首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
An ocean wind-wave prediction model MRI-II is developed on the basis of the energy balance equation which contains five energy transfer processes, namely, the input by the wind, the nonlinear transfer among the components of windsea by resonant wave-wave interactions, wave breaking, frictional dissipation and the effect of opposing winds. The nonlinear energy transfer is expressed implicitly together with the wind effect by Toba's one-parameter representation of windsea, but neither swell-swell nor swell-windsea resonant interactions are considered. Hypothetical assumptions are introduced to describe wave breaking effects. The numerical constant required in the assumptions of wave breaking is determined through trial test runs for a hindcast performed on the North-western Pacific Ocean. The significant wave height, one-dimensional wave spectrum and two-dimensional wave spectrum hindcasted by this new model are in more reasonable agreement with observations than those obtained with our old model MRI.  相似文献   

2.
A new growth equation for wind waves of simple spectrum is presented upon three basic concepts. The period and the wave height of significant waves in dimensionless forms, which are considered to correspond to the peak frequency and the energy level, respectively, are used as representative quantities of wind waves. One of the three basic concepts is the concept of local balance, and the other two concern the acquisition of wave energy and the dissipation of wave energy, respectively. It is shown from some actual data that the equation, together with two universal constants concerning the acquisition and the dissipation of wave energy (B=6.2×10?2 andK=2.16×10?5, respectively), is applied universally to wide ranges of wind waves from those in a wind-wave tunnel to fully developed sea in the open ocean. “The three-second power law for wind waves of simple spectrum”, and a few relations as the lemmas, are derived, such that the mean surface transport due to the orbital motion of wind waves is always proportional to the friction velocity in wind, and that the steepness is inversely proportional to the root of the wave age. It is also derived that the portion of wind stress which directly enters the wind waves decreases exponentially with increasing wave age and is 7.5 % of the total wind stress for very young waves. Also, equations are presented as to the increase of momentum of drift current, and as to the supply of turbulent energy by wind waves into the upper ocean.  相似文献   

3.
风作用于水面产生风浪, 其中由于波流紊动产生的动量和能量的交换机制是一个很复杂的过程。风应力一般用来描述这种能量交换, 可以分为3个部分: 水面的剪切力、波生应力以及紊动应力。采用一种有效的非线性波流分离方法——NSFM(Nonlinear Stream Function Method)对波流运动的动量和能量输移进行定性描述。构造能够有效表达非线性波浪的解析流函数, 摄动求解使其满足拉普拉斯方程、动力边界条件和运动边界条件, 结合实验室风浪数据, 分离出波生速度场。通过交叉谱分析, 得到波生雷诺应力在不同风速下对风应力的贡献。结果表明: NSFM对不同工况条件下的风浪的处理具有较高的精度, 模型适应性良好; 且风速越大, 波生应力沿着水深衰减得越快, 且自由面波生应力在动量输移中的比重会逐渐减弱。  相似文献   

4.
Rainfall effect on wind waves and the turbulence beneath air-sea interface   总被引:1,自引:0,他引:1  
Rainfall effects on wind waves and turbulence are investigated through the laboratory experiments in a large wind-wave tank. It is found that the wind waves are damped as a whole at low wind speeds, but are enhanced at high wind speeds. This dual effect of rain on the wind waves increases with the increase of rain rate, while the influence of rainfall-area length is not observable. At the low wind speed, the corresponding turbulence in terms of the turbulent kinetic energy (TKE) dissipation rate is significantly enhanced by rain- fall as the waves are damped severely. At the high wind speed, the augment of the TKE dissipation rate is suppressed while the wind waves are enhanced simultaneously. In the field, however, rainfall usually hin- ders the development of waves. In order to explain this contradiction of rainfall effect on waves, a possibility about energy transfer from turbulence to waves in case of the spectral peak of waves overlapping the inertial subrange of turbulence is assumed. It can be applied to interpret the damping phenomenon of gas trans- fer velocity in the laboratory experiments, and the variation of the TKE dissipation rates near sea surface compared with the law of wall.  相似文献   

