首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Summary  This paper summarises some of the key results from two European field programmes, WINTEX and LAPP, undertaken in the Boreal/Arctic regions in 1996–98. Both programmes have illustrated the very important role that snow plays within these areas, not only in the determination of energy, water and carbon fluxes in the winter, but also in controlling the length of the summer active season, and hence the overall carbon budget. These studies make a considerable advance in our knowledge of the fluxes from snow-covered landscape and the interactions between snow and vegetation. Also some of the first measurements of greenhouse gas fluxes (carbon dioxide and methane) are reported for the European arctic and sub-arctic. The measurements show a considerable variability across the arctic, with very high instantaneous values from sub-arctic birch and fen areas and extremely low fluxes reported from the polar desert in the high arctic. The overall annual budgets are everywhere limited by the very short active season in these regions. The heat flux over a high latitude boreal forest during late winter was found to be high. At low solar angles the forest shades most of the snow surface, therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. This indicates that in areas with sparse vegetation and low solar angles, absorption of direct solar radiation is due to an apparent vegetation cover, which is much greater than the actual one. The first steps are taken in using these measurements to improve models, both point soil/vegetation/atmosphere transfer schemes and 3D meteorogical models. The results are encouraging; increasing the realism progressively improves the representation of the fluxes. A start is made in developing landscape, or catchment scale models. There seems to be some hope that comparatively simple relationships between evaporation and photosynthesis and leaf area may be sufficiently robust to allow the use of remotely sensed images to investigate the areally averaged exchanges. It is suspected that high latitude regions will experience considerable climatic and environmental change in the coming decades. A well found prediction of how these regions will respond requires a comprehensive knowledge of how vegetation will respond and how the changed vegetation will interact with the snow cover and the atmosphere. The studies from the LAPP and WINTEX programmes presented in this volume are an important contribution to this understanding and provide a useful foundation for future research. Received March 6, 2001  相似文献   

2.
海-陆-气全球耦合模式能量收支的误差   总被引:4,自引:0,他引:4  
张韬  吴国雄  郭裕福 《气象学报》2002,60(3):278-289
通过分析GOALS模式两个版本GOALS 1.1和GOALS 2的能量收支 ,并与观测对比 ,结果表明 :模式模拟的地表净短波辐射通量在高纬地区偏低 ,而净长波辐射通量又偏高 ,导致极地表面温度偏低 ,感热通量在高纬地区为很高的负值。而在陆地上感热加热作用显著偏强 ,使地表有较大的向上净能量给大气 ,引起陆地上有些暖中心也偏强 ,这也解释了模式模拟地表面空气温度场的误差原因。海洋上潜热通量偏低 ,特别是在副热带洋面上偏少更明显。陆地上的欧亚和北美大陆大部分地区潜热通量仍偏低。这也是模式降水在大部分地区偏少的重要原因。两模式大气顶OLR偏低的模拟主要是在中低纬度 ,大气顶净短波辐射通量的模拟在中低纬度虽然与NCEP结果接近 ,但与地球辐射收支试验ERBE资料比较仍偏小较多 ,说明改进中低纬度云 辐射参数化方案对改进全球能量收支的模拟有重要意义。GOALS 2模式中诊断云方案模拟的云量除赤道地区外普遍偏小 ,尤以中纬度为甚 ,造成那里能量收支出现大的误差 ,这表明了更好的云参数化方案的引入是今后模式发展的重要任务之一  相似文献   

3.
The energy budget of the two versions of the GOALS model (GOALS-1.1 and GOALS-2) is described and compared to observational estimates.The results illustrate that the simulated surface net shortwave radiation flux is underestimated in the high-latitude regions while the surface net longwave radiation flux is substantially overestimated in that region,which results in the lower surface air temperature (SAT) of the polar region and the stronger negative sensible heat flux in high latitudes.The overestimated sensible heat flux from surface to atmosphere in the continents causes the much warmer SAT centers,which may be the reason for the bias of the model SAT. The bias that the simulated precipitation is less than observation in most regions is closely related to the underestimated latent heat flux over most of the Eurasian Continent and the oceans, especially over the subtropical oceans.It can be seen that the bias in the OLR of the two models lies in low and middle latitudes,where the absorbed solar shortwave radiation flux at the top of the atmosphere is comparable to the NCEP reanalysis,but much less than ERBE data.This indicates that the improvement of cloud-radiation parameterization scheme in low and middle latitudes is of critical importance to the simulation of global energy budget.The simulated cloud cover from the GOALS-2 model with diagnosed cloud scheme is generally less except at equatorial areas, especially in the mid-latitude areas,which causes the large bias of energy budget there.It is suggested that the refinement of cloud parameterization is one of the most important tasks in the model's future development.  相似文献   

