首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Based on energy dissipation and structural control principle, a new structural configuration, called the mega- sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.  相似文献   

2.
为了增强巨子型有控结构建筑的动力特性,提升其稳定性,设计双向地震波作用下建筑有控结构。采用3种磁流变阻尼器(MRD)与滑移隔震混合控制结构构成单体建筑有控结构,其包括巨结构和子结构,并建立该有控结构的动力分析模型。在动力分析模型中输入水平和竖向地震,得到模型的竖向和水平滑动状态运动微分方程,依据这两个方程采用自适应模糊神经网络优化动力分析模型,构建优化模型。从优化模型出发,通过实例实验分析得出,优化设计双向地震波作用下建筑有控结构时,在其上部结构层间和隔离层各安装一个MRD,可确保优化设计后的有控结构在不同双向地震工况下的地震反应控制效果最佳,且有控结构在双向地震工况2下,结构第一层、中间三层以及顶层的加速度和位移的时程曲线走向一致,且差距微小;同时有控结构的巨结构顶层侧移响应随着子结构刚度增加而提高,动力特性没有明显的变化,子结构随着其自身刚度增加顶层侧移响应表现稳定,子结构动力特性增强。  相似文献   

3.
Coupling adjacent buildings using discrete viscoelastic dampers for control of response to low and moderate seismic events is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristics, mainly modal damping ratio and modal frequency, of damper-linked linear adjacent buildings for practical use. Random seismic response of linear adjacent buildings linked by dampers is then determined by a combination of the complex modal superposition method and the pseudo-excitation method. This combined method can effectively and accurately determine random seismic response of non-classically damped systems in the frequency domain. Parametric studies are finally performed to identify optimal parameters of viscoelastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of adjacent buildings. It is demonstrated that using discrete viscoelastic dampers of proper parameters to link adjacent buildings can reduce random seismic responses significantly. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

4.
Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with fractional derivative.  相似文献   

5.
土木工程结构鲁棒控制的发展   总被引:1,自引:0,他引:1  
评述了结构控制的发展,指出发展结构鲁棒控制策略的重要性。重点评述了结构双重调谐质量阻尼器(DTMD)和多重双重调谐质量阻尼器(MDTMD)的控制策略,提出了需进一步发展主动双重调谐质量阻尼器(ADTMD)和主动多重双重调谐质量阻尼器(AMDTMD)控制策略、此外,评述了结构鲁棒控制的设计准则与高层建筑和大跨桥梁在风与地震作用下的统一自适应主动鲁棒控制策略。  相似文献   

6.
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.  相似文献   

7.
Active multiple tuned mass dampers (AMTMD) consisting of many active tuned mass dampers (ATMDs) with a uniform distribution of natural frequencies have been, for the first time, proposed for attenuating undesirable vibrations of a structure under the ground acceleration.The multiple tuned mass dampers (MTMD) in the AMTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The control forces in the AMTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the AMTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the AMTMD by conducting a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, total number and normalized acceleration feedback gain coefficient. The criterion, which can be stated as the minimization of the minimum values of the maximum dynamic magnification factors (i.e. Min.Min.Max.DMF), is chosen for the optimum searching. Additionally, for the sake of comparison, the results of the optimum MTMD (the passive counterpart of AMTMD) and ATMD are also taken into account in the present paper. It is demonstrated that the proposed AMTMD can be expected to significantly reduce the oscillations of structures under the ground acceleration. It is also shown that the AMTMD can remarkably improve the performance of the MTMD and has higher effectiveness than ATMD. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The effectiveness of tuned mass dampers (TMD) in vibration control of buildings was investigated under moderate ground shaking caused by long‐distance earthquakes with frequency contents resembling the 1985 Mexico City (SCT) or the 1995 Bangkok ground motion. The elastic–perfectly plastic material behaviour was assumed for the main structure, with linear TMDs employed by virtue of their simplicity and robustness. The accumulated hysteretic energy dissipation affected by TMD was examined, and the ratio of the hysteretic energy absorption in the structure with TMD to that without it is proposed to be used, in conjunction with the peak displacement ratio, as a supplementary TMD performance index since it gives an indication of the accumulated damage induced in the inelastic structures. For the ground motions considered, TMD would be effective in reducing the hysteretic energy absorption demand in the critical storeys for buildings in the 1.8–2.8 s range. The consequence is reduction in damage of the buildings which would otherwise suffer heavy damage in the absence of TMD, resulting in economical restorability in the damage control limit state. This is of practical significance in view of the current trend toward performance‐based design. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The insertion of steel braces equipped with viscoelastic dampers (VEDs) (‘dissipative braces’) is a very effective technique to improve the seismic or wind behaviour of framed buildings. The main purpose of this work is to compare the earthquake and wind dynamic response of steel‐framed buildings with VEDs and achieve optimal properties of dampers and supporting braces. To this end, a numerical investigation is carried out with reference to the steel K‐braced framed structure of a 15‐storey office building, which is designed according to the provisions of Eurocodes 1 and 3, and to four structures derived from the first one by the insertion of additional diagonal braces and/or VEDs. With regard to the VEDs, the following cases are examined: absence of dampers; insertion of dampers supported by the existing K‐braces in each of the structures with or without additional diagonal braces; insertion of dampers supported by additional diagonal braces. Dynamic analyses are carried out in the time domain using a step‐by‐step initial stress‐like iterative procedure. For this purpose, the frame members and the VEDs are idealized, respectively, by a bilinear model, which allows the simulation of the nonlinear behaviour under seismic loads, and a six‐element generalized model, which can be considered as an in‐parallel‐combination of two Maxwell models and one Kelvin model. Artificially generated accelerograms, whose response spectra match those adopted by Eurocode 8 for a medium subsoil class and for different levels of peak ground acceleration, are considered to simulate seismic loads. Along‐wind loads are considered assuming, at each storey, time histories of the wind velocity for a return period Tr=5 years, according to an equivalent spectrum technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an experimental investigation on semi-active seismic response control of a multistory building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic control algorithm. The experiments are performed in three phases on a seismic simulator with a slender 12-story building model representing a multi-story building and a relatively stiff 3-story building model typifying a podium structure. The first phase of the investigation is to assess control performance of using three MR dampers to link the 3-story building to the 12-story building, in which seismic responses of the controlled two buildings are compared with those of the two buildings without any connection and with rigid connection. The second phase is to investigate reliability of the semi-active control system and robustness of the logic control algorithm when 2 out of 3 MR dampers fail and when the electricity supply to MR dampers is completely stopped. The last phase is to examine sensitivity of semi-active control performance of two buildings to change in ground excitation. The experimental results show that multiple MR dampers with the logic control algorithm can achieve a significant reduction in seismic responses of both buildings. The proposed semi-active control system is of high reliability and good robustness.  相似文献   

