首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for estimating the spottedness parameter S (the spotted area as a fraction of the surface of an active star) proposed earlier is applied to an analysis of activity in 1570 M dwarf stars. The analysis is based on observational material obtained with the Kepler Space Telescope, as well as data on the fluxes of the studied objects in the near and far ultraviolet (NUV and FUV) based on data from the GALEX space telescope. The variations of S with the ages of the stars are studied (four groups with different ages are distinguished), as well as variations of S with their rotational periods. A diagram characterizing the relationship between S and the Rossby number Ro resembles the classical dependence of the X-ray luminosities of active stars on Ro, and a saturation regime is attained at the same value, Ro = 0.13. Moreover, objects with ages of more than 100 million years do not form a single sequence (and stars older than 900 million years possess surface spottednesses of order 1%). The S?Ro dependence obtained could expand possibilities for analyzing the dependence of the X-ray luminosities of active stars on their Rossby numbers, and could also be applied to refine parameters characterizing the action of dynamo mechanisms, such as the dynamo number N D . A comparison of the GALEX NUV and FUV brightness estimates with the activity parameters of the stars suggests that younger, more rapidly rotating active stars are brighter in the NUV, and that the FUV flux grows and the difference of the FUV and NUV brightnesses decreases with increasing spottedness S.  相似文献   

2.
A statistical survey of 113 spotted red dwarf stars that are known or suspected BY Draconis variables is presented. Typical indicators of stellar photometric activity—the amplitudes of the rotational modulation and seasonal mean brightness variations ΔV and Δ〈V〉—are compared to the global parameters of the stars. First, photometric variability shows a weak dependence on spectral type; second, ΔV and Δ〈V〉 grow with increasing stellar rotational velocity and decreasing Rossby number, with the dependences saturating at the critical values V crit~15–20 km/s and Rocrit~0.2–0.3; and third, the Sun as a star fits well into the derived relations. Thus, the spottedness of stars, like other indicators of stellar activity, depends on their global parameters.  相似文献   

3.
The results of a spottedness study for twelve red dwarf stars covering several decades and based on a vast amount of photometric observations are presented. The analysis makes use of multicolor (UBV RI) photometric monitoring of ten of these stars since 1991 at the Crimean Astrophysical Observatory, as well as data from the literature. The spottedness parameters for selected active BY Dra red dwarfs have been refined using an improved zonal model for the spotted stellar atmospheres to allow for the possible presence of two active longitudes on the stars. Time variations in the spot activity of these systems are analyzed in order to look for possible cycles. Three of the stars show a drift of their spots in the latitude towards the stellar poles; however, the magnitude of this latitude drift is a factor of two to three lower than the analogous value for sunspots. All the stars except for YZ CMi display relationships between the area of the spots and their latitude, with correlation coefficients R from 0.67 to 0.97. Evidence for the presence of activity cycles with durations from 25 to 40 years is found for six stars, which are characterized by synchronous variations in the areas and latitudes of their spots, as well as of the overall photometric brightness.  相似文献   

4.
The coronal and chromospheric emission of several hundred late-type stars whose activity was recently detected are analyzed. This confirms the previous conclusion for stars of HK project that there exist three groups of objects: active red M dwarfs, G-K stars with cyclic activity, and stars exhibiting high but irregular activity. The X-ray fluxes, EUV-spectra, and X-ray cycles can be used to study the main property of stellar coronas—the gradual increase in the number of high-temperature (T ≥ 10 MK) regions in the transition from the Sun to cyclically active K dwarfs and more rapidly rotating F and G stars with irregular activity. The level of X-ray emission is closely related to the spottedness of the stellar surface. The correlation between the chromospheric and coronal emission is weak when the cycles are well-defined, but becomes strong when the activity is less regular. Unexpectedly, stars whose chromospheric activity is even lower than that of the Sun are fairly numerous. Common and particular features of solar activity among the activity of other cyclically active stars are discussed. Our analysis suggests a new view of the problem of heating stellar coronas: the coronas of stars with pronounced cycles are probably heated by quasistationary processes in loops, while prolonged nonstationary coronal events are responsible for heating the coronas of F and G stars with high but irregular activity.  相似文献   

