首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
刘小凤  杨立明 《地震研究》2004,27(3):209-215
通过对青藏高原北部地区31次地震的研究,确定了震前地震活动图像的中短期预测指标以及中期向短期过渡的异常判据及预测方法。研究结果表明,中强地震前普遍存在地震空区、弱震条带、前兆地震或震群、地震活动增强和平静等异常图像,所表现出的异常时间存在很大的差异。具有中短期特征的弱震空区(段)和条带一般出现在震前1~3a,平均持续时间1a,在空区解体后1~6个月发生地震。大多数前兆地震或震群活动属于短临异常,一般出现在震前几天至6个月,震级差为1.0~2.3,距离震中5~60km,空间上主要集中在祁连山地震带。地震活动增强以应力集中为主,属于短期异常特征。异常图像在时间上表现为中期阶段以孕震空区、弱震条带、地震活动增强和平静等异常,异常比较显著且不同步;短临阶段出现前兆地震和地震空区停止活动而形成的临震前的相对平静。异常图像在空间上具有较明显的分区性,与区域活动构造有一定的关系。  相似文献   

2.
1996年11月9日南黄海6.1级地震前的地震活动异常   总被引:1,自引:0,他引:1  
王炜  许跃明 《地震》1997,17(4):357-363
1996年11月9日在南黄海海域发生了6.1级地震。该地震前自1993年直震中周围区域的地震活动明显增强、小震群活跃,出现孕震空区及一些地震活动指标的中期异常。1995年8月后该区地震活动的出现明显平静。这次地震前的地震活动异常是明显的。  相似文献   

3.
系统梳理了2020年1月16日新疆库车5.6级地震前出现的地震活动和地球物理观测等异常,结果如下:①地震活动:震前存在地震平静、地震高频、带状分布、地震窗等中短期异常;②地球物理观测:震中350 km范围内均为形变异常,分别体现在固体潮、地倾斜、钻孔应变测项;③综合方法主要识别出年尺度异常。对库车5.6级地震序列进行分析,可知主震震源机制为走滑型破裂,余震不丰富,序列衰减不明显,序列发展过程中地震活动起伏变化明显。综合分析认为,此次地震前地震活动中短期异常较为突出,地球物理观测异常相对较少,发震前2年异常数量出现先增加后减少的现象,对地震的发震时间具有一定指示意义。  相似文献   

4.
对2003年北黄海5.1级地震的地震活动背景、地震序列、震中周围中小地震活动图像及地震学参数等进行了详细分析。认为该次地震为前-主-余型,经历了一个活跃-平静-发震的过程;地震前震中附近出现了孕震空区和一些地震活动性参数异常。  相似文献   

5.
We report results from a detailed study of seismicity in central Kamchatka for the period from 1960 to 1997 using a modified traditional approach. The basic elements of this approach include (a) segmentation of the seismic region concerned (the Kronotskii and Shipunskii geoblocks, the continental slope and offshore blocks), (b) studying the variation in the rate of M = 4.5–7.0 earthquakes and in the amount of seismic energy release over time, (c) studying the seismicity variations, (d) separate estimates of earthquake recurrence for depths of 0–50 and 50–100 km. As a result, besides corroborating the fact that a quiescence occurred before the December 5, 1997, M = 7.9 Kronotskii earthquake, we also found a relationship between the start of the quiescence and the position of the seismic zone with respect to the rupture initiation. The earliest date of the quiescence (decreasing seismicity rate and seismic energy release) was due to the M = 4.5–7.0 earthquakes at depths of 0–100 km in the Kronotskii geoblock (8–9 years prior to the earthquake). The intermediate start of the quiescence was due to distant seismic zones of the Shipunskii geoblock and the circular zone using the RTL method, combining the Shipunskii and Kronotskii geoblocks (6 years). Based on the low magnitude seismicity (M≥2.6) at depths of 0–70 km in the southwestern part of the epicentral zone (50–100 km from the mainshock epicenter), the quiescence was inferred to have occurred a little over 3 years (40 months) before the mainshock time and a little over 2 years (25 months) in the immediate vicinity of the epicenter (0–50 km). These results enable a more reliable identification of other types of geophysical precursors during seismic quiescences before disastrous earthquakes.  相似文献   

