in groundwater composition for the 1995 Kobe earthquake, Japan.  相似文献   

8.
Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large-size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells.  相似文献   

9.
Using Bayesian networks in analyzing powerful earthquake disaster chains   总被引:2,自引:2,他引:0  
Substantial economic losses, building damage, and loss of life have been caused by secondary disasters that result from strong earthquakes. Earthquake disaster chains occur when secondary disasters take place in sequence. In this paper, we summarize 23 common earthquake disaster chains, whose structures include the serial, parallel, and parallel–serial (dendroid disaster chain) types. Evaluating the probability of powerful earthquake disaster chains is urgently needed for effective disaster prediction and emergency management. To this end, we introduce Bayesian networks (BNs) to assess powerful earthquake disaster chains. The structural graph of a powerful earthquake disaster chain is presented, and the proposed BN modeling method is provided and discussed. BN model of the earthquake–landslides–barrier lakes–floods disaster chain is established. The use of BN shows that such a model enables the effective analysis of earthquake disaster chains. Probability inference reveals that population density, loose debris volume, flooded areas, and landslide dam stability are the most critical links that lead to loss of life in earthquake disaster chains.  相似文献   

10.
The EEPAS (“Every Earthquake a Precursor According to Scale”) model is a space–time point-process model based on the precursory scale increase (Ψ) phenomenon and associated predictive scaling relations. It has previously been fitted to the New Zealand earthquake catalogue, and applied successfully in quasi-prospective tests on the CNSS catalogue for California for forecasting earthquakes with magnitudes above 5.75 and on the JMA catalogue of Japan for magnitudes above 6.75. Here we test whether the Ψ scaling relations extend to lower magnitudes, by applying EEPAS to depth-restricted subsets of the NIED catalogue of the Kanto area, central Japan, for magnitudes above 4.75. As in previous studies, the EEPAS model is found to be more informative than a quasi-static baseline model based on proximity to past earthquakes, and much more informative than the stationary uniform Poisson model. The information that it provides is illustrated by maps of the earthquake occurrence rate density, covering magnitudes from 5.0 to 8.0, for the central Japan region as at the beginning of year 2004, using the NIED and JMA catalogues to mid-2003.  相似文献   

11.
Coseismic changes in groundwater levels have been investigated throughout the world, but most studies have focused on the effects of one large earthquake. The aim of this study was to elucidate the spatial patterns of level changes in response to several earthquakes, and the relationship of the patterns to shallow and deep groundwater in the same area. We selected the Kumamoto City area in southwest Japan, a region with one of the richest groundwater resources in Japan, as our study site. Data from hourly measurements of groundwater levels in 54 wells were used to characterize the coseismic responses to four earthquakes that occurred in 2000, 2001, 2005, and 2008. Although the distance to the hypocenter (12–2573 km), and seismic energy (Mw = 5.0–8.0) of these earthquakes varied, systematic groundwater level changes were observed in the range of 0.01–0.67 m. Spatial patters of the level changes were clarified by interpolating the point data by a spline method. The zones where coseismic rises were observed were generally wider for deep groundwater than for shallow groundwater, probably as a result of an increase in compressive stress. General trends in the changes in groundwater levels, and calculated pressure changes, were clarified to be consistent in the deep groundwater, but the coseismic increases or decreases in compressive stress in the shallow groundwater were variable, depending on the distance to the earthquake epicenter. We developed a conceptual model of the mechanism underlying this phenomenon by assuming permeability enhancement induced by elastic strain and pore-pressure change over the depth range. In addition, the importance of local geology was identified, because levels in the area of Togawa lava (a porous andesite) tended to change more in magnitude, and more quickly, with a shorter recovery time, than levels measured in the area outside the lava.  相似文献   

12.
本文通过对地震应急的特征、国内外震例的分析 ,结合莆田市破坏性地震应急预案和莆田市地震局震情应急工作方案条文 ,对政府和各部门的地震应急预案衔接等问题提出具体方法 ,以提高地震应急工作的效率和能力 ,最大限度地减轻地震灾害造成的损失。  相似文献   

13.
地震是典型的突发性地质灾害,破坏性极大.本文首先对1996~2005年这10年间的大陆地震发生情况以及地震灾害情况进行了统计分析,列举了直接经济损失超过1亿元的重大地震灾害,指出大陆防震减灾要有地域特点;然后提出了一些防震减灾建议,如注意防范地震引发的次生灾害,加强建筑抗震设计和加固,推广使用现代信息技术,积极开展防震减灾能力评价,通过合理的城市规划和土地利用规划来减轻地震灾害.  相似文献   