4.
The future climate change projections are essentially based on coupled general circulation model (CGCM) simulations, which give a distinct global warming pattern with arctic winter amplification, an equilibrium land-sea warming contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the Intergovernmental Panel on Climate Change (IPCC) predictions, the conceptual understanding of these predicted structures of climate change and the causes of their uncertainties is very difficult to reach if only based on these highly complex CGCM simulations. In the study presented here we will introduce a very simple, globally resolved energy balance (GREB) model, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the strongly simplified energy balance models and the fully coupled 4-dimensional complex CGCMs. It provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies, which shall build a basis or starting point for more detailed studies of observations and CGCM simulations. It is based on the surface energy balance by very simple representations of solar and thermal radiation, the atmospheric hydrological cycle, sensible turbulent heat flux, transport by the mean atmospheric circulation and heat exchange with the deeper ocean. Despite some limitations in the representations of the basic processes, the models climate sensitivity and the spatial structure of the warming pattern are within the uncertainties of the IPCC models simulations. It is capable of simulating aspects of the arctic winter amplification, the equilibrium land-sea warming contrast and the inter-hemispheric warming gradient with good agreement to the IPCC models in amplitude and structure. The results give some insight into the understanding of the land-sea contrast and the polar amplification. The GREB model suggests that the regional inhomogeneous distribution of atmospheric water vapor and the non-linear sensitivity of the downward thermal radiation to changes in the atmospheric water vapor concentration partly cause the land-sea contrast and may also contribute to the polar amplification. The combination of these characteristics causes, in general, dry and cold regions to warm more than other regions.  相似文献   

5.
The Response of Arctic Sea Ice to Global Change   总被引:4,自引:0,他引:4  
The sea ice-covered polar oceans have received wider attention recently for two reasons. Firstly, the global conveyor belt circulation of the ocean is believed to be forced in the North and South Atlantic through deep water formation, which to a large degree is controlled by the variations of the sea ice margin and especially by the sea ice export to lower latitudes. Secondly, CO2 response experiments with coupled climate models show an enhanced warming in polar regions for increased concentrations of atmospheric greenhouse gases. Whether this large response in high latitudes is due to real physical feedback processes or to unrealistic simplifications of the sea ice model component remains to be determined. Coupled climate models generally use thermodynamic sea ice models or sea ice models with oversimplified dynamics schemes. Realistic dynamic-thermodynamic sea ice models are presently implemented only at a few modeling centers. Sensitivity experiments with thermodynamic and dynamic-thermodynamic sea ice models show that the more sophisticated models are less sensitive to perturbations of the atmospheric and oceanic boundary conditions. Because of the importance of the role of sea ice in mediating between atmosphere and ocean an improved representation of sea ice in global climate models is required. This paper discusses present sea ice modeling as well as the sensitivity of the sea ice cover to changes in the atmospheric boundary conditions. These numerical experiments indicate that the sea ice follows a smooth response function: sea ice thickness and export change by 2% of the mean value per 1 Wm-2 change of the radiative forcing.  相似文献   

6.
A full global atmosphere-ocean-land vegetation model is used to examine the coupled climate/vegetation changes in the extratropics between modern and mid-Holocene (6,000 year BP) times and to assess the feedback of vegetation cover changes on the climate response. The model produces a relatively realistic natural vegetation cover and a climate sensitivity comparable to that realized in previous studies. The simulated mid-Holocene climate led to an expansion of boreal forest cover into polar tundra areas (mainly due to increased summer/fall warmth) and an expansion of middle latitude grass cover (due to a combination of enhanced temperature seasonality with cold winters and interior drying of the continents). The simulated poleward expansion of boreal forest and middle latitude expansion of grass cover are consistent with previous modeling studies. The feedback effect of expanding boreal forest in polar latitudes induced a significant spring warming and reduced snow cover that partially countered the response produced by the orbitally induced changes in radiative forcing. The expansion of grass cover in middle latitudes worked to reinforce the orbital forcing by contributing a spring cooling, enhanced snow cover, and a delayed soil water input by snow melt. Locally, summer rains tended to increase (decrease) in areas with greatest tree cover increases (decreases); however, for the broad-scale polar and middle latitude domains the climate responses produced by the changes in vegetation are relatively much smaller in summer/fall than found in previous studies. This study highlights the need to develop a more comprehensive strategy for investigating vegetation feedbacks.  相似文献   