6.
The Kanto earthquake (M=7.9) that occurred along the Sagami Trough in the Sagami Bay on 1 September 1923 was one of the most disastrous earthquakes in Japanese history. The Kanto area includes Metropolitan Tokyo and Yokohama which are densely populated, and hence it has been a matter of great concern, from the viewpoints of earthquake prediction and disaster prevention, whether or not the 1923 Kanto earthquake was preceded by precursory seismicity. A study using the most complete lists of earthquakes catalogued recently by Utsu and the Japan Meteorological Agency reveals that seismic activity in the Kanto area was appreciably higher before and after the Kanto earthquake, and that the Kanto earthquake was preceded by a sequence of anomalous seismic activity, quiescence, and foreshocks. Such higher activity before and after the Kanto earthquake is contrasted with low seismicity during the recent 30-year period. A model is proposed to explain the precursory seismic activity, subsequent quiescence, and foreshocks for the Kanto earthquake. In the model, the transition from precursory seismic activity to quiescence is ascribed to time-dependent fracture due to stress-aided corrosion. Foreshocks are related to an acceleration of premonitory slip shortly before the mainshock slip.  相似文献   

7.
2020年3月23日和7月13日,新疆天山中部地区分别发生拜城5.0级和霍城5.0级地震,其中拜城5.0级地震发生在南天山地震带中段,霍城5.0级地震发生在北天山地震带西段。系统总结2次地震前出现的地震活动和地球物理观测异常,结果表明:①拜城5.0级地震:震前主要存在5级地震成组和尼勒克钻孔应变中短期异常;②霍城5.0级地震:震前中短期异常比较丰富,存在3级以上地震带状分布、地震发生率指数、D值、调制比、b值异常,而地球物观测则以形变异常为主,主要出现在震中附近区域。综合分析认为:①拜城5.0级地震前地震活动异常较少,地球物理观测以趋势异常为主,短期指示意义不明确;②霍城5.0级地震前具有中短期预测意义的地震活动和地球物理异常较为丰富,为后续中强地震的发生提供了判定依据。  相似文献   

8.
系统梳理了2000年以来山西地区6次MS≥4.5地震前地震活动异常,结果表明,地震空区/平静、地震条带、显著地震/震群、大同地震窗“开窗”活动等异常在地震发生前具有一定普遍性,且异常基本围绕在震中及附近地区分布,特别是在地震平静/空区、地震条带等异常发展后期出现的显著地震/震群活动,对未来地震发生的地点和时间具有较好的预测意义。异常持续时间与发震间隔统计表明:异常多出现在主震发生前6个月以内,显著地震/震群、大同地震窗“开窗”对未来主震的发生具有短临预测意义。此外,随着区域应力水平的不断增强,在特定敏感地区会发生成组极微震密集活动,监视跟踪这些有别于正常活动背景的极微震活动,对地震短临预测具有一定意义。  相似文献   

9.
系统梳理2020年6月26日新疆于田6.4级地震构造背景,总结分析余震序列参数演化特征和震前有关异常现象及其预测效能。初步结果如下:①于田6.4级地震发生在黑石北湖断裂附近,主震震源机制显示为张性破裂;②本次地震前原震区发生一次MS 4.6前震,主震后余震相对丰富,构成"前震-主震-余震"型地震序列,震后2个月序列b值为0.71,h值为1.73;③震前震中附近出现准周期活动、地震平静、中源地震影响、多方法组合、垂直摆倾斜和GNSS等中期和短期异常,可能与本次地震的发生存在一定对应关系。  相似文献   

10.
分析了2004年3月24日内蒙古东乌珠穆沁旗5.9级地震前东北地区地震活动背景、震中周围中小地震活动图像和地震学参数异常过程。在地震发生前,震中及邻区地震活动明显增强,地震活动从无序到有序,出现了孕震空区、地震条带。一些地震活动性参数出现了中、短期异常。  相似文献   

11.
The parametric catalogues of historical earthquakes in East Siberia contain large data gaps. Among these is a 15-year period in the late nineteenth century (1886–1901). This period was not covered by any of macroseismic catalogues known; neither acquisition nor systematization of macroseismic data was ever performed for that purpose. However, 15 years is a rather long period in which large seismic events may have occurred. The present paper deals with the previously unknown earthquake that occurred on November 13, 1898. The primary macroseismic data were taken from regional periodicals. On the strength of all the evidence obtained, the earthquake epicenter is localized in Western Transbaikalia, near the western end of the Malkhansky Range; the magnitude is estimated at M?=?5.9. The information about the large earthquake of November 13, 1898 provides filling significant gaps in knowledge for seismicity in Western Transbaikalia and a better understanding of seismic potential of faults therein. The obtained results show that the periods of seismic quiescence in catalogues may be related to insufficient information on seismicity of Eastern Siberia in the historical past rather than to the absence of large earthquakes.  相似文献   

