首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-sensitive technique to detect O(1S) atoms using vacuum ultraviolet laser-induced fluorescence (VUV-LIF) spectroscopy has been applied to study the O(1S) production process from the UV photodissociation of O3, N2O, and H2O2. The quantum yields for O(1S) formation from O3 photolysis at 215 and 220 nm are determined to be (1.4 ± 0.4) × 10−4 and (5 ± 3) × 10−5, respectively. Based on thermochemical considerations, the O(1S) formation from O3 photolysis at 215 and 220 nm is attributed to a spin-forbidden process of O(1S)+O2(X3Σg ). Analysis of the Doppler profile of O(1S) produced from O3 photolysis at 193 nm also indicates that the O(1S) atoms are produced from the spin-forbidden process. In the photolysis of N2O and H2O2 at 193 nm, no discernible signal of O(1S) atoms has been detected. The upper limit values of the quantum yields for O(1S) production from N2O and H2O2 photolysis at 193 nm are estimated to be 8 × 10−5 and 3 × 10−5, respectively. Using the experimental results, the impact of the O(1S) formation from O3 photolysis on the atmospheric OH radical formation through the reaction of O(1S)+H2O has been estimated. The calculated results show that the contribution of the O(1S)+H2O reaction to the OH production rate is ∼2% of that of the O(1D)+H2O reaction at 30 km altitude in mid-latitude. Implications of the present laboratory experimental results for the terrestrial airglow of O(1S) at 557.7 nm have also been discussed.  相似文献   

2.
For atmospheric photochemistry, clouds can significantly affect actinic flux distributions. In this paper, we examine the effects of convective clouds on the three-dimensional distribution of the spectral actinic flux and on photolysis frequencies for various chemical species. Three-dimensional solutions of the UV-VIS radiative transfer equation are produced using the Spherical Harmonic Discrete Ordinary Method solution technique. This solver uses as input the 3-D cloud characteristics simulated by a dynamical cloud model. The ultraviolet and visible spectra are divided into 5 intervals in order to explore the wavelength dependency of the cloud effect on the actinic flux. Results show that the distribution of the actinic flux over the cloud domain is far from homogeneous and depends primarily on the cloud extinction associated with the hydrometeors. Maximum actinic flux is found at the top edge of the cloud and is related to scattering by ice crystals. The actinic flux is enhanced by a factor of 2 to 5, compared to clear air values, above, at the top edge, and around the cloud. The 3-D actinic flux is used to calculate the photolysis rates for some chemical species (e.g. NO2, O3, and HCHO). Forcomputing photolysis rates, a discretized spectral representation of the absorption wavelengths is used in the model. The calculated photolysis rates are distributed inhomogeneously throughout the cloud, and maxima are found in regions where the actinic flux is enhancement is large. Temperature effects on absorption are found in the photolysis frequencies of some species. Finally, the potential importance of this photolysis enhancement on photochemistry is studied using box model simulations. Results show that enhanced OH concentrations are found in the upper troposphere (120–200%) overthe clouds and changes in ozone production rates (+15%) are obtained in quasi-steady state conditions.  相似文献   

3.
The latitudinal variation of the photolysis frequency of ozone to O(1D) atoms, J(O1D), was measured using a filter radiometer during the cruise ANT VII/1 of the research vessel Polarstern in September/October 1988. The J(O1D) noon values exhibited a maximum of 3.6×10-5 s-1 (2 sr) at the equator and decreased strongly towards higher latitudes. J(O1D) reached highest values for clean marine background air with low aerosol load and almost cloudless sky. The J(O1D) data, measured under these conditions and a temperature of 295 K, can be expressed by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaacI% cacaqGpbWaaWbaaSqabeaaiiaacqWF8baFaaGccaqGebGaaeykaiaa% bccacqWF9aqpcaqGGaGaaeyzaiaabIhacaqGWbGaaeiiaiaabUhacq% GHsislcaaI4aGaaiOlaiaaicdacaaIYaGaeyOeI0IaaGioaiaac6ca% caaI4aGaaiiEaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZa% aaaOGaaeiiaiaabIhacaqGGaGaam4uaiabgUcaRiaaiodacaGGUaGa% aGinaiaacIhacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOnaa% aakiaadofadaahaaWcbeqaaiaaikdaaaGccaGG9bGaaeikaiaaboha% daahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaaaa!5EE9!\[J({\text{O}}^| {\text{D) }} = {\text{ exp \{ }} - 8.02 - 8.8x10^{ - 3} {\text{ x }}S + 3.4x10^{ - 6} S^2 \} {\text{(s}}^{ - 1} )\] where S represents the product of the overhead ozone column (DU) and the secant of the solar zenith angle. The meridional profile of the primary OH radical production rate P(OH) was calculated from the J(O1D) measurements and simultaneously recorded O3 and H2O mixing ratios. While the latitudinal distribution of J(O1D) and water vapour was nearly symmetric to the equator, high tropospheric ozone levels up to 40 ppb were observed in the Southern Hemisphere, SH, resulting in higher P(OH) in the SH.  相似文献   