7.
极地气象与全球变化   总被引:1,自引:0,他引:1  
目前,全球变化加快,极地地区变化尤为突出,这对区域或全球的社会、经济和生态系统都将产生显著的影响。最明显的证据是极区的冰川和冰雪范围持续减少,永久冻土在消融和消失,北冰洋海冰范围和厚度减小。极地环境的变化跟地球其它区域的变化息息相关,如臭氧洞的形成与来自低纬度的污染物积聚有关。极地地区的科学研究非常重要,不断地给我们提出新的科学挑战。极地冰盖下和大面积海冰下存在着大量的未知领域,许多极地研究的前沿问题实际上存在于传统学科的交叉领域。因此,世界气象组织(WMO)和国际科联(ICSU)共同发起并于2007年3月1日启动实施2007-2008年国际极地年(IPY),旨在为极地气象学、海洋学、冰川和水文学等领域的科学研究和观测做出贡献,有助于发展更精确的海一冰一大气环流模式,进一步提高对天气预报和气候变化的预测和预估水平。  相似文献   

8.
Summary The maximum entropy production (MEP) principle used in Part J has been extended to separate the two-dimensional required energy transports determined from Nimbus 7 satellite net radiation measurements into atmospheric and oceanic components. In terms of the meridional component of the ocean transport vectors, results show northward ocean transports throughout the entire Atlantic ocean from southern hemisphere high latitudes to northern hemisphere polar regions, southward transports throughout the entire Indian Ocean, and poleward transports separated at approximately 10°S in the Pacific Ocean. The ocean transport patterns are consistent with well-known features concerning heat transport within the three ocean basins. However, uncertainty remains in the magnitudes of the transports. Because of the large remaining discrepancies between published estimates based on direct measurements and indirect estimates derived from energy budget methods, assessing the accuracy of the magnitudes is difficult, although there is evidence that the limited model resolution leads to synergistic biases in the North Atlantic and North Pacific. In terms of the crossmeridional energy transport component, results suggest that most of the net energy transfer in the tropics takes place within the ocean. In the southern hemisphere high latitudes, the Pacific and Indian Oceans export heat cross-meridionally to the Atlantic Ocean through the passages below Cape Horn and the Cape of Good Hope, although the magnitudes of these inter-ocean heat exchanges are small. Another important aspect of the southern hemisphere results is that poleward transports are dominated by the atmospheric component with strong zonal asymmetry. By contrast, in the northern hemisphere, atmospheric transports over the ocean are generally weaker than the corresponding southern hemisphere terms, indicating that the northern hemisphere oceans are relatively more effective in transferring heat poleward. Finally, poleward atmospheric transports over the continental areas exceed those over the ocean at equivalent latitudes as a result of the generally greater energy deficits over the land areas.With 7 Figures  相似文献   

9.
The social and cultural dimensions of arctic environmental change were explored through Canada??s International Polar Year (IPY) research program. Drawing on concepts of vulnerability, resilience and human security, we discuss preliminary results of 15 IPY research projects (of 52) which dealt with the effects and responses of northern communities to issues of ecological variability, natural resource development and climate change. This paper attempts to determine whether the preliminary results of these projects have contributed to the IPY program goal of building knowledge about well-being in the arctic. The projects were diverse in focus and approach but together offer a valuable pan-northern perspective on many themes including land and resource use, food security, poverty and best practices of northern engagement. Case study research using self-reported measures suggests individual views of their own well-being differ from regional and territorial standardized statistics on quality of life. A large body of work was developed around changes in land and resource use. A decline in land and resource use in some areas and consequent concerns for food security, are directly linked to the effects of climate change, particularly in coastal areas where melting sea ice, erratic weather events and changes in the stability of landscapes (e.g., erosion, slumping) are leading to increased risks for land users. Natural resource development, while creating some new economic opportunities, may be compounding rather than offsetting such stresses of environmental change for vulnerable populations. While the IPY program has contributed to our understanding of some aspects of well-being in the arctic, many other issues of social, economic, cultural and political significance, including those unrelated to environmental change, remain poorly understood.  相似文献   