11.
随着城市人口的增加,越来越多的超高层建筑在中国各大城市涌现,在其全寿命周期内不可避免的会遭受风甚至地震等多灾害的作用。以上海中心大厦为分析模型,根据其场地条件,采用Benowitez在2015年提出的1种基于随机波的模型方法模拟不同高度处具有空间相关性的脉动风荷载时程。通过对Perform 3D有限元软件建立的上海中心大厦模型进行非线性动力时程分析,研究地震和风耦合作用下对于结构性能的影响,并基于多灾害需求生成结构在地震和风耦合作用下的易损性曲面来研究结构的抗振可靠度。结果表明:结构的响应和易损性随着风速和PGA的增大而显著增大;随着风速的增大结构的响应和易损性均有增大的趋势,但随着地震动的增大,风荷载对结构响应和易损性影响逐步减小。  相似文献   

12.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2003; 32(15):2451. Multiple active–passive tuned mass dampers (MAPTMD) consisting of many active–passive tuned mass dampers (APTMDs) with a uniform distribution of natural frequencies have been, for the first time here, proposed for attenuating undesirable oscillations of structures under the ground acceleration. The MAPTMD is manufactured by keeping the stiffness and damping coefficient constant and varying the mass. The control forces in the MAPTMD are generated through keeping the identical displacement and velocity feedback gain and varying the acceleration feedback gain. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the MAPTMD (i.e. through implementation of Min.Min.Max.DMF), the optimum parameters of the MAPTMD are investigated to delineate the influence of the important parameters such as mass ratio, total number, normalized acceleration feedback gain coefficient and system parameter ratio on the effectiveness (i.e. Min.Min.Max.DMF) and robustness of the MAPTMD. The optimum parameters of the MAPTMD include the optimum frequency spacing, average damping ratio and tuning frequency ratio. Additionally, for the sake of comparison, the results for a single APTMD are also taken into account in the present paper. It is demonstrated that the proposed MAPTMD can be employed to significantly reduce the oscillations of structures under the ground acceleration. Also, it is shown that the MAPTMD can render high robustness and has better effectiveness than a single APTMD. In particularly, if and when requiring a large active control force, MAPTMD is more promising for practical implementations on seismically excited structures with respect to a single APTMD. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
平面不规则基础隔震结构抗扭设计研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对平面不规则结构在水平地震作用下的振动特性,通过调整隔震层隔震支座的布置,得到3种不同工况的隔震层刚心与上部结构质心、刚心相对位置关系,分别以楼层位移和层间位移为指标的扭转位移比,作为平面不规则基础隔震结构扭转响应指标,利用弹塑性时程分析方法,通过对3种不同工况的扭转指标对比分析研究,提出适用于平面不规则基础隔震结构的抗扭设计方法。结果表明:对于平面不规则结构,应在保证隔震层扭转位移比小于1.2的基础上,使隔震层的刚心和上部结构的刚心分别位于上部结构质心的两侧,可有效控制上部结构的扭转。  相似文献   