5.
This paper presents the results of observation on the development of wind-waves which were generated in a lake water about 420 cm deep with a fetch 12 km long. Measurements of surface elevation were carried out at the end of an observational pier where the water depth was 80 cm. The wave momentum flux, i.e., the growth rate of the wave momentum, was estimated from both significant waves and power spectral densities for the wave records. The values obtained by the two ways accorded fairly well and they were 57 % as large as the wind stress measured simultaneously. The exponential growth rate of spectral densities for a frequency component was in good accord with that observed bySnyder andCox (1966) and by others. If these growth rates are applied to all the components of the spectrum, the wave momentum flux must exceed the wind stress. This cannot explain the experimental results nor can be physically accepted. The difference of spectral densities between the two successive runs showed that the increase of spectral densities was. limited in several bands of frequency. The phenomena are discussed in relation with the overshoot-undershoot effects studied byBarnett andSutherland (1968).Observational results suggest that the spectral growth of a certain component is closely related to the spectral densities of other components. Energy exchange among componented waves has not been considered in the theories for generation and development of wind-waves established by Phillips, Miles and others.New generation mechanism suggested byLonguet-Higgins (1969) was found to be able to describe the observed growth rates of the form(f)={(1/2)(t–t1/2)}2: the spectral density(f) was proportional to the square of durationt. However, the mechanism can not explain the overshoot-undershoot effects peculiar to the equilibrium spectrum of windwaves.Three frequencies characterizing the discrete distributions of frequency bands where spectral densities increased were examined and three waves corresponding to these frequencies were found to be satisfying the resonance conditions for the wave-wave interactions among three sinusoidal wave trains as studied byPhillips (1960),Longuet-Higgins (1962) andBenny (1962). The interactions are suggested to predict well both the spectral growth proportional to squares of duration and the ceaseless oscillations of spectral densities in an equilibrium spectrum.  相似文献   

6.
A “slip law” connects the excess velocity or “slip” of a wind-blown water surface, relative to the motion in the middle of the mixed layer, to the wind stress, the wind-wave field, and buoyancy flux. An inner layer-outer layer model of the turbulent shear flow in the mixed layer is appropriate, as for a turbulent boundary layer or Ekman layer over a solid surface, allowing, however, for turbulent kinetic energy transfer from the air-side via breaking waves, and for Stokes drift. Asymptotic matching of the velocity distributions in inner and outer portions of the mixed layer yields a slip law of logarithmic form, akin to the drag law of a turbulent boundary layer. The dominant independent variable is the ratio of water-side roughness length to mixed layer depth or turbulent Ekman depth. Convection due to surface cooling is also an important influence, reducing surface slip. Water-side roughness length is a wind-wave property, varying with wind speed similarly to air-side roughness. Slip velocity is typically 20 times water-side friction velocity or 3% of wind speed, varying within a range of about 2 to 4.5%. A linearized model of turbulent kinetic energy distribution shows much higher values near the surface than in a wall layer. Nondimensional dissipation peaks at a value of about eight, a short distance below the surface.  相似文献   

7.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

8.
The structure of the turbulent boundary layer underneath laboratory wind waves was studied by using a combination of a high-sensitivity thermometer array with a two-component sonic flowmeter. The temperature fluctuations are used to detect movements of water parcels, with temperature as a passive quantity. The turbulence energy was dominant in the frequency range (0.01 0.1 Hz), which was much smaller than the wind-wave frequency (2 5 Hz), and in which the turbulence was anisotropic. There was a frequency range (0.2 2 Hz for velocity, 0.2 5 Hz for temperature fluctuation) where the turbulence was isotropic and had a –5/3 slope in the energy spectrum. These points are the same as those in previous works. However, by analyses of the time series by using a variable-interval time-averaging technique (VITA), it has been found that conspicuous events in this main turbulence energy band are the downward bursting from the vicinity of the water surface. Thus the structure of the water layer underneath the wind waves has characters which are similar to the familiar turbulent boundary layer over a rough solid wall, as already conceived. It has been found that, at the same time, the turbulence energy can be related to quantities of the wind waves (the root mean squared water level fluctuation and the wave peak frequency), for different wind and wave conditions. That is, the turbulence underneath the wind waves develops under a close coupling with the wind waves.  相似文献   

9.
The high frequency part (10 Hz50 Hz) of the one-dimensional wave spectrum was measured in a wind-wave channel under accurately controlled conditions. The results are compared with the spectral forms for the capillary range that have been proposed recently byPierson andStacy (1973) andToba (1973). In a general sense, fairly good agreement is found between the present results and those ofPierson andStacy (1973) and ofToba (1973). The spectrum in the capillary range is clearly wind speed dependent, and the spectral density in that range increases with increasing wind speed.However, closer examination shows systematic deviations of the present results from those previously proposed, particularly for high speed winds.  相似文献   