10.
This study aims to understand the mechanisms which cause an overall reduction of SH extratropical cyclone activity with a slight increase in the high latitudes in a warmer climate simulated in general circulation models (GCMs) with increasing CO2. For this purpose, we conducted idealized model experiments by forcing warm temperature anomalies to the areas where climate change models exhibit local maximum warming—the tropics in the upper troposphere and the polar regions in the lower troposphere—simultaneously and separately. The Melbourne University atmospheric GCM (R21) coupled with prescribed SST was utilized for the experiments. Our results demonstrate that the reduction of SH extratropical cyclone frequency and depth in the midlatitudes but the slight increase in the high latitudes suggested in climate change models result essentially from the tropical upper tropospheric warming. With this tropical warming, the enhanced static stability which decreases baroclinicity in the low and midlatitudes turns out to be a major contributor to the decrease of cyclone activity equatorward of 45°S whereas the increased meridional temperature gradient in the high latitudes seems an important mechanism for the increase of cyclone activity over 50°–60°S.  相似文献   

11.
论大气环流的季节划分与季节突变 Ⅲ.气候平均情况   总被引:16,自引:2,他引:14  
薛峰  林一骅  曾庆存 《大气科学》2002,26(3):307-314
该文第Ⅰ部分定义了大气环流的季节划分和季节突变,第Ⅱ部分按此对个别年份的情况作了具体计算,第Ⅲ部分则利用NCEP/NCAR 1978~1997年气候平均资料做了实际计算,其结果与第Ⅱ部分大体一致,但更鲜明且更有代表性(是气候平均而非个别年份).主要结果有:(1)在对流层中下层,亚洲冬季风环流的建立始于欧亚大陆高纬西风带,夏季风环流的建立始于太平洋副高(副热带季风),以及由于马斯克林高压和澳大利亚冷高等几个大气活动中心的建立或加强(热带季风).(2)各季节的建立始于平流层,之后是对流层低层的极区和热带个别区域,并由上述层及地区分别向上、下层和中纬度地区发展,最终导致整个半球季节环流场的建立.(3)季节突变最强在平流层,分别位于两半球的热带到副热带以及高纬到极地,其中从冬到夏的突变明显强于从夏到冬的突变,而对流层的季节突变较平流层偏弱,主要位于热带到副热带的中上层.  相似文献   

12.
大气能量学是大气科学重要的组成部分,了解大气能量的时空分布和变化特征,能够为大气科学研究,尤其是气候变化研究提供新的思路和手段。本文基于1948~2016年NCEP逐月再分析资料,从大气的总能量及其内能、位能、潜热和动能的分布、变化趋势和主模态变化等方面阐释了全球大气能量变化的整体特征。主要结论如下:(1)除高海拔地区外,总能量呈现从赤道向两极逐渐递减的分布,且全球大部分地区呈增加趋势,内能和位能的分布和变化与总能量较为接近;潜热能的极大值区和显著变化区均位于赤道及低纬地区;动能的极大值区分布在中纬度长波槽和西风急流出口区,其在南半球双西风急流区的变化最为显著。(2)总能量呈现出不连续的阶段性跳跃式增长特征;北半球的总能量多于南半球,而增速却慢于南半球,即两半球间的能量呈趋同趋势;海洋上空的总能量多于陆地,且海陆间差额有增大趋势;火山爆发事件可能对大气能量在年际尺度上的减少有重要作用。(3)大气各能量第一模态的空间特征与其各自变化趋势分布非常相似,并先后在1975年左右发生了年代际突变。就第二模态而言,大气的总能量、内能和位能从整体上反映出南北极与其它地区呈反向变化的特征;部分低纬度地区的潜热能与其它地区呈反向变化;动能主要呈现从热带太平洋向南北两极的经向波列分布;它们的时间系数均有一定的多年代际变化特征,可能与气候系统的内部变率有关。  相似文献   