4.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season.  相似文献   

5.
An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m–2 d–1 for the horizontal advection and a mean daily loss of 2.5 gC m–2d–1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.  相似文献   

6.
Numerical schemes for the calculation of photolysis rates are usually employed in simulations of stratospheric chemistry. Here, we present an improvement of the treatment of the diffuse actinic flux in a widely used stratospheric photolysis scheme (Lary and Pyle, 1991). We discuss both the consequences of this improvement and the correction of an error present in earlier applications of this scheme on the calculation of stratospheric photolysis frequencies. The strongest impact of both changes to the scheme is for small solar zenith angles. The effect of the improved treatment of the diffuse flux is most pronounced in the lower stratosphere and in the troposphere. Overall, the change in the calculated photolysis frequencies in the region of interest in the stratosphere is below about 20%, although larger deviations are found for H2O, O2, NO, N2O, and HCl.  相似文献   

7.
采用漂浮通量箱法和扩散模型法同步地观测了模拟内陆水体在不同条件下的CH4和N2O的水-气交换通量,旨在比较两类方法取得结果的异同。结果显示:这两类方法所测得的绝大多数CH4排放通量都与水中溶解氧呈显著线性负相关(显著性系数P0.001)。同时N2O排放通量与表层水温及水中铵态氮、硝态氮、溶解碳和溶解氧的关系可用包含所有上述水环境因素的Arrhenius动力学方程来表达,这些因素可以共同解释86%~90%的N2O通量变化(P0.0001),且不同方法测定的N2O通量的表观活化能和对表层水温的敏感系数分别介于47~59 kJ mol-1和1.92~2.27之间;扩散模型法所获得的CH4和N2O通量分别是箱法测定值的13%~175%和15%~240%,差异程度因模型而异;不同模型取得通量间相差20%~1200%,平均相差2.3倍。上述结果表明:仅用一种模型方法来取得CH4或N2O排放通量易形成较大偏差;不同扩散模型法和箱法测定的通量在反映CH4和N2O排放的内在规律方面具有一致性,但它们对真实气体通量的测量是否都存在不同程度的系统误差,尚需进一步研究。  相似文献   

8.
The rate of formation of N2O via the thermochemically favourable reaction of NO3(A2E) with N2, which would represent an additional source of stratospheric N2O and therefore NOx, has been investigated. Mixtures of NO2+O3 in synthetic air were photolysed at 662 nm. No evidence was found for the production of N2O via this pathway, the upper limit for the quantum yield of nitrous oxide formation being % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqOXdy2aaSbaaSqaamaaBaaameaadaWgaaqaamaaBaaabaGaamOt% amaaBaaabaGaaGOmaiaad+eaaeqaaaqabaaabeaaaeqaaaWcbeaatu% uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaOGae8hzIqOa% aGimaiaac6cacaaI2aGaaiyjaaaa!4E60!\[\phi _{_{_{_{N_{2O} } } } } \le 0.6\% \]. However, a dark conversion of NOx to N2O was observed and is attributed tentatively to a heterogeneous reaction on the wall of the reaction vessel. This process, although most likely to be insignificant in the atmosphere, needs to be taken into consideration in laboratory investigations or field studies of N2O emission or deposition.  相似文献   