5.
We analyze the X-ray emission and chromospheric activity of late-type F, G, and K stars studied in the framework of the HK project. More powerful coronas are possessed by stars displaying irregular variations of their chromospheric emission, while stars with cyclic activity are characterized by comparatively modest X-ray luminosities and ratios of the X-ray to bolometric luminosity L X/L bol. This indicates that the nature of processes associated with magnetic-field amplification in the convective envelope changes appreciably in the transition from small to large dynamo numbers, directly affecting the character of the (α-Ω) dynamo. Due to the strong dependence of both the dynamo number and the Rossby number on the speed of axial rotation, earlier correlations found between various activity parameters and the Rossby number are consistent with our conclusions. Our analysis makes it possible to draw the first firm conclusions about the place of solar activity among analogous processes developing in active late-type stars.  相似文献   

6.
We have determined activity cycles for coolest M dwarfs using photometry from the ASAS survey. The time scales of brightness variations were determined for the program stars using calculated amplitude power spectra and wavelet spectra. Most of ther program stars display periodicities in their light-curve variations, with periods from hundreds of days to years. Analysis of diagrams plotting P cyc/P rot versus 1/P rot in logarithmic coordinates shows that the data for all our program objects fit the general relation quite well. No differences in the activity cycles are found for our sample stars, which have different masses and thus internal structures, some having convective envelopes and others being totally convective. Our analysis indicates that the slope i of this relation is close to unity, regardless of whether it is determined from all data, from data for the shortest cycles, or from data for the longest cycles. This value of i differs from values in the literature for stars of other spectral types. Our analysis of the P cyc-P rot relation indicates that the activity cycles for the studied sample of M dwarfs do not depend on the rotation periods of these objects. The data for the studied objects do not agree with any of the relations for relatively young (active) stars or older (less active) stars. The studied M dwarfs probably form another branch of low-mass stars that display more random, irregular magnetic activity on their surfaces, which is generated and supported by the distributed dynamo mechanism or a small-scale dynamo mechanism.  相似文献   

7.
The bolometric flux deficits of the photospheres of spotted stars are derived for the first time in the framework of zonal spottedness models for red dwarfs computed at the Crimean Astrophysical Observatory. The resulting flux deficits are compared to the estimated radiative losses from the chromospheres and coronas measured during quasi-simultaneous observations. A linear correlation is found between the logarithms of these quantities, with the Sun fitting these relations. Radiative losses from the outer stellar atmospheres in quiescence and during individual sporadic flares are significantly lower than the bolometric deficits of the spotted photospheres of active stars. This suggests that the flux deficit due to spots leads to global reconstruction of the atmospheres of red dwarfs, analogous to the local atmospheric reconstruction that occurs during solar and stellar flares. This process may be realized via the superposition of a large number of weak impulsive flares and other dynamic events, which develop on these stars and heat their coronas (i.e., in this view, microflaring is favored as the principal coronal heating mechanism for these stars). A brief analysis of the long-term variations in the chromospheric and photospheric radiation of F-K stars from the HK project and of the Sun suggests that such dynamical reconstruction of the outer atmosphere by energy associated with the flux deficit of the spotted photosphere occurs at times of increased surface activity in all F-M stars.  相似文献   

8.
We analyze models for quasi-stationary, ultraluminous X-ray sources (ULXs) with luminosities 1038–1040 erg/s exceeding the Eddington limit for a ~1.4M neutron star. With the exception of relatively rare stationary ULXs that are associated with supernova remnants or background quasars, most ULXs are close binary systems containing a massive stellar black hole (BH) that accretes matter donated by a stellar companion. To explain the observed luminosities of ~1040 erg/s, the mass of the BH must be ~40M if the accreted matter is helium and ~60M if the accreted matter has the solar chemical composition. We consider donors in the form of main-sequence stars, red giants, red supergiants, degenerate helium dwarfs, heavy disks that are the remnants of disrupted degenerate dwarfs, helium nondegenerate stars, and Wolf-Rayet stars. The most common ULXs in galaxies with active star formation are BHs with Roche-lobe-filling main-sequence companions with masses ~7M or close Wolf-Rayet companions, which support the required mass-exchange rate via their strong stellar winds. The most probable candidate ULXs in old galaxies are BHs surrounded by massive disks and close binaries containing a BH and degenerate helium-dwarf, red-giant, or red-supergiant donor.  相似文献   