12.
基于在相似外加载荷作用下结构相似的构造可表现出类似的破裂图像及前兆演化特征的实验室研究结果, 对华东地区现代中强地震进行了初步构造分类, 在此基础上分析研究了19次震例前地震活动图像异常的统计特征。 结果表明: ① 大多数震例前具有2~3年尺度的地震学异常, 图像以“条带”和“增强”为主; ② 多数地震在条带异常后有1~2年的中期平静, 震前0.5~1年左右在中期平静背景上出现“集中、 收缩”图像; ③ 震前3个月左右的较短时间内, 多数震例震中附近以短期“平静”为主; ④ 部分震例前短时间内震中附近有“显著性地震”事件发生; ⑤ 不同构造类型震例前, 地震异常图像可能存在差异; ⑥ 华东地区中强地震可能更多是属于沿原存断裂继承性破裂导致的地震, 震源力学性质多为拉张型。 拉张与挤压型地震的异常特点也可能存在差异。 但由于震例较少, 其确定性和成因还需进一步探讨。  相似文献   

13.
Introduction The MS=8.1 earthquake occurred in west of the Kunlun Pass on November 14, 2001. It is the greatest earthquake occurred in China since the last half of the century and is an important event in recent seismic history of China. Some specialists consider that the earthquake occurred in the area where the earthquake monitoring capability is lowest in Chinese mainland; no striking precursory seismicity was found. The study on the precursory seismicity before the earthquake has not b…  相似文献   

14.
Summary An area of significant seismic quiescence is found near Oaxaca, southern Mexico. The anomalous area may be the site of a future large earthquake as many cases so far reported were. This conjecture is justified by study of past seismicity changes in the Oaxaca region. An interval of reduced seismicity, followed by a renewal of activity, preceded both the recent large events of 1965 and 1968. Those past earthquakes have ruptured the eastern and western portions of the present seismicity gap, respectively, so that the central part remaining is considered to be of the highest risk of the pending earthquake.The most probable estimates are: 7 1/2±1/4 for the magnitude and =16.5°±0.5°N, =96.5°±0.5W for the epicenter location. A firm prediction of the occurrence time is not attempted. However, a resumption of seismic activity in the Oaxaca region may precede a main shock.On leave from the Marine Science Institute, University of Texas, USA.  相似文献   

15.
LIU Yue  SHAO Zhi-gang 《地震地质》2016,38(4):1070-1081
According to the Region-Time-Length (RTL) algorithm,the analysis of seismicity changes prior to the 2014 Yunnan Jinggu MS6.6 earthquake was conducted by using the earthquake catalogues about 6 and 15 years before this earthquake,respectively.When the studied period was nearly 6 years,an enhancement of seismic activity was detected around the epicenter since the beginning of 2013.The anomalies mainly distributed in the region of 22.5°~24.5°N and 99°~102°E.The range and degree of anomalies changed from small to large,and then to small chronologically.As the surface integral in respect to RTL,the physical parameter IRTL,which could reflect the regional seismicity level,began to increase since August 2013,and then reduced after reaching the peak point.The time length from the peak point of IRTL curve to the earthquake occurrence was 9 months.When the analyzed catalogue was nearly 15 years,the 2007 Ninger MS6.4 occurred in the studied region.Seismicity quiescence was detected prior to the Ninger MS6.4.Before the Jinggu MS6.6,seismicity quiescence was detected firstly,and then enhanced activity was observed 1 year prior to the earthquake occurrence.The anomalies mainly distributed in the region of 22.5°~24.5°N and 99°~102°E.The time length from the peak point of IRTL curve to the earthquake occurrence was 7 months.The above study showed that even the earthquakes location was near and the magnitude was close to each other,a big difference in seismic activity before the earthquakes may exist.Before the Jinggu MS6.6,there was some difference in seismicity changes according to different beginning time of catalogues,but the distribution of anomalies and the time length from the peak point of IRTL to the earthquake occurrence were uniform.So there was an important significance for exploring the relationship between the distribution of anomalies and the earthquake location,and the relationship between the time of the peak point of IRTL and the earthquake occurrence time.  相似文献   