9.
The impact of natural and anthropogenicnon-methane hydrocarbons (NMHC) on troposphericchemistry is investigated with the global,three-dimensional chemistry-transport model MOGUNTIA.This meteorologically simplified model allows theinclusion of a rather detailed scheme to describeNMHC oxidation chemistry. Comparing model resultscalculated with and without NMHC oxidation chemistryindicates that NMHC oxidation adds 40–60% to surfacecarbon monoxide (CO) levels over the continents andslightly less over the oceans. Free tropospheric COlevels increase by 30–60%. The overall yield of COfrom the NMHC mixture considered is calculated to beabout 0.4 CO per C atom. Organic nitrate formationduring NMHC oxidation, and their transport anddecomposition affect the global distribution of NO x and thereby O3 production. The impact of theshort-lived NMHC extends over the entire tropospheredue to the formation of longer-lived intermediateslike CO, and various carbonyl and carboxyl compounds.NMHC oxidation almost doubles the net photochemicalproduction of O3 in the troposphere and leads to20–80% higher O3 concentration inNO x -rich boundarylayers, with highest increases over and downwind ofthe industrial and biomass burning regions. Anincrease by 20–30% is calculated for the remotemarine atmosphere. At higher altitudes, smaller, butstill significant increases, in O3 concentrationsbetween 10 and 60% are calculated, maximizing in thetropics. NO from lightning also enhances the netchemical production of O3 by about 30%, leading to asimilar increase in the global mean OH radicalconcentration. NMHC oxidation decreases the OH radicalconcentrations in the continental boundary layer withlarge NMHC emissions by up to 20–60%. In the marineboundary layer (MBL) OH levels can increase in someregions by 10–20% depending on season and NO x levels.However, in most of the MBL OH will decrease by10–20% due to the increase in CO levels by NMHCoxidation chemistry. The large decreases especiallyover the continents strongly reduce the markedcontrasts in OHconcentrations between land and oceanwhich are calculated when only the backgroundchemistry is considered. In the middle troposphere, OHconcentrations are reduced by about 15%, although dueto the growth in CO. The overall effect of thesechanges on the tropospheric lifetime of CH4 is a 15%increase from 6.5 to 7.4 years. Biogenic hydrocarbonsdominate the impact of NMHC on global troposphericchemistry. Convection of hydrocarbon oxidationproducts: hydrogen peroxides and carbonyl compounds,especially acetone, is the main source of HO x in theupper troposphere. Convective transport and additionof NO from lightning are important for the O3 budgetin the free troposphere.  相似文献   

10.
The heterogeneous removal of N2O5 by sulphuric acid aerosols as been invoked to explain the decline of mid-latitude ozone in the last decade. We have used a photochemical model to study measurements of odd-nitrogen made by Spacelab 3. The gas-phase photochemical model overestimates the amount of N2O5 present. The loss of N2O5 by aerosols does reduce N2O5, but is likely to be slower than assumed in WMO (1992). The sunset measurements at 25.5 km cannot be explained by heterogeneous loss of N2O5 and is more likely to be due to a faster photolysis than assumed. New absorption cross-sections of HNO3 reduce the photolysis of HNO3 so that the model with gas-phase chemistry only gives better agreement at 19 km, than a model including heterogeneous chemistry.  相似文献   

11.
Nitrous oxide (N2O) fluxes for south-easternAustralia have been estimated using a combination ofthe in situ N2O and radon (Rn) measurementsmade at the Cape Grim Baseline Air Pollution Station,in north-west Tasmania. The average N2O fluxesfrom the south-eastern mainland of Australia and fromTasmania over the nine years of record analysed (1985–1993) have beenfound to be 130 ± 30 kgN km-2yr-1 and 160 ± 45 kgN km-2yr-1respectively. These fluxes are larger than expectedand a significant dependence of the flux on rainfallis observed, with greater fluxes in the spring (October–December) andduring periods of positive SouthernOscillation Index. A large flux (1,300 ± 500kgN km-2 yr-1) from a nearby island (KingIsland) was also estimated from the data record,indicating a strong source, although the small size ofthe island means that it is not a significant sourcefor Australia.  相似文献   