10.
The mechanism of the development of wind-waves will be proposed on the basis of the observed wave spectra in the wind tunnels and at Lake Biwa (Imasato, 1976). It consists of two aspects: One is that the air flow over the wind-waves transfers momentum concentratively to the steepest component waves and the other is that the upper limit of the growth of a wave spectral density is given by the ultimate value in the slope spectral density. The first aspect means that the wave field has the momentum transfer filter on receiving the momentum from the air flow. Wind-waves in the stage of sea-waves receive the necessary amount of momentum by the form drag,e.g. according to the Miles' (1960) inviscid mechanism, through a very narrow frequency region around a dominant spectral peak. On the other hand, wind-waves in the stage of initial-wavelets receive it according to the Miles' (1962a) viscous model through a fairly broad frequency region around the peak. The upper limit ofS max developing according to viscous mechanism is given byS max =6.40×10–4 k max –2cm2s andS max =2.03C(f max )–2cm2s(S max is the power density of the wave spectral peak with the frequencyf max ,k max is the wave number corresponding to the frequencyf max andC is the phase velocity).From the second aspect, the upper limit of the growth of wave spectral density is given by 33.3f –4cm2s in the frequency region of late stage of sea-waves. Therefore, the spectral peak, which has the largest value in the slope spectral density in the component waves of the wave spectrum, rises high over the line 4.15f –5cm2s. The energy is transported from the spectral peak to the high frequency part and to the forward face of a wave spectrum by nonlinear wave-wave interaction. This nonlinearity is confirmed by the bispectra calculated from the observed wind-wave data. In the stage of sea-waves, nonlinear rearrangement of the wave energy comes from a narrow momentum transfer filter, and, in the stage of initial-wavelets, it comes mainly from small corrugations and small steepness of the wave field.  相似文献   

11.
在Gaussian波场基础上,推导出以P-M谱和平均JONSWAP谱代表的充分成长和有限风区的深水风浪平均波长与平均波周期之间的关系为.推导中运用了Rice跨零点问题的解并通过滑动时间平均技术估计4阶谱矩.在风浪水槽进行了实验,实验结果与有限风区下推导出的关系相比较,符合较好.  相似文献   

12.
We investigate the role of different physical mechanisms in the generation of the capillary-gravity wind wave spectrum. This spectrum is calculated by integrating a nonstationary kinetic equation until the solution becomes stready. The mechanisms of spectrum generation under consideration include three-wave interactions, viscous dissipation, energy influx from wind, nonlinear dissipation, and the generation of a parasitic capillary ripple. The three-wave interactions are taken into account as an integral of collisions without additional simplifications. It is shown that the three-wave interactions lead to solution instability if the kinetic equation takes into account only linear sources. To stabilize the solution, the kinetic equation should incorporate a nonlinear dissipation term, which in the range of short gravity waves corresponds to energy losses during wave breaking and microscale wave breaking. In the range of capillary waves, the account of nonlinear dissipation is also needed to ensure a realistic level of the spectrum for large wind velocities. For the steady-state spectrum, the role of three-wave interactions remains essential merely in the range of the minimum of phase velocity, where a trough on the curvature spectrum is formed. At the remaining intervals of the spectrum, the main contribution into the spectral energy balance is provided by the mechanisms of wave injection, nonlinear dissipation, and the generation of parasitic capillaries.  相似文献   

13.
The three-seconds power law for wind waves of simple spectra, already derived byToba (1972 and 1973), may also be derived by introducing surface-wave properties into the form of the rate of energy dissipation in the theory of turbulence. The universal constantB, which was formerly determined empirically as 0.062 is here obtained asB=(2)–3/2=0.0635. Thus wind waves have the duality of turbulence and wave.  相似文献   

14.
This paper analyses 10 years of wave data from the Mediterranean Spanish (Catalan) coast considering the mean wave climate and storm events from the standpoint of wind-wave momentum transfer and wave prediction. The data, registered by a buoy at about 12 km from the coastline, revealed two main groups of wave storms, with NW and E directions. NW storms correspond to a fetch-limited situation since the intense wind blows from land. Low-pressure centres located over the Mediterranean Sea produce easterly storms. Near the coast the eastern winds from the sea are replaced by NW winds coming from meteorological patterns over northern Spain and south-western France. Wave storms are classified and studied to obtain their main features (including spectral width, wave length, wave age and bimodality) and discussed in terms of wind-wave momentum transfer for operational wave predictions. Observations show a complex coastal wave climate. Fetch-limited storms presented smaller spectral widths while varying wind situations presented larger widths due to the presence of bimodal spectra. These wave features are highly relevant for wind–ocean momentum transfer and, thus, for current and wave predictions. The spectral width proved to be a good indicator of sea complexity and is thus applicable for improved wind drag estimations. A new drag coefficient formulation is proposed, based on existing wind dependent drag expressions, but including also spectral wave properties (a spectral width parameter) that highlights the characteristics of wind-wave generation under pre-existing swell. Such a formulation, once properly validated with field observations, is expected to improve wind-wave predictions.  相似文献   