16.
汶川8.0级地震前紫坪铺水库小震活动及震源参数研究   总被引:2,自引:0,他引:2  
利用区域和水库地震台网记录的数字地震波资料,研究了汶川8.0级地震前的2000年1月1日~2008年5月11日紫坪铺水库区的地震活动及震源参数.结果表明:汶川8.0级地震前该区域小震活动持续,地震活动水平为M_L2~3,自2005年9月紫坪铺水库蓄水以来,特别是2008年2月地震活动明显增加,但从长期的序列来看,地震活动频次和强度仍在区域地震活动的正常起伏范围.汶川8.0级地震发生前近3个月内,中小地震的视应力差值△σ_(app)普遍大于0,计算得到的视应力总大于其拟合值.汶川8.0级地震震中位于低应力区,而相对较高的视应力差值分布在震中以东地区,局部出现视应力增加的现象.  相似文献   

17.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

18.
南迦巴瓦地震台网完整地记录了米林M6.9地震发生的全过程.本文利用南迦巴瓦地震台网的连续波形数据对米林地震序列进行了研究.南迦巴瓦台网的定位结果显示,米林主震位于29.89°N,95.04°E,震源深度为16.7km,余震序列呈NW向展布,分布在南迦巴瓦峰和加拉白垒峰连线的东北部靠近帕隆—旁辛断裂.经计算,本次地震的h值为1.26,b值为0.84,综合序列衰减情况分析,本次地震属于主震—余震型地震.米林地震前,南迦巴瓦峰地区地震活动表现出明显的时间不均匀性,自研究区1992年ML6.2地震以来,研究区每12年左右发生一次ML6.0级以上地震,2017年至米林地震前,研究区6月前与6月后的地震活动差异很大,6月后的地震活动在频度上要明显强于6月前.空间分布上,米林地震震中附近为研究区地震活动性最强的区域,属于雅鲁藏布江断裂和帕隆—旁辛断裂交汇区域.  相似文献   

19.
用地震活动性参数(地震频度N,地震能量E和地震b值)的二维空间等值线计算机扫描技术,系统地追踪了1983年菏泽5.9级地震前后三项地震活动性参数的空间动态演化情况。结果表明,菏泽5.9级地震前1-4年,河北平原断陷南部地区特别是其东界聊考断裂带地震活动异常增强,地震频度增高,地震能量释放加速而地震b值降低;地震活动增强区的长度约200余公里,未来主震发生于地震活动增强区的边缘;震后约一年左右震中周  相似文献   

20.
Results are reported from a detailed study of central Kamchatka seismicity for the period 1962–1997 based on a modification of the traditional approach. The approach involves (a) a detailed structure of the seismic region that recognizes the Kronotskii and Shipunskii geoblocks and two further blocks, the continental slope, and the offshore portion, (b) a study of variations in the rate of M = 3.0–7.2 earthquakes and the amount of seismic energy released at depths of 0–50 and 51–100 km, (c) a study of seismicity variability, and (d) separate estimates of the recurrence of crust-mantle earthquakes (depths 0–50 km) and mantle events (51–100 km). As a result, apart from corroborating the fact of a quiescence preceding the December 5, 1997 Kronotskii earthquake (M 7.9), we also found that a relationship exists between its beginning and the position of the earthquake-generating region relative to the mainshock epicenter. The quiescence dominates the seismic process during the pre-mainshock period and is characterized by a decreased rate of earthquakes (the first feature) and a decreased amount of seismic energy release (the second feature). Based on the first feature, we found that the quiescence started in 1987 throughout the entire depth range (0–100 km) in both parts of the Kronotskii geoblock close to the rupture zone of the eponymous earthquake. As to the Shipunskii geoblock, which is farther from the rupture zone, the quiescence began in the mantle of the inner area first (1988) and somewhat later at depths of 0–50 km within the continental slope (1989). By the second feature, the quiescence began at shallower depths in the inner area of the Kronotskii geoblock at the same time and later on (a year later) in the mantle (1988). Under the continental slope of the trench in the Shipunskii geoblock the shallower quiescence also began in 1987, while it was 3 years late in the inner zone (1990) and involved the earthquake-generating earth volume at depths of 0–100 km. These data are identical with or sufficiently close to the estimate for the beginning of this quiescence using a circular area of radius 150 km that combines the Kronotskii and Shipunskii geoblocks by the RTL method (1990).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号