13.
利用1951-2012年NCEP/NCAR全球月平均500 hPa高度场、气温场等再分析资料,北极涛动(AO)指数,北半球及其4个分区的极涡指数等资料,分析极涡和AO对北半球特别是欧亚大陆冬季气温异常分布的影响。北半球极涡面积指数与北半球气温相关场呈由北向南的“+、-”分布,显著正相关中心位于极区,显著负相关中心位于欧亚大陆中高纬度地区;AO指数与气温的相关场分布与此反位相。极涡各分区面积指数体现与各大洲气温显著相关的地域特征,尤其是亚洲极涡面积指数比AO的相关区域更偏向亚洲和中国东部及沿海地区,能表征亚洲大陆冬季风向中低纬度爆发的某些特征。2006年以来AO指数呈较明显的下降趋势,北半球、亚洲区极涡面积指数呈显著的上升趋势,这是有利于欧亚大陆近几年连续冬季气温异常偏低的年代际背景;2009-2011年北半球欧亚大陆冬季大范围低温事件,不仅与冬季AO负位相明显变强有关(2011年除外),与北半球以及亚洲区极涡面积指数偏大联系更为密切,亦表明该区域冬季变冷的自然变率明显增强。  相似文献   

14.
大气环流模式中动力框架与物理过程的相互响应   总被引:7,自引:3,他引:4  
用大气环流模式CAM3.1和IAP AGCM4.0对模式中动力框架与物理过程之间的相互作用及响应关系进行了初步探讨。选用理想的物理过程(Held-Suarez强迫)及完整物理参数化方案,分别对两个模式积分了60 d。试验表明,动力框架与物理过程之间的相互响应在低纬对流层和高纬对流层中上层有着较大的区别。在低纬对流层,动力框架及物理过程产生的温度倾向都有着较大的变率,对总的温度倾向的变率均有较大的贡献,且二者之间为相互补偿的反相关关系;在高纬对流层的中上层,总的温度倾向的变化主要依赖于动力框架的贡献,物理过程造成的倾向变化很缓慢,可近似地看做定常的强迫,且物理过程产生的温度倾向与动力框架产生的温度倾向之间为正位相的响应关系。此外,还对各个物理参数化方案之间的相互作用及响应关系进行了分析。结果表明,在所有过程中,湿过程所引起的温度倾向的变化最为显著,对总的物理过程倾向的贡献也最大;在高纬地区,长波辐射冷却也有较大的变率;短波辐射加热率及垂直扩散加热率的变化相对较小;长波辐射冷却和短波辐射加热之间为近似负反馈的响应关系。  相似文献   

15.
Storm tracks play a major role in regulating the precipitation and hydrological cycle in midlatitudes. The changes in the location and amplitude of the storm tracks in response to global warming will have significant impacts on the poleward transport of heat, momentum and moisture and on the hydrological cycle. Recent studies have indicated a poleward shift of the storm tracks and the midlatitude precipitation zone in the warming world that will lead to subtropical drying and higher latitude moistening. This study agrees with this key feature for not only the annual mean but also different seasons and for the zonal mean as well as horizontal structures based on the analysis of Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model simulations. Further analyses show that the meridional sensible and latent heat fluxes associated with the storm tracks shift poleward and intensify in both boreal summer and winter in the late twenty-first century (years 2081?C2100) relative to the latter half of the twentieth century (years 1961?C2000). The maximum dry Eady growth rate is examined to determine the effect of global warming on the time mean state and associated available potential energy for transient growth. The trend in maximum Eady growth rate is generally consistent with the poleward shift and intensification of the storm tracks in the middle latitudes of both hemispheres in both seasons. However, in the lower troposphere in northern winter, increased meridional eddy transfer within the storm tracks is more associated with increased eddy velocity, stronger correlation between eddy velocity and eddy moist static energy, and longer eddy length scale. The changing characteristics of baroclinic instability are, therefore, needed to explain the storm track response as climate warms. Diagnosis of the latitude-by-latitude energy budget for the current and future climate demonstrates how the coupling between radiative and surface heat fluxes and eddy heat and moisture transport influences the midlatitude storm track response to global warming. Through radiative forcing by increased atmospheric carbon dioxide and water vapor, more energy is gained within the tropics and subtropics, while in the middle and high latitudes energy is reduced through increased outgoing terrestrial radiation in the Northern Hemisphere and increased ocean heat uptake in the Southern Hemisphere. This enhanced energy imbalance in the future climate requires larger atmospheric energy transports in the midlatitudes which are partially accomplished by intensified storm tracks. Finally a sequence of cause and effect for the storm track response in the warming world is proposed that combines energy budget constraints with baroclinic instability theory.  相似文献   