9.
The spottedness of two stars characterized by significant photometric variability is studied using published data: the recently discovered variable ASAS 063656-0521.0, whose V variability reaches 0.8 m , and XXTri (HD12545), which is among the most active RSCVn stars (in 1997–1998, the amplitude of its V variability was 0.63 m ). The spots cover up to 44% of the total visible surface S of ASAS 063656-0521.0. The mean estimated spottedness of XX Tri was 32%, and varied from29% to 36%. An analysis of the dependence of the spottedness on the properties of spotted stars, primarily their effective temperatures, is also presented. A modification of a simplifiedmethod for estimating the spottedness S, i.e., the fractional surface area of the spots, is applied to a sample of 48 late-type stars. The dependences of the spottedness on the effective temperature of the stars and the rotational velocity projected onto the line of sight are derived. Two groups of objects can be distinguished. The first contains stars displaying the typical dependence of S on the effective temperature (their maximum value of S is 20–25% for stars with temperatures 4500–5000 K, and S decreases for solar-type stars and cool M dwarfs). The second group is formed of the most active stars, which have temperatures of 3700–5200 K and S values from 25% to 50%. Our preliminary conclusion is that spottedness is not related to the period of the stellar rotation. The previously studied variable V410 Tau is used to consider the shortcomings of the method applied compared to the results of light-curve modeling.  相似文献   

10.
The origin of solar-type activity for low-mass stars of late spectral types is considered. Spectroscopic data were used to study the dependence of the activity level logR HK on the lithium abundance logA(Li) and axial rotation rate. A close correlation between logA(Li) and logR HK is found for two groups of G stars, hotter and cooler than the Sun. This relation is most clearly expressed in the case of high activity, and is somewhat more strongly expressed for G6-K3 dwarfs, which includes many BY Dra variables, than for F8-G5 stars. It is confirmed that, for stars with high activity, both the lithium abundance and the activity level are determined by the rotation rate, which depends on the age. The lithium abundance exhibits different dependences on the chromospheric activity, depending on the level of this activity. Cooler stars, with detectable lithium and solar-like chromospheres, possess much stronger coronas. This change in the relationship between the relative luminosities of the chromosphere and corona can be reliably traced using larger datasets. The different ratios between the activity of the choromosphere and corona for cooler and hotter G stars may reflect the fact that their convective zones become deeper or shallower than some critical value. This is consistent with observations of parameters describing rotational modulation and the correlation and anti-correlation of chromospheric and photospheric activity indices for stars hotter and cooler than the Sun. Physically, this means that the character of the activity could be related to a changing contribution of the large-scale and local magnetic fields to the generation of the activity. The results of this study confirm the earlier idea that there may be different evolution paths associated with solar-type activity. The results can be used to refine methods for estimating ages of stars from their activity levels (gyrochronology).  相似文献   

11.
Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity (S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff ~ 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V ?Ks)0 color index remains approximately the same over the entire (V?K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 < (V?K s )0 < 3.7. The main results of this study include measurements of the activity of a large number of stars having the same age (759 members of the Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.  相似文献   

12.
We present the results of simultaneous UBVRI photometric and polarimetric observations of the Ae Herbig star SV Cep made in 1987–1998. Over these 11 years, only a single deep (ΔV>1m) brightness minimum was observed. Near this minimum, the brightness decrease was accompanied by an increase of the linear polarization, as is typical of young UX Ori stars. The photometric observations of SV Cep indicate reversals of the color tracks in brightness minima, as is common for stars of this type, as well as variations of the slopes of the color tracks during and after minima. This provides evidence that the circumstellar dust clouds screening the star differ in their sizes and masses, and also in the optical properties of their dust particles. A Fourier analysis of the brightness variations of SV Cep (including data from the literature) confirms the presence of previously suspected activity cycles with periods P 1=4000d and P 2=670d The polarimetric observations indicate that, along with the inverse correlation between the degree of linear polarization and brightness, the polarization parameters vary on characteristic time scales of 4000 and 1000 days. This suggests the existence of large-scale inhomogeneities in the circumstellar dust disk rotating about the star.  相似文献   