14.
P. Shebalin   《Tectonophysics》2006,424(3-4):335
“Earthquake chains” are clusters of moderate-size earthquakes which extend over large distances and are formed by statistically rare pairs of events that are close in space and time (“neighbors”). Earthquake chains are supposed to be precursors of large earthquakes with lead times of a few months. Here we substantiate this hypothesis by mass testing it using a random earthquake catalog. Also, we study stability under variation of parameters and some properties of the chains. We found two invariant parameters: they characterize the spatial and energy scales of earthquake correlation. Both parameters of the chains show good correlation with the magnitudes of the earthquakes they precede. Earthquake chains are known as the first stage of the earthquake prediction algorithm reverse tracing of precursors (RTP) now tested in forward prediction. A discussion of the complete RTP algorithm is outside the scope of this paper, but the results presented here are important to substantiate the RTP approach.  相似文献   

15.
Based on the tectonic framework of central Japan, including the surrounding submarine areas, the space-time relationship between destructive inland earthquakes of magnitudesM 6.4 or greater and great offshore earthquakes along the Nankai trough was examined. From east to west, four tectonic lines are defined as lines linking active faults: the Itoigawa-Shizuoka tectonic line (ISTL), the Tsurugawan-Isewan tectonic line (TITL), the Hanaore-Kongo fault line (HKFL), and the Arima-Takatsuki tectonic line (ATTL). The TITL divides central Japan into the Chubu and Kinki districts, and probably extends southward to the Nankai trough. The Chubu district is subdivided into four blocks by boundary lines linking NW-SE trending active faults having left-lateral strike slip. In the Kinki district, N-S trending, active reverse, steep-dip faults are dominant in the triangular region north of the Median Tectonic line, between the TITL and HKFL, forming a basin-and-range province.

Starting from 1586 A.D., a seismic space-time sequence of high seismic activity in the Chubu district in which earthquake occurrence migrates from the eastern to western tectonic lines of central Japan was identified. The sequence also revealed that inland earthquakes preceded great offshore earthquakes which occurred along the Nankai trough. It was also found that a destructive earthquake tends to occur on the HKFL within 30 years after the occurrence on the TITL, and that the western Nankai trough generated great earthquakes ofM≥7.0 at intervals ranging from 8 to 49 years after the HKFL earthquakes. If the eastern Nankai trough is coupled with the western Nankai trough, a forthcoming greater earthquake measuringM 8.5 may be expected. Since such great earthquakes are always accompanied by large tsunamis, much attention should be focussed on possible tsunami disasters along the Pacific coast of central Japan.

Based on its tectonic structure, a tectonic model of central Japan is proposed. The seismic space-time sequence, which attempts to explain the cause of the sequential earthquake generation, is also discussed.  相似文献   


16.
This study analyzed the rupture directivity of the 2011 Tohoku earthquake by using 100-s Rayleigh-wave travel-times, influenced by the finite source, to derive the fault parameters of the earthquake. The results demonstrated that the earthquake exhibited a slow rupture propagation with a rupture velocity of approximately 1.5–2.0 km/s and asymmetric bilateral faulting. The two rupture directions were N60°E and N127°E, with rupture lengths of approximately 276 km and 231 km, respectively. The rupture toward N60°E had a source duration of approximately 183 s, longer than that toward N127°E (approximately 156 s). Overall, the entire source duration of the earthquake faulting lasted approximately 183 s. Regarding historical seismicity in eastern Japan, the 2011 Tohoku earthquake not only ruptured a locked area in which large earthquakes have rarely occurred, but also ruptured the source regions of several historical earthquakes. With the exception of its slow rupture velocity and generation of a tsunami, the rupture features of the 2011 Tohoku earthquake were inconsistent with those of typical tsunami earthquakes.  相似文献   

17.
The Mw 9.0 Tohoku-Oki earthquake that occurred off the Pacific coast of Japan on March 11, 2011, was followed by thousands of aftershocks, both near the plate interface and in the crust of inland eastern Japan. In this paper, we report on two large, shallow crustal earthquakes that occurred near the Ibaraki-Fukushima prefecture border, where the background seismicity was low prior to the 2011 Tohoku-Oki earthquake. Using densely spaced geodetic observations (GPS and InSAR datasets), we found that two large aftershocks in the Iwaki and Kita-Ibarake regions (hereafter referred to as the Iwaki earthquake and the Kita-Ibarake earthquake) produced 2.1 m and 0.44 m of motion in the line-of-sight (LOS), respectively. The azimuth-offset method was used to obtain the preliminary location of the fault traces. The InSAR-based maximum offset and trace of the faults that produced the Iwaki earthquake are consistent with field observations. The fault location and geometry of these two earthquakes are constrained by a rectangular dislocation model in a multilayered elastic half-space, which indicates that the maximum slips for the two earthquakes are 3.28 m and 0.98 m, respectively. The Coulomb stress changes were calculated for the faults following the 2011 Mw 9.0 Tohoku-Oki earthquake based on the modeled slip along the fault planes. The resulting Coulomb stress changes indicate that the stresses on the faults increased by up to 1.1 MPa and 0.7 MPa in the Iwaki and Kita-Ibarake regions, respectively, suggesting that the Tohoku-Oki earthquake triggered the two aftershocks, supporting the results of seismic tomography.  相似文献   