16.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

17.
Over the upper troposphere of the polar latitudes the zonal flows exhibit a large variance on the time scale of the Madden-Julian oscillation, i.e. roughly 30–50 days. The other prominent regions for these intraseasonal oscillations are the Asian and Australian monsoon belts. These two regions are separated by the so-called critical latitude, to the south of which easterlies generally prevail and westerlies are prevalent to the north. A perplexing issue is that of possible tropical-middle latitude interactions across the critical latitude. The notion of the critical latitude emerged from the linear theories for the wave energy flux which assume a constancy in time for the zonal flows. This same problem, viewed in its full non-linear context, can be cast in a frequency domain. Such a formulation does not assume a constancy of the zonal flows in time but does permit the intraseasonal variations of the zonal flows to be present. The computation of the wave energy flux, from the more complete non-linear system in the frequency domain, requires the handling of linear, quadratic and triple product terms via use of Hayashi's co-spectral method. These results of the present study, based on 6 years of daily global data sets, show that wave energy flux clearly passes from the latitudes of the monsoon to the polar latitudes. A strong convergence of wave energy flux in the polar latitudes suggests the tropical-middle latitude convergence interactions across the so-called critical latitude—when the problem is viewed in the frequency domain.  相似文献   

18.
The increased solar cycle activity is followed by long-term anomalies in the surface air pressure that take place in the extra-tropical zone of the Northern Hemisphere in winter. The most important peculiarity is an opposite change in the pressure in the regions that tend to the Icelandic and Aleutian lows. During the 16th-23rd solar activity cycles, two scenarios of pressure change in the high latitudes are observed: (1) an increase at the border between the Arctic and Atlantic Ocean and a decrease at the border with the Pacific; (2) a decrease at the Arctic border with the Atlantic Ocean and an increase at its border with the Pacific. Spatial-temporal peculiarities of natural oscillations adapted to large-scale inhomogeneity in land and ocean distribution in the temperate and high latitudes and, therefore, the Arctic hydrometeorological conditions can be considered as important indicators of solar-terrestrial relations.  相似文献   

19.
Change and variability in the timing and magnitude of sea ice geophysical and thermodynamic state have consequences on many aspects of the arctic marine system. The changes in both the geophysical and thermodynamic state, and in particular the timing of the development of these states, have consequences throughout the marine system. In this paper we review the ??consequences?? of change in sea ice state on primary productivity, marine mammal habitats, and sea ice as a medium for storage and transport of contaminants and carbon exchange across the ocean-sea-ice-atmosphere interface based upon results from the International Polar Year. Pertinent results include: 1) conditions along ice edges can bring deep nutrient-rich ??pacific?? waters into nutrient-poor surface waters along the arctic coast, affecting local food webs; 2) both sea ice thermodynamic and dynamic processes ultimately affect ringed seal/polar bear habitats by controlling the timing, location and amount of surface deformation required for ringed seal and polar bear preferred habitat 3) the ice edges bordering open waters of flaw leads are areas of high biological production and are observed to be important beluga habitat. 4) exchange of climate-active gases, including CO2, is extremely active in sea ice environments, and the overall question of whether the Arctic Ocean is (or will be) a source or sink for CO2 will be dependent on the balance of competing climate-change feedbacks.  相似文献   

20.
极地海冰是地球气候系统的重要组成部分,也是气候环境变化的指示器和放大器。极地海冰复杂的多尺度物理过程和极地观测资料的匮乏,给海冰模式的研发带来了巨大的挑战。在过去的半个多世纪中,大气-海冰-海洋的复杂相互作用和冰内物理过程在海冰模式中的数学描述取得了重大的进展,但海冰模式对一些重要物理过程的描述仍很不完善,尤其是近年来极地海冰的快速变化及其物理特性的变化,极大地增加了海冰模式物理参数化方案和模拟结果的不确定性。因此,迫切需要具备完善物理过程、适应海冰多尺度快速变化的高分辨率海冰模式,并应用于全球气候变化的研究和预测以及极地的开发利用。本文从海冰模式的发展历程和现状、极地海冰快速变化给海冰模式带来的挑战以及适应极地快速变化海冰模式的改进和发展研究方向三个方面进行了阐述和讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号