13.
We have analyzed the physical status of the pre-cataclysmic variables SDSSJ172406+562003 and RE J2013+4002, which have evolved after their common-envelope stage a time t = 106?107 years. Spectroscopy and photometry of these systems were performed with the 6-m and 1-m telescopes of the Special Astrophysical Observatory. We demonstrate that emission lines in the spectra were formed solely by the reflection of radiation emitted by the white dwarfs on the surfaces of their cool companions, under conditions close to local thermodynamic equilibrium. These effects are also responsible for most of the objects?? photometric variability amplitude. However, comparing the light curves of SDSS 172406 from different epochs, we find aperiodic brightness variations, probably due to spottedness of the surface of the secondary. Jointly analyzing the spectra, radial-velocity curves, and light curves of the pre-cataclysmic variables and modeling the reflection effects, we have derived their fundamental parameters. We demonstrate that the secondaries in these systems are consistent with evolutionary models for main-sequence stars and do not have the luminosity excesses characteristic of cool stars in young pre-cataclysmic variables.  相似文献   

14.
The photometric variability of the M dwarf KIC 1572802 has been studied using the most complete observational data, obtained by the Kepler Space Telescope. Power spectra constructed from 59 488 single brightness measurements over 1460 days (~4 yr) show complex brightness variations. It is suggested that two peaks corresponding to the periods P = 0.37088d and P = 0.37100d are related to the presence of active regions at different latitudes on the differentially rotating star. Maps of the surface temperature inhomogeneities are used to derive the positions of these active regions. Analysis of these maps suggests that a switch in the active latitudes occurred 590 days after the beginning of the observations. The variations of the positions of the active regions are also analyzed. These high-temporal-resolution observations revealed a short time-scale change in the active latitudes lasting about 7d, followed by a “flip-flop,” for the first time. The fraction of the surface of KIC 1572802 covered by spots is S ~ 7%. Comparison with literature data indicate that this S value for KIC 1572802 is substantially higher than the average spottedness of stars with temperatures of 3500–4500 K. This may indicate enhanced activity of KIC 1572802. The parameters of the differential rotation of the star are estimated; the inferred rotational velocity, Ω = 0.0056 ± 0.0010, is substantially lower than the solar value, but comparable to Ω for the cool dwarfs HK Aqr and EY Dra. The value of the Rossby number Ro = 0.011 suggests that KIC 1572802 is in the saturation region of the diagram of Ro vs. X-ray luminosity. If the Ro value for KIC 1572802 is this low, this implies that its magnetic field is of the order of tens or even hundreds of Gauss.  相似文献   

15.
The X-ray luminosities and spectra of F-M stars of luminosity classes IV–V are analyzed. In dwarfs with rotational velocities of about 100 km/s, such as the optical components of low-mass X-ray novae with black holes, hot plasma can be confined in coronal loops even in the presence of fairly weak magnetic fields. Thus, the soft X-ray emission of such systems in their quiescent state (to 1031 erg/s) could be associated with the coronal emission of the optical component/dwarf. Two systems studied with subgiants (V1033 Sco and V404 Cyg) have X-ray luminosities 2×1032–2×1033 erg/s. The X-ray emission of a solar-type corona cannot provide such luminosities. However, a transition to a non-solar corona is possible in rapidly rotating subgiants—a dynamical corona whose X-ray emission can be one to two orders of magnitude higher than observed for more slowly rotating late-type subgiants in the solar neighborhood. This suggests that the quiescent X-ray emission of these two systems is provided by emission from the corona of the subgiant optical component.  相似文献   