12.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

13.
An instrument for measuringtropospheric OH/HO2 radicals by laser-inducedfluorescence developed in our laboratory is presentedin detail. It is based on FAGE (fluorescence assay bygas expansion) technique and OH is both excited anddetected at 308 nm corresponding to its A-X(0,0) band.The alignment of the laser beam, the design of thesample gas inlet, and the devices for the fluorescencedetection are optimized so as to reduce the backgroundsignal while keeping the OH sensitivity as high aspossible. A thermalized position of the expanding gasbeam is probed in our system and we did not observe asevere decrease of the HOx sensitivities under humidconditions. An optical fiber is used for deliveringthe laser light to the fluorescence detection cellmounted outside at a high position. Thus the laserbeam alignment is by far simplified and is made highlyreproducible, once settled properly. For thecalibration, two methods are employed: a system withlaser absorption measurements of OH and a system ofsimultaneous photolysis of H2O and O2. Thecalibration factors are compared well within thecombined uncertainty. Using the latter system, theconversion efficiency of HO2 to OH by NO additionis measured to be around 90%. The detection limitsfor OH and HO2 (S/N = 2) are estimated to be3.3 × 106 and 3.6 × 106cm–3 at noon,respectively, with an integration time of 1 min. Theresults of test observations at our institute are alsopresented.  相似文献   

14.
A discharge-flow tube coupled with resonance fluorescence and chemiluminescence detection has been used to investigate the reactions IO + HO2 products (1) and IO + O(3P) I + O2(2), at T = 296 ± 1 K and P = 1.7 - 2 Torr. The rate constants k-1 and k2 have been found to be (7.1 ± 1.6) × 10-11 cm3 molecule-1 s-1 and (1.35 ± 0.15) × 10-10 cm3 molecule-1 s-1, respectively.  相似文献   

15.
Beryllium-7 Deposition and Its Relation to Sulfate Deposition   总被引:2,自引:0,他引:2  
Deposition of 7Be, a cosmogenic radionuclide, was observed at the Meteorological Research Institute in Tsukuba, Japan from 1986 to 1993 and compared with those of several chemical species observed in Tsukuba over the same period. We found a correlation between the monthly depositions of 7 Be and SO 4 2 -, a major acidic species. The correlation was especially strong for late spring and fall, when both species had high depositional fluxes. This correlation was also observed in precipitation samples collected daily in 1992 at the same site. The cause of this correlation is discussed in connection with the fact that the stratospheric aerosol is composed largely of SO 4 2 -. 7 Be is produced in the upper atmosphere, and detection of 7Be, especially in spring and fall in Japan, can be regarded as detection of stratospheric aerosol. However, we conclude that the bulk of the SO 4 2 - observed did not have a stratospheric or an upper tropospheric origin. The correlation, therefore, may present a new question regarding acidic deposition: Why does the deposition of stratospheric aerosol in Japan coincide with that of nss-SO 4 2 - originally from anthropogenic sources on the Earth's surface?  相似文献   

16.
We present a fast and well documented two-stream algorithm for radiative transfer and particle transport in vertically inhomogeneous, layered media. The physical processes considered are internal production (emission), scattering, absorption, and Lambertian reflection at the lower boundary. The medium may be forced by internal sources as well as by parallel or uniform incidence at the top boundary. This two-stream algorithm is based on a general purpose multi-stream discrete ordinate algorithm released previously. It incorporates all the advanced features of this well-tested and unconditionally stable algorithm, and includes two new features: (i) corrections for spherical geometry, and (ii) an efficient treatment of internal sources that vary rapidly with depth. It may be used to compute fluxes, flux divergences and mean intensities (actinic fluxes) at any depth in the medium. We have used the numerical code to investigate the accuracy of the two-stream approximation in vertically inhomogeneous media. In particular, computations of photodissociation and warming/cooling rates and surface fluxes of ultraviolet and visible radiation for clear, cloudy and aerosol-loaded atmospheres are presented and compared with results from multi-stream computations. The O3 +hv O(1D) + O2 and O3 +hv O(3P) + O2 photodissociation rates were considered for solar zenith angles between 0.0–70.0° and surface albedos in the range 0.0–1.0. For small and moderate values of the solar zenith angle and the surface albedo the error made by the two-stream approximation is generally smaller, <10%, than the combined uncertainty in cross sections and quantum yields. Surface ultraviolet and visible fluxes were calculated for the same range of solar zenith angles and surface albedos as the photodissociation rates. It was found that surface ultraviolet and visible fluxes may be calculated by the two-stream approximation with 10% error or less for solar zenith angles less than 60.0° and surface albedos less than 0.5. For large solar zenith angles and/or large surface albedos, conditions typical at high latitudes, the error made by the two-stream approximation may become appreciable, i.e. 20% or more for the photodissociation rates in the lower stratosphere and for ultraviolet and visible surface fluxes for large surface albedos. The two-stream approximation agrees well with multi-stream results for computation of warming/cooling rates except for layers containing cloud and aerosol particles where errors up to 10% may occur. The numerical code provides a fast, well-tested and robust two-stream radiative transfer program that can be used as a software tool by aeronomers, atmospheric physicists and chemists, climate modellers, meteorologists, photobiologists and others concerned with radiation or particle transport problems. Copies of the FORTRAN77 program are available to interested users.  相似文献   