18.
China Metropolitan area around Beijing is one of the earthquake test sites in Continental China. Through more than 20 years of hard work, abundant seismic, geological, geophysical and geochemical data have been obtained, and the variation of seismic, geophysical and geochemical parameters was recorded before several strong earthquakes and some moderate earthquakes in this area. In this paper, we chose 19 high qualified observatory parameters in this area to establish a multidisciplinary system for earthquake forecast, including apparent resistivity, ground water level, ground-level, tilt, radon content in groundwater, volumetric strain, Hg content in groundwater, low frequency electric signal. We calculate the synthetic information by a simple algorithm. The procedure is: firstly, we detect the abnormal intervals of the observatory data by some data analysis methods such as filtering, differencing, etc.; secondly, we endow the value of 1 to the abnormal intervals and 0 to other intervals and produce a new time series of data set of the ith parameter; thirdly, we compose the value of the new time series of 19 observatory parameters and obtain the normalized value as called synthetic information. The result shows that there are high correlations between the high synthetic information and the earthquakes with M ≥ 5.0 in this area. The earthquakes almost occurred several days to several months after the peak value of the synthetic information. This synthetic method might be taken for a short-term prediction method for M ≥ 5.0 earthquakes in this area.  相似文献   

19.
M. Murru  R. Console  G. Falcone   《Tectonophysics》2009,470(3-4):214-223
We have applied an earthquake clustering epidemic model to real time data at the Italian Earthquake Data Center operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for short-term forecasting of moderate and large earthquakes in Italy. In this epidemic-type model every earthquake is regarded, at the same time, as being triggered by previous events and triggering following earthquakes. The model uses earthquake data only, with no explicit use of tectonic, geologic, or geodetic information. The forecasts are displayed as time-dependent maps showing both the expected rate density of Ml ≥ 4.0 earthquakes and the probability of ground shaking exceeding Modified Mercalli Intensity VI (PGA ≥ 0.01 g) in an area of 100 × 100 km2 around the zone of maximum expected rate density in the following 24 h. For testing purposes, the overall probability of occurrence of an Ml ≥ 4.5 earthquake in the same area of 100 × 100 km2 is also estimated. The whole procedure is tested in real time, for internal use only, at the INGV Earthquake Data Center.Forecast verification procedures have been carried out in forward-retrospective way on the 2006–2007 INGV data set, making use of statistical tools as the Relative Operating Characteristics (ROC) diagrams. These procedures show that the clustering epidemic model performs up to several hundred times better than a simple random forecasting hypothesis. The seismic hazard modeling approach so developed, after a suitable period of testing and refinement, is expected to provide a useful contribution to real time earthquake hazard assessment, even with a possible practical application for decision making and public information.  相似文献   

20.
Use of tsunami waveforms for earthquake source study   总被引:1,自引:0,他引:1  
Tsunami waveforms recorded on tide gauges, like seismic waves recorded on seismograms, can be used to study earthquake source processes. The tsunami propagation can be accurately evaluated, since bathymetry is much better known than seismic velocity structure in the Earth. Using waveform inversion techniques, we can estimate the spatial distribution of coseismic slip on the fault plane from tsunami waveforms. This method has been applied to several earthquakes around Japan. Two recent earthquakes, the 1968 Tokachi-oki and 1983 Japan Sea earthquakes, are examined for calibration purposes. Both events show nonuniform slip distributions very similar to those obtained from seismic wave analyses. The use of tsunami waveforms is more useful for the study of unusual or old earthquakes. The 1984 Torishima earthquake caused unusually large tsunamis for its earthquake size. Waveform modeling of this event shows that part of the abnormal size of this tsunami is due to the propagation effect along the shallow ridge system. For old earthquakes, many tide gauge records exist with quality comparable to modern records, while there are only a few good quality seismic records. The 1944 Tonankai and 1946 Nankaido earthquakes are examined as examples of old events, and slip distributions are obtained. Such estimates are possible only using tsunami records. Since tide-gauge records are available as far back as the 1850s, use of them will provide unique and important information on long-term global seismicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号