16.
The spottedness parameters S (the fraction of the visible surface of the star occupied by spots) characterizing the activity of 674 stars in the Beehive Cluster (age 650 Myr) are estimated, together with variations of this parameter as a function of the rotation period, Rossby number Ro and other characteristics of the stars. The activity of the stars in this cluster is lower than the activity of stars in the younger Pleiades (125 Myr). The average S value for the Beehive Cluster stars is 0.014, while Pleiades stars have the much higher average value 0.052. The activity parameters of 61 solar-type stars in the Beehive Cluster, similar Hyades stars (of about the same age), and stars in the younger Pleiades are compared. The average S value of such objects in the Beehive Cluster is 0.014± 0.008, nearly coincident with the estimate obtained for solar-type Hyades stars. The rotation periods of these objects are 9.1 ± 3.4 day, on average, in agreement with the average rotation period of the Hyades stars (8.6 d ). Stars with periods exceeding 3–4 d are more numerous in the Beehive Cluster than in the Pleiades, and their periods have a larger range, 3–30 d . The characteristic dependence with a kink at Ro (saturation) = 0.13 is not observed in the S–Rossby number diagram for the Beehive and Hyades stars, only a clump of objects with Rossby numbers Ro > 0.7. The spottedness data for the Beehive Cluster and Hyades stars are in good agreement with the S values for dwarfs with ages of 600–700 Myr. This provides evidence for the reliability of the results of gyrochronological calibrations. The data for the Beehive and Pleiades stars are used to analyze variations in the spot-forming activity for a large number of stars of the same age that are members of a single cluster. A joint consideration of the data for two clusters can be used to draw conclusions about the time evolution of the activity of stars of different masses (over a time interval of the order of 500 Myr).  相似文献   

17.
The photometric variability of the uniqueMdwarf flare star GJ 1243 (KIC 9726699) is investigated using the most complete set of observationalmaterial obtained with the Kepler Space Telescope. The analysis is based on 49 487 individual brightness measurements obtained during an interval of 1460 days (nearly four years). The periodicity of the brightness variations with the period Pphot = 0.59261 ± 0.00060d is confirmed. The temperature inhomogeneities on the stellar surface reconstructed from the light curve are used to drive maps of these surface-temperature inhomogeneities (of the filling factor f). The resulting maps are used to determine the positions of active regions. Analysis of the surface-temperature maps for GJ 1243 led to the conclusion that the positions of spots on the stellar surface displayed appreciable evolution during the analyzed time interval. The maximum value for the lower limit on the differentialrotation parameter ΔΩ is 0.0022 rad/day. This more accurate estimate of ΔΩ is lower than the values presented earlier by Davenport et al. [1] (0.0058 and 0.0036 rad/day), due to the more accurate account of variations in the positions of the most active longitude in the current study. However, the differentialrotation estimate obtained in [1] using a method based on fitting the evolution of spots using twodimensional Gaussian functions essentially coincides with the new estimate presented here. The fractional area of the total spotted surface S of the star during the observing interval considered varied from 7 to 2%. The amplitude of the brightness variability of the star slowly decreased, varying in the range 1.6?0.5%. Overall, the position of GJ 1243 in spottedness–age, spottedness–rotation period, and spottedness–Rossby number diagrams agrees very well with the general character of the dependences displayed in earlier studies of M dwarfs.  相似文献   

18.
The results of infrared observations of the two Be stars X Per and V725 Tau, which are the optical components of X-ray binary systems, obtained in 1994–2016 are presented. The observations cover Be-star phases as well as shell phases. The data analysis shows that the radiation observed from the binaries at 1.25, 3.5, and 5 μm can be explained as the combined radiation from the optical components and variable sources (shells/disks) that emit as blackbodies (BBs). Emission from a source with the color temperature T c ~1000?1500 K was detected for X Per at λ ≥ 3.5 μm. The highest IR-brightness variation amplitudes for X Per were 0.9?1.2 m (JHK magnitudes) and ~1.45 m (LM magnitudes); for V725 Tau, they were 1.1?1.4 m and ~1.7 m (L magnitudes). The parameters of the optical components and interstellar extinction during the Be phases were estimated: the color excesswasE(B?V) = 0.65±0.08 m and 0.77 ± 0.03 m for X Per and V725 Tau, respectively. Light from the variable sources (disks/shells) was distinguished and their color temperatures, radii, and luminosities estimated for different observation epochs in a BB model. The variations of the binaries’ IR brightness and colors are shown to be due to changing parameters of the variable sources. The mean color temperature of the cool source (disk/shell) and the mean radius and mean luminosity of X Per are 9500± 2630 K, (35 ± 10) R, and (9100± 540) L. For V725 Tau, these parameters are 6200 ± 940 K, (27 ± 6) R, and (980 ± 420) L. The 1.25–5 μm radiation from X Per at different epochs can be represented as a sum of contributions from at least three sources: the optical component and two objects emitting as BBs. To reproduce the 1.25–3.5 μm radiation from V725 Tau, two components are sufficient: the optical component and a single variable BB object. For both binary systems, orbital variations of the IR brightness can be noted near the Be-star phase. The amplitudes of the J-band variations of X Per and V725 Tau are about 0.3 m and 0.1 m , respectively.  相似文献   