15.
大底盘多塔超过一定高度时属于复杂超高限结构,这类结构风工程研究多涉及风洞试验或理论研究,过程复杂且应用局限。以宁夏悦海新天地为工程背景,在ETABS建立悦海新天地双塔模型为风控对象。在空间相关性基础上,以自回归过滤技术模拟10a、50a和100a重现期风压下随机脉动风载。由相关资料确定研究对象最不利风向角,在该风向角下动力输入模拟脉动风载。对双塔结构分塔定义,输出T1和T2两个方向风振响应。结合工程提出在设备层布设5种不同黏滞阻尼器位移增效机构,确定最优安装形式。并对比在设备层以最优安装形式布设黏滞阻尼器位移增效机构、顶层布设多调谐质量阻尼器和混合控制法的减振效果。结果表明:3种风振控制措施均有效衰减结构风致振动,其中混合控制法为优控方案。  相似文献   

16.
史鹏飞  吴斌 《地震学刊》2009,(3):300-305
对拟负刚度阻尼减振结构的动力特性与减振效果进行了研究。首先,证明了采用拟负刚度控制方法时,结构响应与外荷载之间满足齐次性;其次,对拟负刚度阻尼减振结构的加速度放大系数和位移放大系数进行了研究,并与粘滞阻尼减振结构的加速度放大系数和位移放大系数进行了比较;最后,对地震荷栽作用下拟负刚度阻尼减振结构的减振效果进行了分析。研究结果表明:当外荷载与结构的频率比大于1或结构的周期较长时,拟负刚度控制对结构绝对加速度的控制效果要好于粘滞阻尼减振结构的控制效果,对结构位移的控制效果要差于粘滞阻尼减振结构的控制效果。  相似文献   

17.
This paper proposes a semiactive control system to reduce the coupled lateral and torsional motions in asymmetric buildings subjected to horizontal seismic excitations. Magnetorheological (MR) dampers are applied as semiactive control devices and the control input determination is based on a clipped‐optimal control algorithm which uses absolute acceleration feedback. The performance of this method is studied experimentally using a 2‐story building model with an asymmetric stiffness distribution. An automated system identification methodology is implemented to develop a control‐oriented model which has the natural frequencies observed in the experimental system. The parameters for the MR damper model are identified using experimental data to develop an integrated model of the structure and MR dampers. To demonstrate the performance of this control system on the experimental structure, a shake table is used to reproduce an El Centro 1940 N–S earthquake as well as a random white noise excitation. The responses for the proposed control system are compared to those of passive control cases in which a constant voltage is applied to the MR damper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Timber structures are characterized by a pinching phenomenon that leads to reduced dissipative capability. A few hysteretic models have been proposed to simulate the mechanical behavior of timber structures, among which the one composed of a bilinear element and a slip element in parallel has been popular in practice. Based on this model, this paper expands on the existing seismic control design methodology to determine the capacity of hysteretic dampers for multi-story timber structures. The equivalent linearization method for a single-degree-of-freedom timber structure with added hysteretic damper is established and is verified through nonlinear timber history analysis over a wide range of structural parameters. The design formulas for determining the damper capacity for a multi-degree-of-freedom system are derived, based on the concept of adjusting the distribution of equivalent stiffness of structure. The seismic control design is applied to many buildings with randomly generated parameters and the effectiveness is confirmed through a nonlinear time history analysis with four sets of seismic excitations. An extended study has shown that the shear force pattern plays an important role in the seismic control design results and thus the performance of structures. The effectiveness of the control of residual deformations by adding dampers is also studied.  相似文献   

19.
The newly proposed mega sub-controlled structure system(MSCSS) and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of mega frame structures. However, there is still a need for improvement to its basic structural arrangement. In this project, an advanced, reasonable arrangement of mega sub-controlled structure models, composed of three mega stories with different numbers and arrangements of substructures, are designed to investigate the control performance of the models and obtain the optimal model configuration(model with minimum acceleration and displacement responses) under strong earthquake excitation. In addition, the dynamic parameters that affect the performance effectiveness of the optimal model of MSCSS are studied and discussed. The area of the relative stiffness ratio RD, with different mass ratio MR, within which the acceleration and displacement of the optimal model of MSCSS reaches its optimum(minimum) value is considered as an optimum region. It serves as a useful tool in practical engineering design. The study demonstrates that the proposed MSCSS configuration can efficiently control the displacement and acceleration of high rise buildings. In addition, some analytical guidelines are provided for selecting the control parameters of the structure.  相似文献   

20.
The effectiveness of viscous dampers in mitigating the seismic excitation impacts upon building structures has been widely proved. Recently, with reference to the specific case of equal mass, equal stiffness, shear-type structures, the authors developed a direct practical procedure which gives the mechanical characteristics of the manufactured viscous dampers capable of providing the frame structure with a prescribed value of the first damping ratio. In this paper, a comprehensive rational framework is presented, which allows to formally extend the validity of the proposed procedure to the more realistic case of a generic moment-resisting frame structure. Also the influence of various lateral stiffness distributions is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号