17.
In a nighttime system and under relatively dry conditions (about 15 ppm H2O), the reaction mixture of NO2, O3, and NH3 in purified air turns out to result in the formation of nitrous oxide (N2O). The experiments were performed in a continuous stirred flow reactor, in the concentration region of 0.02–2 ppm.N2O is thought to arise through the heterogeneous reaction of gaseous N2O5 and absorbed NH3 at the wall of the reaction vessel % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuaacqWFOaakcqWFobGtcqWFibasdaWgaaWcbaGae83m% amdabeaakiab-LcaPmaaBaaaleaacqWFHbqyaeqaaOGaey4kaSIaai% ikaiab-5eaonaaBaaaleaacqWFYaGmaeqaaOGae83ta80aaSbaaSqa% aiab-vda1aqabaGccaGGPaWaaSbaaSqaaiaadEgaaeqaaOGaeyOKH4% Qae8Nta40aaSbaaSqaaiab-jdaYaqabaGccqWFpbWtcqGHRaWkcqWF% ibascqWFobGtcqWFpbWtdaWgaaWcbaGae83mamdabeaakiabgUcaRi% ab-HeainaaBaaaleaacqWFYaGmaeqaaOGae83ta8eaaa!59AC!\[(NH_3 )_a + (N_2 O_5 )_g \to N_2 O + HNO_3 + H_2 O\]In principle, there is competition between this reaction and that of adsorbed H2O with N2O5, resulting in the formation of HNO3. At high water concentrations (RH>75%), no formation of N2O was found. Although the rate constant of adsorbed NH3 with gaseous N2O5 is much larger than that of the reaction of adsorbed H2O with gaseous N2O5, the significance of the observed N2O formation for the outside atmosphere is thought to be dependent on the adsorption properties of H2O and NH3 on a surface. A number of NH3 and H2O adsorption measurements on several materials are discussed.  相似文献   

18.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

19.
Previous experiments in the 400–500 nm region (Coquart et al., 1995) have been extended to the 200–400 nm region to determine the absorption cross-sections of NO2 at 220 K. The NO2 and N2O4 cross-sections are obtained simultaneously from a calculation applied to the data resulting from measurements at low pressures. A comparison between the NO2 cross-sections at 220 K and at ambient temperature shows that the low temperature cross-sections are generally lower, except in the region of the absorption peaks. Comparisons are also made with previous data at temperature close to 220 K.  相似文献   

20.
We use a global atmospheric chemistry transport model to study the possible influence of aqueous phase reactions of peroxynitric acid (HNO4) on the concentrations and budgets of NOx, SOx, O3 and H2O2. Laboratory studies have shown that the aqueous reaction of HNO4aq withHSO 3aq, and the uni-molecular decomposition of the NO4 anion to form NO2 (nitrite) occur on a time scale of about a second. Despite a substantial contribution of the reaction of HSO 3aq with HNO4aq to the overall in-cloud conversion of SO2 to SO4 2–, a simultaneous decrease of other oxidants (most notably H2O2) more than compensated the increase in SO4 2– production. The strongest influence of heterogeneous HNO4 chemistry was found in the boundary layer, where calculated monthly average ozone concentrations were reduced between 2% to 10% andchanges of H2O2 between –20% to +10%compared to a simulation which ignores this reaction. Furthermore, SO2 was increased by 10% to 20% and SO4 2–depleted by up to 10%. Since the resolution of our global model does not enable a detailed comparison with measurements in polluted regions, it is not possible to verify whether considering heterogeneous HNO4 reactions results in a substantial improvement of atmospheric chemistry transport models. However, the conversion of HNO4 in the aqueous phase seems to be efficient enough to warrant further laboratory investigations and more detailed model studies on this topic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号