15.
Bispectra of wind-waves in wind tunnels were calculated in order to understand the characteristics of the nonlinear wave-wave interaction in actual wind-wave field. It is shown that the nonlinearity in wind-waves increases in magnitude with the development of wind-waves and that the characteristics of nonlinearity in wind-waves in the early stage of development differ from those in the late stage. It is shown that the bispectra are classified into five types (IV), and that the bispectral type changes from the type I to the type V as the wind-waves develop from the stage of the initial-wavelets to that of the sea-waves. The relations between frequencies of the component waves interacting each other are discussed in each bispectral type.  相似文献   

16.
The formation of a stationary (equilibrium) range in a wind-wave spectrum is investigated by numerical simulation. The equation of evolution of the wind-wave spectrum is solved using the exact calculation of the Hasselmann kinetic integral and involving various modifications of known parameterizations of the mechanisms of wave pumping by wind (In) and of wave dissipation (Dis). It is shown that it is these two mechanisms that are responsible for the shape of the stationary range of the wind-wave spectrum, whereas the nonlinear mechanism plays a stabilizing but subsidiary role. With an appropriate choice of mathematical representations for In and Dis, any known empirical shape of the stationary range of the spectrum can be obtained. During the calculations it is found that, for real wind waves, the known representations of In and Dis do not ensure the existence of the inertial interval required for Kolmogorov-type spectra formation due to the nonlinear interactions between waves.  相似文献   

17.
Energy budget of surface waves in the global ocean   总被引:3,自引:1,他引:2  
Mechanical energy input from atmosphere and losses from wave-breaking dissipation of sea surface waves are estimated by a direct scheme. This scheme is based on the integration in the wavenumber space of the wind input and breaking dissipation source functions of the MASNUM wave model. The global amount of wind energy input, averaged in 2005, is about 57 TW, and the wave-breaking dissipation summed in deep-water is about 33 TW, over a half of the wind energy input. The residual may be dissipated by beach processes. Global distributions of the energy input and breaking dissipation concentrate in the westerlies of the Southern Hemisphere.  相似文献   

18.
Nonlinear properties of wind waves in a wind-wave tunnel are investigated by measuring the probability density distribution of surface elevation. The surface elevation distribution of raw records are found to have a positive skewness (K 3=0.21 to 0.43) and a negative kurtosis (K 4=–0.74 to –0.41) with magnitude depending of fetch and wind speed. The values of skewness are in qualitative agreement with a prediction of the weak interaction theory for a random wave field incorporating the effects of second harmonics (Tayfun, 1980), but the values of kurtosis are different in sign from the prediction.To examine the nonlinear properties of energy containing components, higher harmonic components are excluded from the wave records by using a kind of a band-pass filter. The surface elevation distributions of the filtered waves show a sharp decrease in skewness , but the distributions remain highly non-Gaussian with a large negative kurtosis almost independent of the fetch and wind speed . It is concluded that the negative kurtosis is due to the non-random character of the phase and amplitude among the energy containing components, and that nonlinear interactions occur amongst the energy containing frequencies.  相似文献   

19.
在实验室风浪水槽中进行纯风浪和混合浪波面位移观测,研究波长较长的规则波对风浪能量的影响.本文用混合浪和纯风浪中的风浪显著波的零阶谱矩之比代表混合浪中的风浪与纯风浪能量之比,并以此表征涌浪对风浪能量的影响.研究了该能量比随涌浪波陡S、风区x、波龄倒数u/C、涌浪频率与纯风浪谱峰频率之比fs/fwp的变化规律.结果表明,涌浪对风浪能量的抑制作用随涌浪波陡的增加、波龄倒数的增大及涌浪频率与纯风浪谱峰频率之比的增大而增强.发现该能量比依赖于无因次量R=(1+80(πS)2)1.9(fs/fwp)0.9(u/C)0.27,并拟合得到2者的经验关系.此外,本文实验还发现,在某些情况下,涌浪的存在使风浪能量增加.  相似文献   

20.
Based on the refraction-diffraction theory of irregular waves in the waters of slowly-varying cur-rents and depths,and the generation dissipation theory of wind wave,a model for nonlinear irregular wavesin coastal area is developed.In light of the specific conditions of coastal wave character and engineering ap-plication,a practical mathematical model for the nonlinear irregular waves is presented.with directional spec-trum in coastal area.Coast effect,refraction,whitecapping.bottom friction.current,wind and nonlinearaction are considered in this model.The numerical methods and schemes for wave refraction ray,energy con-servation of propagation,energy balance of the generation and dissipation of wind waves have been studied.Finally,the model is used for the directional wave spectrum computation in the Daya Bay.Compared withthe measured data with 956 wave bouys in the Daya Bay,the model results are in good agreement with themeasured results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号