19.
We have analyzed the activity of four UX Ori stars in the near-IR (JHKL) and visual (V) using the results of long-term photometric observations. For comparison, we also obtained IR (JHKLM) photometric observations of two visually quiet young stars of close spectral types (AB Aur and HD 190073). For the photometrically most active UX Ori stars BF Ori, CQ Tau, and WW Vul, the Algol-like declines of brightness in the visual, which are due to sporadic enhancements of the circumstellar extinction, are also observed (with decreasing amplitude) in the IR bands. A strict correlation between the V and J brightness variations is observed for all the stars except for SV Cep. For some of the UX Ori stars, a strong correlation between the visual and IR activity is observed up to L, where the main contribution to the emission is made by circumstellar dust. In the case of SV Cep, the visual variability is not correlated with the variability of the IR fluxes. On one occasion, a clear anti-correlation was even observed: a shallow, but prolonged decrease of the visual brightness was accompanied by an increase in the IR fluxes. This indicates that circumstellar clouds themselves can become powerful sources of IR emission. Our results provide evidence that the photometric activity of UX Ori stars is a consequence of instability of the deepest layers of their gas-dust accretion disks. In some cases (SV Cep), fluctuations of the density in this region are global, in the sense that they occur along a significant part of the circle marking the inner boundary of the dust disk. It is interesting that AB Aur, which is the quietest in the visual, appeared to be the most active in the IR. In contrast to UX Ori stars, the amplitude of its brightness variations increases from the J to the M band. It follows from analysis of the IR colors of this star that their variability cannot be described by models in which the variable IR emission has a temperature close to the sublimation temperature of silicate grains (about 1500 K). This means that the photometric activity of AB Aur must be due to both the dust and gas components of the circumstellar disk.  相似文献   

20.
The activity of the central star of the Kepler-32 planetary system is studied using continuous 1141-day observations with the Kepler Space Telescope. The Kepler-32 system includes a slowly rotating Mdwarf (rotational period of 37.8 d) with a mass of 0.54M and five planets. One of the unique properties of the system is its compactness: the orbits of all five planets are less than a third of the size of the orbit of Mercury; the planet closest to the star is separated from it by only 4.3 stellar radii. Surface-temperature inhomogeneities of the central star are studied using precise photometric observations of Kepler-32, and their evolution traced. In total, 42 624 individual brightness measurements in the 1141-day (3.1-year) observing interval were selected for the analysis. The calculated amplitude power spectra for the first and second halves of the interval of the Kepler-32 observations indicate appreciable variability of the photometric period, corresponding to the evolution of active regions at various latitudes on the stellar surface. Evidence for the existence of two active regions on the stellar surface separated in phase by 0.42 has been found. Time intervals in which the longitudes of the active regions changed (“flip-flops”) with durations of the order of 200–300 days have been established. The spotted area of the star was, on average, about 1% of the total visible surface, and varied from 0.3 to 1.7%. The results for the dwarf Kepler-32 are compared with those from a spectropolarimetric survey of 23 M dwarfs, including both fully convective stars and stars with weakly radiative cores. For a more detailed comparison, temperature inhomogeneities on the surface of one of the survey stars, DS Leo, was reconstructed using the ground-based observations (316 individual measurements of the V-band brightness of the star during seven observing seasons in an all-sky automated survey). The general properties and evolution of the active regions on DS Leo and Kepler-32 are considered. The positions of the active regions on the surface of Kepler-32 yields no evidence for differential rotation of this star. The possibility of detecting the magnetic field of Kepler-32 is proposed. The analysis of the photometric data for Kepler-32 are also compared to the previous results for the fully convective, low-mass M dwarfs GJ 1243 and LHS 6351. This demonstrates that the observed manifestations of activity on Kepler-32 correspond to those for active G-K stars and to M dwarfs with masses of the order of 0.5M , rather than Mdwarfs with masses from 0.2 to 0.5M .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号